
McMaster University
Department of Computing and Software

Musa Al-hassy

COMP SCI 3EA3
Final Exam

Solution Hints

COMP SCI 3EA3 — Software Specification and Correctness
April 25, 2017

Name Student Number

This examination paper includes 8 pages (including this cover sheet); it consists of 7 questions (on the first 8 pages), plus a
Theorem List (on pages ??–??). You are responsible for ensuring that your copy of the paper is complete. Bring any discrepancy
to the attention of your invigilator.

Special Instructions:

� Make sure your name and student number are on all sheets.

� Do not separate the first 8 pages.

You are allowed to separate the Theorem List pages ??–??.

� This is a closed book examination. No books, notes, texts, calculator or academic aids of any kind are permitted.

� Answer the questions in the space provided.

� Read each question completely and carefully before answering it.

� Answer all questions.

� You are always allowed to introduce auxiliary definitions and prove auxiliary theorems.

� In doubt, document!

� The marks add up to 100; the bonus question 7 is worth another three marks.

Contents

1 Substitute It! — 15 marks — 2

2 The Other Half Of The Quadrivium — 10 marks — 3

3 An Algorithm of the Old Sages — 15 marks — 4

4 Assign Me To The Moon — 15 marks — 5

5 Quantify! Justify! Edify! — 30 marks — 6

6 Knowing The Source Code — 15 marks — 8

7 (Bonus) Why Are We Here? — 3 marks — 8

The following laws may be particularly useful in this examination,

“Abbreviation” a ≤ x < b ≡ a ≤ x ∧ x < b
“Linear Order Negation” x < b ≡ ¬(b ≤ x)
“Interval Split” a ≤ x < c ≡ a ≤ x < b ∨ b ≤ x < c provided a ≤ b ≤ c
“if-fi Context” if x = y then T x else F y fi = if x = y then T y else F y fi
“if-fi Idempotency” if b then s else s fi = s

Page 1 of 8

https://en.wikipedia.org/wiki/Quadrivium

Computer Science 3EA3 Final Exam 1 SUBSTITUTE IT! — 15 MARKS —

1 Substitute It! — 15 marks —

Give the grammar for terms in the Backus-Naur Form presented in this class, then give the definition of substitution
on terms, [∶=] ∶ Term→ Variable→ Term→ Term, by pattern matching on the first term.
Afterwards prove t[x ∶= x] = t .

Solution Hints:
Recall that a term is a constant c, a variable named x , or a function symbol f of arity n applied to other terms.

t ∶∶= c ∣ x ∣ f (t1, . . . , tn)

With this in-hand, we define substitution by

c[x ∶= E] = c for constant c

y[x ∶= E] = if x and y are the same variable then E else y fi

f (t1, . . . , tn)[x ∶= E] = f (t1[x ∶= E], . . . , tn[x ∶= E])

Just as we defined the operation by induction, we prove the required property by induction: Two base cases and a
inductive step.

Constant case t = c:

t[x ∶= x]
= { case assumption }

c[x ∶= x]
= { definition of substitution on constants }

c

= { case assumption }
t

Variable case t = y :

t[x ∶= x]
= { case assumption }

y[x ∶= x]
= { definition of substitution on variables }

if x and y are the same variable then x else y fi

= { context: the then-branch has x and y
indistinguishable, so we may
replace x with y there }

if x and y are the same variable then y else y fi

= { conditional is idempotent:
if b then s else s fi = s }

y

= { case assumption }
t

Function Application case t = f (t1, . . . , tn):
Assume the claim is true for terms ti ; that is

Induction hypothesis: ∀i ∶ 1..n ● ti[x ∶= x] = t

then we calculate,

t[x ∶= x]
= { case assumption }

f (t1, . . . , tn)[x ∶= x]
= { definition of substitution on function application }

f (t1[x ∶= x], . . . , tn[x ∶= x])
= { induction hypothesis }

f (t1, . . . , tn)
= { case assumption }

t

Page 2 of 8

https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form

Computer Science 3EA3 Final Exam 2 THE OTHER HALF OF THE QUADRIVIUM — 10 MARKS —

2 The Other Half Of The Quadrivium — 10 marks —

1. Prove that any symmetric, associative, and idempotent operator ‘⊕’ is necessarily self-distributive:

x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ (x ⊕ z)

Be explicit about any properties of ‘⊕’ in your calculational proof.

