
CS 3EA3 - Lecture Notes
Heuristic Programming

Danish Nadeem
March 31st, 2017

Recall “Deleting a conjunct”
If R is of the form P ∧ B with P -> easily truthified
 B -> “hard” Initialize P
Then consider P as invariant and B as loop guard. → ;do ¬B ->??? od
 {P ∧ B ie. R}
For the following examples refer to the provided checklist on the theorem sheet
Also given here:

Note: the following program appeared in lecture one

R: x ≤ y “x is atmost y”

Is the same as:

‣x ≤ y ∧ true (idea of “multiply by 1”) bf: x > y

‣true ∧ x ≤ y x-y>0

Program:
 do (x>y) → x,y := y,x od *this will do one iteration

Side note: an IF statement was not used in the following program because if one guard is not true then
the program will simply crash or abort.

 if

 ▋G1 -> *considering the if statement only consists
 . of conditions and not an else statement:
 . there is no guarantee that at least one guard

 ▋Gn -> will be true.
 fi

Example 1:
Note: The following program appeared in lecture 1. Similar to 3 elements de-arrangements.

R: a ≤ b ≤ c ≤ d

 ‣ true ∧ a ≤ b ∧ b ≤ c ∧ c ≤ d “multiplying by ‘one’ concept”

 ‣ P ∧ B

B negation of whole thing as loop guard: (recall: De Morgan law)
 ¬(a ≤ b ∧ b ≤ ∧ c ≤ d) = a>b ˅ b>c ˅ c>d
Bound function: the number of out of order elements

do

 ▋a>b a,b:=b,a with this we have to check if invariant holds at

 ▋b>c b,c:=c,b every position; but true will always be true

 ▋c>d c,d:=d,c
od
Example 2:

R: q=A÷B (∧r=AmodB) recall the notion of changing

 ‣ A = qB +r ∧ 0 ≤ r < B 0≤r ∧ ≤ r < B it to a domain you understand
 (P) (B) **Ch15 - quiz sheet 6/7
G: 0< B Refer to end of these notes for link
 we know r is at least b so we can decrease: r by B

Find values for q and r that make R true. Bf: P ∧ B≤r
If it’s hard, that will give you loop guard ={Weakening}
 Loop guard is negation of B. r<B¬(r<B) = r≥B B≤r
If we take q=0, then A=r. so given is now: ⇒{given and transitivity}

G: 0<B ∧ 0≤A O< r
Program:
q,r=0,A
do B≤ r q,r:=E,r-B od call it E for expression we don’t know

if P∧(B≤ r) then

P[q,r:=E,r-B]
={defn of P and textual substitution}
 A=EB+ r-B ∧ 0≤ r-B
={given B≤ r and P}
 qB + r = EB+ r-B
={arithmetic}
 E=q+1

now we can write in code: do B≤ r q,r:=q+1,r-B od

Theorem sheet: http://www.cas.mcmaster.ca/~alhassm/ThmList.pdf

Links referring to sheet 6 and 7:
http://www.cas.mcmaster.ca/~alhassm/Sheet6.pdf
http://www.cas.mcmaster.ca/~alhassm/Sheet7.pdf

http://www.cas.mcmaster.ca/~alhassm/ThmList.pdf
http://www.cas.mcmaster.ca/~alhassm/Sheet6.pdf
http://www.cas.mcmaster.ca/~alhassm/Sheet7.pdf

