
McMaster University
Department of Computing and Software

Musa Al-hassy

COMP SCI 3EA3
Quiz 3

COMP SCI 3EA3 — Software Specification and Correctness
Feburary 13, 2017

Name Student Number

Special Instructions:

� This examination paper includes 5 pages (including this cover page) and 4 questions.

You are responsible for ensuring that your copy of the paper is complete. Bring any discrepancy to the attention of your
invigilator.

� Read each question completely and carefully before answering it.

� Answer all questions.

� In doubt, document!

Contents

1 When You’re Low, You Can Always Look Up — 10 marks — 2

2 Assign Me To The Moon — 30 marks — 3

3 (Bonus) Lattice-jutsu — 6 marks — 5

4 (Bonus) ACSL: “Never Gonna Give You Up!” — 10 marks — 5

In this quiz, you may use the following properties for question 2.

(0) Precondition: 0 ≤ N

(1) Successors are strictly above: x < x + 1 and x − 1 < x

(2) Order Properties: x ≤ y < x ≡ false

(3) Subtraction Distributivity: x − (y + z) = (x − y) − z

(4) Monotonicity of Subtraction in the first argument: x − z ≤ y − z ⇐ x ≤ y

(5) Definition of strict order: x ≤ y ∧ x ≠ y ≡ x < y

(6) <-arithmetic: x + 1 ≤ y ≡ x < y

https://en.wikipedia.org/wiki/Jutsu

1 When You’re Low, You Can Always Look Up — 10 marks —

Fill in the blank boxes with the appropriate names of theorems or properties in the following proof of “lower adjoints
can always look up”.

Assuming,
Galois Connection: ∀x , y ● L x ⊑ y ≡ x ⊑ U y

we obtain
L (⊔x R ● P) = (⊔x R ● L P)

using the “principle of indirect equality from above”: Let ‘a’ be arbitrary, and then calculate

L (⊔x R ● P) ⊑ a

= { }

(⊔x R ● P) ⊑ U a

= { }

(∀x R ● P ⊑ U a)

= { }

(∀x R ● L P ⊑ a)

= { }

(⊔x R ● L P) ⊑ a

2 Assign Me To The Moon — 30 marks —

Recall in class that we said a finite quantification (⊕i 0 ≤ i < N ● f i) can be computed with a simple for-loop

total = e ; // e is the unit of oplus

for(int n = 0 ; n < N ; n ++)

total = oplus(total , f(n));

total ,n ∶= e,0

; do n ≠ N → total ,n ∶= total ⊕ f n,n + 1 od

with invariant “total holds the quantification so far”,

P ∶ total = (⊕i 0 ≤ i < n ● f i) ∧ 0 ≤ n ≤ N

Let us prove that it is indeed an invariant and our program is correct. Parts 1 and 3 are the most difficult and so are
fill-in-the-blanks. You will need to use some of the properties provided on the first page.

1. (5 marks) The invariant holds initially: P[total ,n ∶= e,0] is true.

P[total ,n ∶= e,0]

= { definition of P and textual substitution }

= { Order Properties —first page of this quiz! }

e = (⊕i false ● f i) ∧

= { }

e = e ∧

= { Reflexitivity of ‘=’ and identity of conjunction }

0 ≤ 0 ≤ N

= { }

0 ≤ N

= { }

true

2. (10 marks) After the loop terminates, we have solved our problem:

¬(n ≠ N) ∧ P ⇒ total = (⊕i 0 ≤ i < N ● f i)

Hint: start with the complicated part and weaken to obtain the simpler part!

3. (5 marks) The loop body maintains its truthiness: if P ∧ n ≠ N then P[total ,n ∶= total ⊕ f n,n + 1] is true.

Assuming P ∧ n ≠ N , we calculate

P[total ,n ∶= total ⊕ f n,n + 1]

= { definition of P and textual substitution }

= { }

total ⊕ f n = (⊕i 0 ≤ i < n ● f i) ⊕ f n ∧

= { }

total ⊕ f n = total ⊕ f n ∧

= { Reflexitivity of ‘=’ and and identity of conjunction }

0 ≤ n + 1 ≤ N

⇐ { }

0 ≤ n ≤ n + 1 ≤ N

= { }

0 ≤ n < N

= { }

0 ≤ n ≤ N ∧n ≠ N

= { }

true

4. (10 marks) A bound on the number of loop-steps is ‘N − n’: it is clearly non-negative before the loop, so we
need only prove it gets smaller with each step; that is, for arbitray s,

if P ∧ N − n = s ∧ N ≠ n then (N − n)[total ,n ∶= total ⊕ f n,n + 1] < s.

3 (Bonus) Lattice-jutsu — 6 marks —

Prove the following property in the calculational style,

a ⊑ a ⊓ b ≡ a ⊑ b

Hint: start with the complicated side and simplify.

4 (Bonus) ACSL: “Never Gonna Give You Up!” — 10 marks —

Provide appropriate —as usual, strongest ensures and weakest requires— specifications for the preamble of the
program ferreira. (As usual, your answer must be ACSL acceptable; if you wish to use a non-primitive concept, then you

must axiomatise it yourself.)

/*@

@ requires

@ assigns

@ ensures

*/

int ferreira(unsigned int x, unsigned int y)

{

return (y <= x) ? ferreira(x - y, y) + 1 : 0;

}

https://en.wikipedia.org/wiki/Jutsu

	When You're Low, You Can Always Look Up — 10 marks —
	Assign Me To The Moon — 30 marks —
	(Bonus) Lattice-jutsu — 6 marks —
	(Bonus) ACSL: ``Never Gonna Give You Up!'' — 10 marks —