Solution Hints:
As usual we may begin with the complicated side and simplify. However, we can “discover” this formula by
starting at the simpler side and introducing a copy of one of the variables via idempotency:

x ⊕ (y ⊕ z)
= { Idempotency }

(x ⊕ x) ⊕ (y ⊕ z)
= { Associativity, twice }

x ⊕ ((x ⊕ y) ⊕ z)
= { Symmetry and Associativity }

(x ⊕ z) ⊕ (x ⊕ y)
= { Symmetry }

(x ⊕ y) ⊕ (x ⊕ z)

2. Prove that provided x does not occur in P and R is non-empty, we have

“Superfluous Quantification for Idempotent ⊕”: (⊕x R ● P) = P

As usual, a quantification operation is necessarily associative and symmetric; moreover in this context it is
assumed to have an identity and to be idempotent.

Solution Hints:
(⊕ x R ● P)

= { Identity of ⊕ }
(⊕ x R ● P ⊕ e)

= { Distributivity of ⊕ over ⊕ whose provisos are given
along with the result of the previous problem }

P ⊕ (⊕ x R ● e)
= { Unit Body }

P ⊕ e

= { Identity of ⊕ }
P

Page 3 of 8

HTTPS://EN.WIKIPEDIA.ORG/WIKI/QUADRIVIUM
https://en.wikipedia.org/wiki/Quadrivium

Computer Science 3EA3 Final Exam 3 AN ALGORITHM OF THE OLD SAGES — 15 MARKS —

3 An Algorithm of the Old Sages — 15 marks —

Produce an algorithm —necessarily with proof— that satisfies the following informal specification:

“Assign present to be true iff a given element E is in the ordered (monotone) array f [0..N − 1].”

Solution Hints:
It is implicit in the informal spec that the array-length is a natural number, and we’re told the array is ordered,

G ∶ N ≥ 0 ∧ f monotone

and the goal of the problem can be formalised as

R ∶ present ≡ (∃i ∶ 0..N − 1 ● E = f [i])

We can walk-along f and if we reach the end before witnessing E , then we can set present to be false. Such a Linear
Search is not a completely valid solution since the extra information about the array being ordered is not used and
hints that we ought to look for a more efficient solution.

As before, our solution has the form

“find x with E = f [x], if possible”; “assign a value to present”

Where the first piece can be refined as follows:

“find x with E = f x , if possible”

⇐ { pick a value for x if E is not in the image of f }
“find x with E = f x , if possible; otherwise x = −1”

⇐ { let us look for the largest index at which E occurs
and fictitiously pretend that f (−1) = E . }

x = (↑ i ∶ −1..N − 1 f i ≤ E)
≡ { Local Characterisation of Integer Extrema

with antitonicity proviso: For any i , j ,
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f j ≤ E ⇒ f i ≤ E

⇐ { Transitivity }
f i ≤ f j

⇐ { f is monotone }
i ≤ j

The non-empty proviso holds since f (−1) = E ≤ E .
The finiteness proviso is clear since we’re in the interval −1..N − 1.
}

−1 ≤ x < N ∧ f x ≤ E ∧ ¬(− 1 ≤ x + 1 ≤ N ∧ f (x + 1) ≤ E)
⇐ { Weakening and contraposition; and linear order negation }

−1 ≤ x < N ∧ f x ≤ E ∧ E < f (x + 1)

This is the post-condition of binary search! Hence, we have

“Predicate Binary Search”[b m ∶= f m ≤ E] ; present ∶= if 0 ≤ x then (f x = E) else false fi

Page 4 of 8

http://www.cas.mcmaster.ca/~alhassm/Quiz4.pdf
http://www.cas.mcmaster.ca/~alhassm/ThmList.pdf

Computer Science 3EA3 Final Exam 4 ASSIGN ME TO THE MOON — 15 MARKS —

4 Assign Me To The Moon — 15 marks —

Using the heuristic of “programming is a goal-orented activity”, step-by-step construct an algorithm to quantify over
an array. Formally, solve:

{ 0 ≤ N } ? { result = (⊕ i 0 ≤ i < N ● f i) }

Solution Hints:
Replacing constant N with a new variable and placing bounds on it yields invariant

P ∶ result = (⊕i 0 ≤ i < n ● f i) ∧ 0 ≤ n ≤ N

which says “result holds the quantification so far”. It is clear that P is initially truthified by the assignment
result ,n ∶= e,0 where e is the unit of ⊕. Next, if we have P and N = n then we have the required goal R, whence we
take as loop guard

B ∶ N ≠ n

Within the loop we have P ∧B which entail N − n > 0 and so we take N − n as our bound function bf .

