#### COMP SCI 3EA3 — Software Specification and Correctness

Feburary 13, 2017

Name

Special Instructions:

Student Number

- This examination paper includes 5 pages (including this cover page) and 4 questions. You are responsible for ensuring that your copy of the paper is complete. Bring any discrepancy to the attention of your invigilator.
- Read each question completely and carefully before answering it.
- Answer all questions.
- In doubt, document!

## Contents

| 1        | When You're Low, You Can Always Look Up — 10 marks —  | <b>2</b> |
|----------|-------------------------------------------------------|----------|
| <b>2</b> | Assign Me To The Moon — 30 marks —                    | 3        |
| 3        | (Bonus) Lattice-jutsu — 6 marks —                     | 5        |
| 4        | (Bonus) ACSL: "Never Gonna Give You Up!" — 10 marks — | 5        |

In this quiz, you may use the following properties for question 2.

| (0) Precondition:                                      | $0 \le N$                                  |
|--------------------------------------------------------|--------------------------------------------|
| (1) Successors are strictly above:                     | x < x + 1 and $x - 1 < x$                  |
| (2) Order Properties:                                  | $x \le y < x \equiv false$                 |
| (3) Subtraction Distributivity:                        | x - (y + z) = (x - y) - z                  |
| (4) Monotonicity of Subtraction in the first argument: | $x - z \le y - z  \Leftarrow  x \le y$     |
| (5) Definition of strict order:                        | $x \le y \ \land \ x \ne y  \equiv  x < y$ |
| (6) <-arithmetic:                                      | $x + 1 \le y \equiv x < y$                 |

## 1 When You're Low, You Can Always Look Up - 10 marks -

Fill in the blank boxes with the appropriate *names* of theorems or properties in the following proof of "lower adjoints can always look up".

Assuming,

Galois Connection:

 $\forall x, y \bullet L x \sqsubseteq y \equiv x \sqsubseteq U y$ 

we obtain

$$L(\sqcup x \mid R \bullet P) = (\sqcup x \mid R \bullet L P)$$

using the "principle of indirect equality from above": Let 'a' be arbitrary, and then calculate



## 2 Assign Me To The Moon — 30 marks —

Recall in class that we said a finite quantification ( $\oplus i \mid 0 \le i < N \bullet f i$ ) can be computed with a simple for-loop

total = e ; // e is the unit of oplus  
for(int n = 0 ; n < N ; n ++)  
total = oplus( total , f(n) );  
$$total = oplus( total , f(n) );$$
  
 $total = oplus( total , f(n) );$ 

with invariant "total holds the quantification so far",

$$P: \quad total = (\oplus i \mid 0 \le i < n \bullet f i) \land 0 \le n \le N$$

Let us prove that it is indeed an invariant and our program is correct. Parts 1 and 3 are the most difficult and so are fill-in-the-blanks. You will need to use some of the properties provided on the first page.

1. (5 marks) The invariant holds initially:  $P[total, n \coloneqq e, 0]$  is true.



2. (10 marks) After the loop terminates, we have solved our problem:

 $\neg(n \neq N) \land P \implies total = (\oplus i \mid 0 \le i < N \bullet f i)$ 

Hint: start with the complicated part and weaken to obtain the simpler part!

3. (5 marks) The loop body maintains its truthiness: if  $P \wedge n \neq N$  then  $P[total, n \coloneqq total \oplus f n, n+1]$  is true. Assuming  $P \wedge n \neq N$ , we calculate

```
P[total, n \coloneqq total \oplus f \ n, n+1]
        \{ \text{ definition of } P \text{ and textual substitution } \}
 =
        {
                                                                                                                                                              }
 =
    total \oplus f \ n \ = \ (\oplus i \ \mid \ 0 \le i < n \ \bullet \ f \ i) \ \oplus \ f \ n \ \land
        {
                                                                                                                                                              }
 =
    total \oplus f \ n = total \oplus f \ n \land
     { Reflexitivity of '=' and and identity of conjunction }
 =
    0 \le n+1 \le N
        {
                                                                                                                                                               }
⇐
    0 \le n \le n+1 \le N
        {
 =
                                                                                                                                                               }
    0 \le n < N
        {
                                                                                                                                                               }
 =
    0 \le n \le N \land n \neq N
        {
 =
                                                                                                                                                               }
    true
```

4. (10 marks) A bound on the number of loop-steps is (N - n): it is clearly non-negative before the loop, so we need only prove it gets smaller with each step; that is, for arbitray s,

if  $P \land N - n = s \land N \neq n$  then  $(N - n)[total, n := total \oplus f \ n, n + 1] < s$ .

# 3 (Bonus) Lattice-jutsu — 6 marks —

Prove the following property in the calculational style,

 $a \sqsubseteq a \sqcap b \equiv a \sqsubseteq b$ 

Hint: start with the complicated side and simplify.

4 (Bonus) ACSL: "Never Gonna Give You Up!" — 10 marks —

Provide appropriate —as usual, strongest **ensures** and weakest **requires**— specifications for the preamble of the program **ferreira**. (As usual, your answer must be ACSL acceptable; if you wish to use a non-primitive concept, then you must axiomatise it yourself.)

```
/*@
0 requires
0 assigns
0 ensures
*/
int ferreira(unsigned int x, unsigned int y)
{
   return (y <= x) ? ferreira(x - y, y) + 1 : 0;
}</pre>
```