CS 3EAS3 - Lecture Notes

Heuristic Programming

Danish Nadeem
March 31%, 2017

Recall “Deleting a conjunct”

If Ris of the form P A B with P -> easily truthified
B -> “hard” Initialize P
Then consider P as invariant and B as loop guard. - ;do -B ->??? od

{P A Bie.R}
For the following examples refer to the provided checklist on the theorem sheet
Also given here:

| Program Construction

Heuristic “Programming is a goal-oriented activity™:

Formalise * (Givens’ and ‘ Requireds’ of the problem.

b =

Obtain an invariant P and initalise the variables to make it true.
Bridge from invariant to post-condition: solve for B in PA-B=R

Ll

If =8 holds then we're done, otherwise we construct a loop to obtain it.
Solve for a “bound function™ &f in P a B = &f > 0.

fi. Make progress towards termination: find a program S that decreases the bound.

.:'1

Refine program & so that it mainiains the invariant!

tel

intialisation

{invariant ” ; bound b}

sdo B - {(PaBabf=C) S {Pabf<C)od
{4}

Note: the following program appeared in lecture one

R:x<y “xisatmosty”
Is the same as:

*X <y Atrue (idea of “multiply by 1”) bf: x>y
*true AX<y x-y>0
Program:
do (x>y) — x,y :=y,x od *this will do one iteration

Side note: an IF statement was not used in the following program because if one guard is not true then
the program will simply crash or abort.

if
1G> *considering the if statement only consists
of conditions and not an else statement:
. there is no guarantee that at least one guard
IG,> will be true.

fi

Example 1:
Note: The following program appeared in lecture 1. Similar to 3 elements de-arrangements.

R:a<b<c<d
»trueAas<bAb<cAc<d “multiplying by ‘one’ concept”
» P A B

B = negation of whole thing as loop guard: (recall: De Morgan law)
~(a<bAb <Ac<d)=a>bvb>v c>d
Bound function: the number of out of order elements

do
la>b > a,b:=b,a with this we have to check if invariant holds at
lb>c > b,c:=c,b every position; but true will always be true
lc>d > ¢ d:=d,c
od
Example 2:
R: g=A+B (Ar=AmodB) recall the notion of changing
» A=g'B+r AO<r<B =2 0sr A<r<B it to a domain you understand
(P) (B) **Ch15 - quiz sheet 6/7
G: 0<B Refer to end of these notes for link

we know r is at least b so we can decrease: r by B

Find values for g and r that make R true. Bf: P A B<r

If it’s hard, that will give you loop guard ={Weakening}
Loop guard is negation of B. r<B—>-(r<B) = r>B B<r

If we take =0, then A=r. so given is now: ={given and transitivity}
G: 0<B A 0<A O<r

Program:

q,r=0A

do B<r - q,r:=E,r-B od call it E for expression we don’t know

if PA(B<r) then
P[q,r:=E,r-B]
={defn of P and textual substitution}
A=E-B+r-B A0<r-B
={given B<r and P}
q'B+r =E-B+r-B
={arithmetic}
E=q+1

now we can write in code: do B<r = q,r:=q+1,r-B od

Theorem sheet: http://www.cas.mcmaster.ca/~alhassm/ThmList.pdf

Links referring to sheet 6 and 7:
http://www.cas.mcmaster.ca/~alhassm/Sheet6.pdf
http://www.cas.mcmaster.ca/~alhassm/Sheet7.pdf

http://www.cas.mcmaster.ca/~alhassm/ThmList.pdf
http://www.cas.mcmaster.ca/~alhassm/Sheet6.pdf
http://www.cas.mcmaster.ca/~alhassm/Sheet7.pdf