The bound is decreased by increasing n, so we consider incrementing it and calculate what must happen to our other
variable. That is we solve for assignment E in the maintenance of the invariant: Assuming P ∧B ,

P[result ,n ∶= E ,n + 1]=
E = (⊕i 0 ≤ i < n + 1 ● f i) ∧ 0 ≤ n + 1 ≤ N

= { For the right conjunct,
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ≤ n + 1 ≤ N

⇐ { Transitivity }
0 ≤ n ∧ n + 1 ≤ N

= { Integers are discrete }
0 ≤ n ∧ n < N

= { Strict inclusion and abbreviation }
0 ≤ n ≤ N ∧ n ≠ N

= { Assumptions P ∧B }
true

}
E = (⊕i 0 ≤ i < n + 1 ● f i)

= { Split off term }
E = (⊕i 0 ≤ i < n ● f i) ⊕ f (n + 1)

= { Assumption P }
E = result ⊕ f (n + 1)

Hence, the invariant is maintained precisely when we also assign result to be E ,
which we have calculated to be result ⊕ f (n + 1). Whence,

result ,n ∶= e,0

;do n ≠ N → result ,n ∶= result ⊕ f n,n + 1 od

Page 5 of 8

http://www.cas.mcmaster.ca/~alhassm/Quiz3.pdf

Computer Science 3EA3 Final Exam 5 QUANTIFY! JUSTIFY! EDIFY! — 30 MARKS —

5 Quantify! Justify! Edify! — 30 marks —

The “maximum segment sum” is specified by computing, for integer array A,

↑ p, q 0 ≤ p ≤ q ≤ lengthA ● (Σ x p ≤ x < q ● A x)

By the quantifier nesting law, we could formalise this in ACSL as

\max(0, len, \lambda integer p;

\max(p, len, \lambda integer q;

\sum(p, q-1, \lambda integer x; A[x])))

An alternative is to name the important quantifications and give explicit definitions for them —we can always do this since a
quantification over an interval is just a recursively defined notation! For n ∶ N,

max2Dn = (↑ p, q 0 ≤ p ≤ q ≤ n ● S p q)
S p q = (Σ x p ≤ x < q ● A x)
max1Dn = (↑ p 0 ≤ p ≤ n ● S p n)

Now it suffices to compute max2Dn where n = lengthA. As such, let us find a recursive definition of max2D.

Taking n = 0 and simplifying we find max2D0 = 0, then using split-off term we obtain that max2D (n + 1) = max2Dn ↑
max1D (n + 1). Consequently, it seems we need to find a recursive definition of max1D. The case n = 0 again simplifies to 0,
whereas the inductive case is more involved.

— 15 marks — For 0 ≤ n, prove max1D (n + 1) = (max1Dn + A n) ↑ 0

Solution Hints:

max1D (n + 1)
= { Definition and Split off term with proviso 0 < n + 1 following from 0 ≤ n }

(↑ p 0 ≤ p ≤ n ● S p (n + 1)) ↑ S (n + 1) (n + 1)
= { For the right-most term, for any m:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S m m

= { Definition }
∑ x m ≤ x < m ● A x

= { Linear Order Negation and Contradiction }
∑ x false ● A x

= { Empty Range }
0

Now take m = n + 1. }
(↑ p 0 ≤ p ≤ n ● S p (n + 1)) ↑ 0

= { For the quantification body,
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S p (n + 1)
= { Definition }
∑ x p ≤ x < n + 1 ● A x

= { Split off term with proviso p < n + 1 given by the context }
(∑ x p ≤ x < n ● A x) + A n

= { Definition }
S p n + A n

}
(↑ p 0 ≤ p ≤ n ● S p n + A n) ↑ 0

= { Distributivity of ‘+’ over ↑ with non-empty proviso holding since 0 ≤ n }

((↑ p 0 ≤ p ≤ n ● S p n) + A n) ↑ 0

= { Definition of max1D }
(max1Dn + A n) ↑ 0

Page 6 of 8

https://frama-c.com/acsl.html

Computer Science 3EA3 Final Exam 5 QUANTIFY! JUSTIFY! EDIFY! — 30 MARKS —

— 3 marks — Use the previous discussion to fill in the following axiomatisation —the last one is done for you.

