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Plato and friends

Are mathematical objects real? Explain the concept of “two”
without using the concept of “number”!

Musa Al-hassy Comp Sci 3EA3

alhassm@mcmaster.ca


Linguistics
Back to the Booleans

Equality
Order

Exterma
Implementation

Who is Boole?

Definition

The Booleans B is a set of two, and only two, elements denoted
true and false.

“two, and only two” means we have

Decomposition / Pattern Matching / B-Induction

every Boolean p is either true or false.
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BNF Grammars —recall second year CS?

More generally,

Declaring a new type whose elements have n-possible “shapes”

mytype ∶∶= construction1 ∣⋯ ∣ constructionn

Such a declaration means that (we claim) there is a type mytype

and it is the smallest type with these constructions:

Decomposition / Pattern Matching / mytype-Induction

every element of mytype is uniquely of the shape constructori, for
some (unique!) i and for some variables needed in the construction.

( Programming language Haskell supports this approach to data-types! )
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An Example BNF Grammar —or specification vs
representation

Even digits and even numbers

evenDigit ∶∶= 0 ∣2 ∣4 ∣6 ∣8 Evens ∶∶= N evenDigit

What do these declarations claim?

What is the induction principle for the first type?

The induction principle for the second says that an element of Evens is uniquely of the shape:
“some natural number followed by some even-digit”.

These are claims. How do we realize/implement these types if we really wanted to?

Know at least two ways! Imperative and dependently-typed!
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What is a construction?

Extremely important type

t ∶∶= c ∣ x ∣ f (t1, . . . , tn)

Term ∶∶= constant ∣ variable ∣ application to other terms

Exercise: define the types needed in the definition of Term!

Important subtlety: f above is a function symbol!

Think, class-object constructor method!
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Unique Equality

The Booleans B have an equality denoted − ≡ −. Besides the
equivalence relation properties —what are they?—, it is
characterised by the axiom

(p ≡ q) ≡ r = p ≡ (q ≡ r)

Why so special and not use traditional equality symbol ‘=’?

Difference between ‘=’ and ‘≡?’ Conjunctive vs Associative!

How is this written in ACSL and traditional maths?

What’s wrong with the phrase “x = (y = z)” for numbers? How does language C interpret this?
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Identity of Equivalence

The reflexitivity axiom for Booleans says

(p ≡ p) = true

But ‘=’ and ‘≡’ are synonyms for the same concept but with different

conventions, and that ‘≡’ is associative gives us our first theorem:

Right Identity of Equivalence

p ≡ (p ≡ true)

But the symmetry axiom then gives us,

Left Identity of Equivalence

p ≡ (true ≡ p)

What analogue do we have for the inclusion on numbers?Musa Al-hassy Comp Sci 3EA3
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Putting order into our lives

Numbers are ordered and so nice to work with, what about the
Booleans?

Implication

The Booleans B have a partial order —recall Sheet2!— denoted −⇒−.

Besides the partial order properties, it is characterised by the axiom

false⇒ true

That is, B is an ordered set of only two items where the smaller is
called false and the larger is called true.

Compare with “x ≤ y” on numbers!
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Bounds

Since false is the least Boolean and true is the largest Boolean, we
already have a theorem about all Booleans p:

Left-Zero of Implication: (false⇒p) ≡ true

Right-Zero of Implication: (p⇒ true) ≡ true

Using the identity laws for equivalence, these can be simplified to

Bottom of B: false⇒p
( ex-falso quodlibet or, “from false follows anything” )

Top of B: p⇒ true

Compare with the extended-numbers: −∞ ≤ x ≤ +∞.
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Precarious Protocols

Warning!

The antisymmetry property reduces to

if p⇒q and q⇒p then p ≡ q

For this reason, some write ‘⇐⇒ ’ in-place of ‘≡’, but
unfortunately that name implicitly suggests proving both
implications to get at an equality(!) and this is seldom a good idea!

Compare with “x ≤ y” on numbers! You don’t prove an equality with two containments!?!
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let’s avoid casing to limit complexity

Numbers are totally ordered, dude(tte), and as such have operations for
minimum ↑ and maximum ↓ .

Usual definition —case analysis

x ↑ y ∶= if x ≤ y then x else y fi

This is a good implementation, direct definition, but requires cases
whenever we work with it!

Better characterisation —calculation friendly!

x ↑ y ≤ z ≡ x ≤ z ∧ y ≤ z

“x ↑ y is the least upper bound of both x and y”

where “∧” is read “and”
( remember first-year calculus? Supremum? )
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Max and Min for B

The maximum operation for the Booleans is actually denoted ‘∨’
and so the previous characterisation becomes —along with ‘∧’ for
min—

Disjunction/Max/∨ and Conjunction/Min/∧

p ∨q⇒ r ≡ (p⇒ r) ∧ (q⇒ r)

r⇒p ∧q ≡ (r⇒p) ∧ (r⇒q)

The second one reads:
“r implies p and q” precisely when “r implies p, and r implies q”
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Bits! One possible representation

Recall that a declaration such as
Boolean Expressions (BE)

B ∶∶= true ∣ false

BE ∶∶= B ∣ BE ≡ BE ∣ BE⇒BE ∣ BE ∧BE ∣ BE ∨BE ∣ ¬BE

is a claim and so needs a “proof of concept” eventually,

Not the best, and we wont use this interpretation explicitly

B ∶= {0, 1}, also known as Z2

Equivalence is just usual equality on numbers ‘=’

Implication is just usual inclusion on numbers ‘≤’

Conjunction is just usual minimum on numbers ‘ ↓ ’

Disjunction is just usual maximum on numbers ‘ ↑ ’

Negation is “2’s complement” or “subtraction from 1”

It is clear that this implementation satisfies the required axioms.
Next time, we’ll discuss/formalise the axiomatic approach and use that!
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References

The associativity of equivalence and the Towers of Hanoi problem

http://www.cs.nott.ac.uk/~psarb2/papers/abstract.html#Hanoi

“[...] greater use should be made of the associativity of equivalence. This
note shows how the property is used in specifying the rotation of the disks
in the well-known Towers of Hanoi problem. ” –from the paper’s abstract
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