McMaster University COMP SCI 3EA3
Department of Computing and Software Final Exam
Musa Al-hassy Solution Hints

COMP SCI 3EA3 — Software Specification and Correctness
April 25, 2017

Name Student Number

This examination paper includes |8| pages (including this cover sheet); it consists of 7 questions (on the first [§ pages), plus a
Theorem List (on pages ?7—7?). You are respounsible for ensuring that your copy of the paper is complete. Bring any discrepancy
to the attention of your invigilator.

SPECIAL INSTRUCTIONS:

e Make sure your name and student number are on all sheets.

e Do not separate the first [8| pages.
You are allowed to separate the Theorem List pages 77—-77.

e This is a closed book examination. No books, notes, texts, calculator or academic aids of any kind are permitted.
e Answer the questions in the space provided.

e Read each question completely and carefully before answering it.

e Answer all questions.

e You are always allowed to introduce auxiliary definitions and prove auxiliary theorems.

¢ In doubt, document!

e The marks add up to 100; the bonus question 7 is worth another three marks.

Contents

r — — 2
2 The Other Half Of The Quadrivium __— 10 marks — | 3
[3 An Algorithm of the Old Sages — 15 marks — | 4
[4 Assign Me To The Moon — 15 marks — | 5
[5 Quantify! Justify! Edify! — 30 marks — | 6
6 Knowing The Source Code — 15 marks — | 8
|7 (Bonus) Why Are We Here? — 3 marks — | 8

The following laws may be particularly useful in this examination,

“Abbreviation” a<z<b = a<zAzT<Db

“Linear Order Negation” z<b = =(b<x)

“Interval Split” a<zr<c = a<z<bvbzxz<c provided a < b< ¢

“if-fi Context” if r=ythen Tz else Fyfi = if z=y then Ty else Fy fi
“if-fi Idempotency” if bthenselsesfi = s

Page 1 of

https://en.wikipedia.org/wiki/Quadrivium

Computer Science 3EA3 Final Exam 1 SUBSTITUTE IT! — 15 MARKS —
1 Substitute It! — 15 marks —

Give the grammar for terms in the Backus-Naur Form! presented in this class, then give the definition of substitution
on terms, _[_:= _]: Term — Variable — Term — Term, by pattern matching on the first term.
Afterwards prove t[z :=z] = t.

Solution Hints:
Recall that a term is a constant ¢, a variable named z, or a function symbol f of arity n applied to other terms.

t::=C|x|f(t17"'atn)

With this in-hand, we define substitution by

clz:=F]=c for constant ¢
ylz := F] =if z and y are the same variable then F else y fi
flt,...;tp)[x=E]=f(t[z = E],... ty[x = E])

Just as we defined the operation by induction, we prove the required property by induction: Two base cases and a
inductive step.

Constant case t = c: Function Application case t = f(t1,...,1t,):

t[z = z] Assume the claim is true for terms ¢;; that is

{ case assumption }

Induction hypothesis: Vi:1.n e t;[z:=z]=1t

clz =1
= { definition of substitution on constants } then we calculate,
c t[z = z]
= { case assumption } = { case assumption }
t flt,y .. ty)[x = z]
Variable case t = y: = { definition of substitution on function application }
t[z = z] fllz=z],... ty[z = z])
= { case assumption } = { induction hypothesis }
ylz = z] Flt, . t)
= { definition of substitution on variables } = { case assumption }
if £ and y are the same variable then z else y fi t

{ context: the then-branch has z and y
indistinguishable, so we may
replace x with y there }

if z and y are the same variable then y else y fi

{ conditional is idempotent:
if bthen selsesfi =s }

{ case assumption }

Page 2 of

https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form

Computer Science 3EA3 Final Exam 2 THE OTHER HALF OF THE QUADRIVIUM, — 10 MARKS —
2 The Other Half Of The Quadrivium — 10 marks —

1. Prove that any symmetric, associative, and idempotent operator ‘@’ is necessarily self-distributive:
z®(y@z) = (z@y)e(z®2)

Be explicit about any properties of ‘@’ in your calculational proof.