Solution Hints:

#define max(a,b) ((a) > (b) ? (a) : (b))

/*@ axiomatic MyMaxOps {

@ logic integer max1D(int* A, integer len) ;

@ logic integer max2D(int* A, integer len) ;

@

@ axiom base1: \forall int* A ;

@ max1D(A, 0) == 0 ;

@ axiom splitOff1 : \forall int* A; \forall integer n ;

@ max1D(A, n + 1) == max(max1D(A, n) + A[n] , 0) ;

@

@ axiom base2 : \forall int* A ;

@ max2D(A, 0) == 0 ;

@ axiom splitOff2 : \forall int* A; \forall integer n ;

@ max2D(A , n + 1) == max(max2D(A, n) , max1D(A, n + 1));

@ }

@*/

— 12 marks — Provide appropriate specifications for the the following maximum segment sum program:

Solution Hints:

/*@ requires 0 <= len ;

@ requires \valid(A+(0..len-1)) ;

@ assigns \nothing ;

@ ensures \result == max2D(A, len);

*/

int kaldewaij(int* A, int len)

{

int n , r , s;

n = r = s = 0;

/*

@ loop invariant 0 <= n <= len ;

@ loop invariant r == max2D(A, n);

@ loop invariant s == max1D(A, n);

@ loop assigns n ;

@ loop variant len - n ;

*/

while(n != len)

{

s = max(s + A[n] , 0) ;

r = max(r, s) ;

n = n + 1 ;

}

return r;

}

Page 7 of 8

https://en.wikipedia.org/wiki/Maximum_subarray_problem#Kadane.27s_algorithm

Computer Science 3EA3 Final Exam 7 (BONUS) WHY ARE WE HERE? — 3 MARKS —

6 Knowing The Source Code — 15 marks —

One ought to be comfortable using a variety of notational languages —e.g., different programming languages!

As an analogue to the integral ∫ b
a f (x)dx of a traditional first-year education in continuous mathematics, let us

introduce the “sum” operation as a discrete counterpart,

b

∑
a

f (x) δx = (+x ∶ Z a ≤ x < b ● f x)

A host of familar laws from the continous setting also hold in the discrete setting. In-particular, prove

Solution Hints:

“Additivity”: For a ≤ b ≤ c,

b

∑
a

f (x) δx +
c

∑
b

f (x) δx =
c

∑
a

f (x) δx

hi

We begin at the complicated side and aim to simplify,

∑b
a f (x) δx + ∑c

b f (x) δx
= { definition of “sum” operator, twice }

(+ x ∶ Z a ≤ x < b ● f x)
+ (+ x ∶ Z b ≤ x < c ● f x)

= { Range Split with provisio:
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a ≤ x < b ∧ b ≤ x < c

= { abbreviation }
a ≤ x ∧ x < b ∧ b ≤ x ∧ x < c

= { Linear order negation }
a ≤ x ∧ ¬(b ≤ x) ∧ b ≤ x ∧ x < c

= { contradiction }
a ≤ x ∧ false ∧ x < c

= { zero of ∧ }
false

}
(+ x ∶ Z a ≤ x < b ∨ b ≤ x < c ● f x)

= { interval split with a ≤ b ≤ c }
(+ x ∶ Z a ≤ x < c ● f x)

= { definition }
∑c

a f (x) δx

“Fubini’s Theorem”: For a ≤ b and c ≤ d ,

b

∑
a

(
d

∑
c

f (x , y) δx)δ y =
d

∑
c

(
b

∑
a

f (x , y) δy)δ x

We begin at the complicated side and simplify,

∑b
a (∑d

c f (x , y) δx)δ y

= { definition of “sum” notation, twice }
(+ y ∶ Z a ≤ y < b ● (+x ∶ Z c ≤ x < d ● f x y))

= { Nesting }
(+ y , x ∶ Z a ≤ y < b ∧ c ≤ x < d ● f x y)

= { Dummy List Permutation and symmetry of ∧ }
(+ x , y ∶ Z c ≤ x < d ∧ a ≤ y < b ● f x y)

= { Nesting }
(+ x ∶ Z c ≤ x < d ● (+y ∶ Z a ≤ y < b ● f x y))

= { definition of “sum” notation, twice }
∑d

c (∑b
a f (x , y) δy) δx

7 (Bonus) Why Are We Here? — 3 marks —

Define the term correct-by-construction programming.

Solution Hints:
It’s what we’ve been doing the whole term: Calculating programs from their specifications.

Have A Great Summer!

Page 8 of 8

https://www.amazon.ca/Concrete-Mathematics-Foundation-Computer-Science/dp/0201558025
http://www.cas.mcmaster.ca/~alhassm/Quiz1_sol.pdf

	Substitute It! — 15 marks —
	The Other Half Of The Quadrivium — 10 marks —
	An Algorithm of the Old Sages — 15 marks —
	Assign Me To The Moon — 15 marks —
	Quantify! Justify! Edify! — 30 marks —
	Knowing The Source Code — 15 marks —
	(Bonus) Why Are We Here? — 3 marks —

