Ananthan Kanagasabai January 27, 2017

Lattice $(L, \sqsubseteq, \sqcap, \sqcup)$

 $\begin{array}{l} \rightarrow \text{ reflexivity: } x \sqsubseteq x \\ \rightarrow \text{ transitivity: } x \sqsubseteq y \land y \sqsubseteq z \implies x \sqsubseteq z \\ \rightarrow \text{ antisymmetry: } x \sqsubseteq y \land y \sqsubseteq x \implies x = y \\ \rightarrow \text{ meet_char: } z \sqsubseteq x \land z \sqsubseteq y \equiv z \sqsubseteq x \sqcap y \\ \rightarrow \text{ join_char: } x \sqsubseteq z \land y \sqsubseteq z \equiv x \sqcup y \sqsubseteq z \end{array}$

Defn. Duality. The "dual" of a Lattice expression is obtained by swapping $(\sqsubseteq, \sqcap, \sqcup)$ with $(\sqsupseteq, \sqcup, \sqcap)$ simultaneously

Theorem. if p is true then so is its dual

Examples:

Example 1: $z \sqsubseteq x \land z \sqsubseteq y \equiv z \sqsubseteq x \sqcap y$ $z \sqsupseteq x \land z \sqsupseteq y \equiv z \sqsupseteq x \sqcup y$ $x \sqsubseteq z \land y \sqsubseteq z \equiv x \sqcup y \sqsubseteq z$

note: $L \sqsubseteq R \equiv R \sqsupseteq L$

Example 2: $x \sqcup y \supseteq x$ by duality we also have $x \sqcap y \sqsubseteq x$

Constructive proof:

" $\exists x \cdot p(x)$ " (witness x, proof of p(x)) \cong Algorithm with result x satisfies p $\begin{array}{l} x \leq y \\ \equiv \exists s \cdot x + s = y \end{array}$

Lattices Constructively

→ "x \sqsubseteq y" is the TYPE OF PROOFS that x is contained (\sqsubseteq) in y → $id_x; x \sqsubseteq x$ → if f: x $\sqsubseteq y$ and $g: y \sqsubseteq z$ then $f; g: x \sqsubseteq z$

Category

A category has Objects, $_ \rightarrow _$ (arrows or morphisms), id, ;

→ collection called objects → if x,y: obj then"x → y" is a TYPE (collection) → $id_x : x \to x$ → if f: x → y and g: y → z then f; g : x → z → $id_x : f = f : id_x$ for any $f : x \to x$ → (f;g); h = f; (g;h) for any $x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} w$

examples of categories

- Programs (types of a programming language as objects, methods in that programming language as morphism)
- Relations (sets as objects, relations as morphism)
- vector (vector spaces as objects, linear transformations as morphism)

3 Mottos

Categories are:

- 1. graphs with monoid structures
- 2. coherently constructive lattices
- 3. typed monoids