Solution Hints:
As usual we may begin with the complicated side and simplify. However, we can “discover” this formula by
starting at the simpler side and introducing a copy of one of the variables via idempotency:

z®(y®2z)

{ Idempotency }
(z@z)®(y®2)

{ Associativity, twice }

zo((zoy)®z)

{ Symmetry and Associativity }
(zoz)®(z0y)

{ Symmetry }
(zoy)o(zaz2)

2. Prove that provided z does not occur in P and R is non-empty, we have
“Superfluous Quantification for Idempotent ®”: (@xz | R ¢ P) = P

As usual, a quantification operation is necessarily associative and symmetric; moreover in this context it is
assumed to have an identity and to be idempotent.

Solution Hints:
(x| R e P)

{ Identity of & }
(EBa: | R o PeBe)

{ Distributivity of & over & whose provisos are given
along with the result of the previous problem }

PEB(EBx | R o e)
{ Unit Body }
Peoe
{ Identity of & }

P

Page 3 of

HTTPS://EN.WIKIPEDIA.ORG/WIKI/QUADRIVIUM
https://en.wikipedia.org/wiki/Quadrivium

Computer Science 3EA3 Final Exam 3 AN ALGORITHM OF THE OLD SAGES — 15 MARKS —
3 An Algorithm of the Old Sages — 15 marks —

Produce an algorithm —mnecessarily with proof— that satisfies the following informal specification:
“Assign present to be true iff a given element F is in the ordered (monotone) array f[0..N —1].”

Solution Hints:
It is implicit in the informal spec that the array-length is a natural number, and we’re told the array is ordered,

G : N>0 A fmonotone

and the goal of the problem can be formalised as
R : present = (3i:0.N-1 e E=f[i])

We can walk-along f and if we reach the end before witnessing E, then we can set present to be false. Such a Linear
Search is not a completely valid solution since the extra information about the array being ordered is not used and
hints that we ought to look for a more efficient solution.

As before, our solution has the form
“find z with F = f[z], if possible”; “assign a value to present”

Where the first piece can be refined as follows:

“find x with F = f z, if possible”
< { pick a value for z if F is not in the image of f }
“find z with F = f z, if possible; otherwise z = —-1”
< { let us look for the largest index at which FE occurs
and fictitiously pretend that f(-1)=FE. }
z=(1i:-1.N-1] fi<E)
{ Local Characterisation of Integer Extrema
with antitonicity proviso: For any %, 7,
[fj<E = fi<E
< { Transitivity }
fi<fj
< { f is monotone }
1<

The non-empty proviso holds since f(-1) = E < E.
The finiteness| proviso is clear since we're in the interval —1..N — 1.

}

~1<z<N A fa<E A =(-1<2+1<NAf(z+1)<E)
< { Weakening and contraposition; and linear order negation }
-1<z<N A fz<E A E<f(z+1)

This is the post-condition of binary search! Hence, we have

“Predicate Binary Search”[bm := f m < E] ; present :=if 0 <z then (f z = E) else false fi

Page 4 of

http://www.cas.mcmaster.ca/~alhassm/Quiz4.pdf
http://www.cas.mcmaster.ca/~alhassm/ThmList.pdf

Computer Science 3EA3 Final Exam 4 ASSIGN ME TO THE MOON — 15 MARKS —
4 Assign Me To The Moon — 15 marks —

Using the heuristic of “programming is a goal-orented activity”, step-by-step construct an algorithm to quantify over
an array. Formally, solve:
{O<N }? {result = (@i | 0<i<N o fi)}

Solution Hints:
Replacing constant N with a new variable and placing bounds on it yields invariant

P: result = (@1 | 0<i<n e fi) A 0<n<N

which says “result holds the quantification so far”. It is clear that| P is initially truthified by the assignment
result,n := e,0 where e is the unit of ®. Next, if we have P and N = n then we have the required goal R, whence we
take as loop guard

