
McMaster University
Department of Computing and Software

M. Al - hassy

COMP SCI 3EA3
Quiz 1

COMP SCI 3EA3 — Software Specification and Correctness

January 16, 2016

Name Student Number

Special Instructions:

� This examination paper includes 4 pages (including this cover page) and 5 questions.

You are responsible for ensuring that your copy of the paper is complete. Bring any discrepancy to the attention of your invigilator.

� This is a closed book examination.

No books, notes, texts, calculator or academic aids of any kind are permitted.

� Read each question completely and carefully before answering it.

� Answer all questions.

� In doubt, document!

Contents

1 The Main Purpose of This Class — 3 marks — 1

2 ACSL Formalisation — 2 marks — 2

3 Mental Execution — 1 marks — 2

4 Membership — 3 marks — 3

5 Sorting — 1 marks — 4

1 The Main Purpose of This Class — 3 marks —

Define the term correct-by-construction programming.



2 ACSL Formalisation — 2 marks —

Given,

/*@ axiomatic AnUnspecifiedRelation

{

logic boolean p(real x, real y);

}

*/

Specify the following property in ACSL notation:

p is antisymmetric, or mutually contained items are identical –when p is construed as a containment relation.

/*@ axiomatic MyProperties

{

lemma p_antisymmetric: ; // FILL IN THE BLANK

}

*/

Here is some extra space for your random thoughts:

3 Mental Execution — 1 marks —

What does the following program do?

void hehner(int* x, int* y)

{

if (*x == 0)

{

*y = 1; *x = 3;

}

else

{

*x -= 1; *y = 7;

hehner(x, y);

*y *= 2; *x = 5;

}

}

That is, what is the precise relationship between x and y when the program is invoked and when it terminates.



4 Membership — 3 marks —

The following membership algorithm returns true if an element e belongs to an array a. We find an index i witnessing this membership
by looking at each index incrementally until it has been found.

Provide appropriate specifications for the ensures and loop invariant clauses.

/*@

@ requires 0 < len;

@ requires \valid(a+(0..len-1));

@ assigns \nothing;

@ ensures ; // FILL IN THE BLANK

*/

bool elem(int* a, int len, int e)

{

int i = 0;

//@ assert 0 <= i < len;

/*@

@ loop invariant ; // FILL IN THE BLANK

@ loop invariant ; // FILL IN THE BLANK

@ loop assigns i;

@ loop variant len - i;

*/

for(int i = 0; i < len ; i++)

if (a[i] == e) return true;

return false;

}

Here is some extra space for your random thoughts:



5 Sorting — 1 marks —

Using the guarded command notation we have learned so far —do-od, if-fi, and simultaneous assignment statements— write a program-
fragment that sorts 4 integer variables: w , x , y , z .

The End


