
Formally Frama-C

Musa Al-hassy

McMaster University
alhassm@mcmaster.ca

January 13, 2017

A nice number for a taxicab

What is the smallest number representable in two ways as a sum of
two cubes?

Musa Al-hassy Comp Sci 3EA3

alhassm@mcmaster.ca


Exploring The Frama-C World

Recall that Frama-C is an open source Framework for Modular
Analysis of C programs whose first public release was in 2008.

Website http://frama-c.com

Mailing list http://lists.gforge.inria.fr/cgi-bin/
mailman/listinfo/frama-c-discuss

Wiki https://bts.frama-c.com/dokuwiki/doku.php?id=
mantis:frama-c:start

Blog http://blog.frama-c.com/

Musa Al-hassy Comp Sci 3EA3

http://frama-c.com
http://lists.gforge.inria.fr/cgi-bin/mailman/listinfo/frama-c-discuss
http://lists.gforge.inria.fr/cgi-bin/mailman/listinfo/frama-c-discuss
https://bts.frama-c.com/dokuwiki/doku.php?id=mantis:frama-c:start
https://bts.frama-c.com/dokuwiki/doku.php?id=mantis:frama-c:start
http://blog.frama-c.com/


Main Frama-C plugins

Value Analysis: static verification using “abstract
interpretation”

WP: static verification using “weakest precondition” —Jessis
is a similar plug-in.

RTE: run time error analysis

InOut: cmputation of outputs from inputs

Aorai: temporal verification

PathCrawler: test generation

SpareCode: removes spare code

Musa Al-hassy Comp Sci 3EA3



ANSI/ISO-C Specfication Language

ACSL is the specification language for Frama-C and its annotations
appear as special comments: /*@ <reasoning here> */

E-ACSL: “Executable” ACSL —why can this be dangerous?

Musa Al-hassy Comp Sci 3EA3



\result is not a variable!

We can only assert properties of variables and how Frama-C
rewrites some code to make this explicit.

/*@

@ assigns \nothing;

@ ensures \result == 42;

*/

int life()

{

return 42;

}

Musa Al-hassy Comp Sci 3EA3



Arguments are copied onto the stack

Erroneous Specification

#include<stdio.h>

/*@

@ assigns a;

@ ensures a == 1729;

*/

void setA(int a){ a = 1729; }

int main()

{

int a = 1 + 12;

printf("Pre: a = %d\n", a);

setA(a);

printf("Post: a = %d\n", a);

}

Musa Al-hassy Comp Sci 3EA3



\old vs \at(-,-)

imperative programming is temporal

The built-in Frama-C construct \at refers to the value of a
variable at a given point in time.

Logic Labels

Here the position to where the assertion appears.

Old the pre-state of a method and may only appear in its specification.

Post the post-state of a method and may only appear in its specification.

LoopCurrent refers to the state at the beginning of the current step of the loop; it may only

appear within a loop body.

Syntactic sugar: \old(var) == \at(var, Old)

Musa Al-hassy Comp Sci 3EA3



Printing and Frama-C

Do not use any printf statements in code you want Frama-C to
analyse! Print in your driver program, eg main.

If you find any more surprising issues, please let me know!

Musa Al-hassy Comp Sci 3EA3



Hoare Calculus in ACSL/Frama-C

Within Frama-C, the WP plug-in enables deductive verification of C programs that have been
annotated with ACSL. The WP plug-in uses Hoare-style weakest precondition computations to
formally prove ACSL properties of C code. Verification conditions are generated and submitted to
external automatic theorem provers or interactive proof assistants. – ACSL By Example §2

{Q} S {R} ≡ //@ assert Q;

S;

//@ assert R;

Note the new semicolon in the latter version! GCL uses semicolons
as separators for catenation, sequencing, of code —as is done with
its usage in colloquial English!— rather than a terminator!

Musa Al-hassy Comp Sci 3EA3



Recalling a problem discussed in class

Sorting three variables

{true}
do
y < x → x , y := y , x
z < y → y , z := z , y

od
{x ≤ y ≤ z}

#include "alhassy_gcl.h" // for GCL macros

/*@

@ requires \valid(x) && \valid(y) && \valid(z);

@ assigns *x , *y, *z;

@ ensures *x <= *y <= *z;

*/

void sorting(int* x, int* y, int* z)

{

//@ loop assigns *x, *y, *z;

DO

guard *y < *x has swap(*x, *y) //@ assert *x < *y ;

guard *z < *y has swap(*y, *z) //@ assert *y < *z ;

OD

}

What more can be added to this specfication?

Try it out!
int main()

{

int x = 9, y = 8, z = 7;

printf("x,y,z = %d,%d,%d\n", x, y, z);

sorting(&x, &y, &z);

printf("x,y,z = %d,%d,%d\n", x, y, z);

}

Musa Al-hassy Comp Sci 3EA3



References

ACSL By Example

http://www.cs.umd.edu/class/spring2016/cmsc838G/frama-c/

ACSL-by-Example-12.1.0.pdf

Highly-recommended! Teaches ACSL accessibly by using examples as the
motivator.

ACSL Mini-tutorial

https://frama-c.com/download/acsl-tutorial.pdf

“For an in-depth understanding of ACSL, we strongly reccommend users
to read the official Frama-C introductory tutorial first.” –ACSL By
Example

Frama-C reference manual

https://frama-c.com/download/frama-c-user-manual.pdf

Explains what is Frama-C and how to get it set up.

ACSL: ANSI/ISO C Specfication Language

https://frama-c.com/download/acsl.pdf

This’ the ACSL reference document

Musa Al-hassy Comp Sci 3EA3

http://www.cs.umd.edu/class/spring2016/cmsc838G/frama-c/ACSL-by-Example-12.1.0.pdf
http://www.cs.umd.edu/class/spring2016/cmsc838G/frama-c/ACSL-by-Example-12.1.0.pdf
https://frama-c.com/download/acsl-tutorial.pdf
https://frama-c.com/download/frama-c-user-manual.pdf
https://frama-c.com/download/acsl.pdf