B : N#n

Within the loop we have P A B which entail N —n >0 and so we take N —n as our bound function bf.
The bound is decreased by increasing n, so we consider incrementing it and calculate what must happen to our other
variable. That is we solve for assignment F in the maintenance of the invariant: Assuming P A B,
Plresult,n:= E,n +1]
E=(® | 0<i<n+lefi) A 0<n+l1<N
{ For the right conjunct,
[O0<n+1<N

< { Transitivity }
0<n A m+1<N

{ Integers are discrete }
0<n A n<N

{ Strict inclusion and abbreviation }
0<n<N A n#N

{ Assumptions PAB }
true

}
E=(@ | 0<i<n+1 e fiq)
{ Split off term }
E=(@ | 0<i<n e fi)of(n+1)
{ Assumption P }
E = result® f(n+1)

Hence, the invariant is maintained precisely when we also assign result to be F,
which we have calculated to be result ® f (n +1). Whence,

result,n :=¢e,0

;do n# N — result,n:=result ® f n,n+1 od

Page 5 of

http://www.cas.mcmaster.ca/~alhassm/Quiz3.pdf

Computer Science 3EA3 Final Exam 5 QUANTIFY! JUSTIFY! EDIFY! — 30 MARKS —
5 Quantify! Justify! Edify! — 30 marks —

The “maximum segment sum” is specified by computing, for integer array A,
T p,g | 0<p<qg<lengthA e (Ex | p<z<q o A:r)

By the quantifier nesting law, we could formalise this in ACSL| as

\max (0, len, \lambda integer p;
\max(p, len, \lambda integer q;
\sum(p, g-1, \lambda integer x; A[x])))

An alternative is to name the important quantifications and give explicit definitions for them —we can always do this since a
quantification over an interval is just a recursively defined notation! For n : N,

max2Dn = (T p,quSpqunOSpq)
Spq = (lepﬁa:<q0Aa:)
maxlDn = (TplOSpSnOSpn)

Now it suffices to compute max2D n where n = length A. As such, let us find a recursive definition of max2D.

Taking n = 0 and simplifying we find max2D0 = 0, then using split-off term we obtain that max2D (n + 1) = max2Dn 1
max1D (n + 1). Consequently, it seems we need to find a recursive definition of max1D. The case n = 0 again simplifies to 0,
whereas the inductive case is more involved.

— 15 marks — For 0 < n, prove max1D(n+1) = (maxan + An) + 0
Solution Hints:
max1D (n + 1)
{ Definition and Split off term with proviso 0 < n + 1 following from 0 < n }
(tpl10<p<n e Sp(n+l)) t S(n+l)(n+1)

{ For the right-most term, for any m:

Smm

{ Definition }
x| m<xz<m e Az

{ Linear Order Negation and Contradiction }
Yx | false o Ax

= { Empty Range }
0

Now take m = n + 1. }
(tplO<p<n e Sp(n+1)) t 0
= { For the quantification body,
[Sp(n+1)

{ Definition }
Sx | p<r<n+l e Az

{ Split off term with proviso p < n + 1 given by the context }
(Zm | p<x<n e Az) + An

{ Definition }
Spn+ An

¥
tp] 0<p<n e Spn+An) + 0
()

= { Distributivity of ‘+’ over 1 with non-empty proviso holding since 0 <n }

((T p |l 0<p<n e Spn)+An) + 0

= { Definition of max1D }

(maxan + An) T 0 Page 6 of

https://frama-c.com/acsl.html

Computer Science 3EA3 Final Exam

5 QUANTIFY! JUSTIFY! EDIFY!

— 30 MARKS —

— 3 marks — Use the previous discussion to fill in the following axiomatisation —the last one is done for you.

Solution Hints:

#define max(a,b) ((a) > (b) 7 (a)

/*Q@ axiomatic MyMaxOps {

axiom basel: \forall int* A
max1D(A, 0) ==

axiom base2 : \forall intx* A
max2D(A, 0) ==

© © © © 0 0 0 o o o o o O

©
*
~

()

logic integer max1D(int* A, integer len)
logic integer max2D(int* A, integer len)

axiom splitOffl : \forall int* A; \forall integer n
max1D(A, n + 1) == max(maxiD(A, n) + A[n]

» 0)

axiom splitOff2 : \forall int* A; \forall integer n
max2D(A , n + 1) == max(max2D(A, n)

’
I

b

, max1D(A, n + 1));

— 12 marks — |Provide appropriate specifications for the the following maximum segment sum program:

Solution Hints:

/*Q@ requires 0 <= len
@ requires \valid(A+(0..len-1))
@ assigns \nothing

*/
int kaldewaij(int* A, int len)
{

int n r
s

[

» S5
n=r = 0;
/*

@ loop invariant O <= n <= len

@ loop assigns n
@ loop variant len - n
*/

while(n !'= len)

max(s + A[n] , 0) ;
max(r, s) ;
n+1 ;

B R ®n
oo

return r;

b

@ loop invariant r == max2D(A, n);
@ loop invariant s == max1D(A, n);

b

b

’
b

b

@ ensures \result == max2D(A, len);

Page 7 of

https://en.wikipedia.org/wiki/Maximum_subarray_problem#Kadane.27s_algorithm

Computer Science 3EA3 Final Exam 7 (BONUS) WHY ARE WE HERE? — 3 MARKS —

6 Knowing The Source Code — 15 marks —

One ought to be comfortable using a variety of notational languages —e.g., different programming languages!

As an analogue to the integral [ab f(z) dx of a traditional first-year education in continuous mathematics, let us
introduce the “sum” operation as a discrete counterpart,

Zb:f(x)éx =(+z:Z | a<z<b e fz)

A host of familar laws from the continous setting also hold in the discrete setting.| In-particular, prove

Solution Hints:

“Additivity”: For a < b < ¢, “Fubini’s Theorem”: For a < b and ¢ < d,

b [¢ ¢
b (d d (b
za:f(z)&c + zb:f(x)éz = ;f(x)éw E(Zf(x,y)éx)5y = Z(f(x,y)éy)éw

a C a

We begin at the complicated side and aim to simplify,
Shf(x)dz + Y5 f(x)dx
{ definition of “sum” operator, twice }
(+:B:Z | a<x<b o f:v)
+(+x:Z | b<z<c o fac)
{ Range Split with provisio:

We begin at the complicated side and simplify,

Yo (Zdf(z,y)6m)dy
= { definition of “sum” notation, twice }

(+y:Z | a<y<b o (+x:Z | c<x<d e f:ry))
= { Nesting }

(+y,x:Z | a<y<b A c<zx<d e fzy)

a<zr<b A b<z<c))
= { Dummy List Permutation and symmetry of A }

{ abbreviation }

a<z A xz<bAb<z A z<cC (+2,y:Z | c<z<d A a<y<b e fzy)
= { Linear order negation } = { Nesting }
a<x A =(b<z)Ab<z A z<c (+m:Z|c§x<do(+y:Z|a§y<b.fg;y))

{ contradiction } = { definition of “sum” notation, twice }
a<zx A false AN x<cC

Y2t f(z,y)dy) o

= {zeroof A }
false

}
(+x:Z | a<z<b Vv b<z<ec 0f$)
= { interval split with a<b<c¢ }
(+:1::Z | a<xz<c o fx)
= { definition }
Yolf(z)dx

7 (Bonus) Why Are We Here? — 3 marks —

Define the term correct-by-construction programming.

Solution Hints:
It’s what we’ve been doing the whole term: Calculating programs from their specifications.

Have A Great Summer!

Page 8 of

https://www.amazon.ca/Concrete-Mathematics-Foundation-Computer-Science/dp/0201558025
http://www.cas.mcmaster.ca/~alhassm/Quiz1_sol.pdf

	Substitute It! — 15 marks —
	The Other Half Of The Quadrivium — 10 marks —
	An Algorithm of the Old Sages — 15 marks —
	Assign Me To The Moon — 15 marks —
	Quantify! Justify! Edify! — 30 marks —
	Knowing The Source Code — 15 marks —
	(Bonus) Why Are We Here? — 3 marks —

