
McMaster University
Department of Computing and Software

Musa Al-hassy

COMP SCI 3EA3
Quiz 5

COMP SCI 3EA3 — Software Specification and Correctness
March 22, 2017

Name Student Number

Special Instructions:

� This examination paper includes 6 pages (including this cover page) and 3 questions.

You are responsible for ensuring that your copy of the paper is complete. Bring any discrepancy to the attention of your
invigilator.

� Read each question completely and carefully before answering it.

� Answer all questions.

� In doubt, document!

Contents

1 Sqrt Forevermore — 9 marks — 2

2 Binary Search Bonanza — 21 marks — 3

3 (Bonus) The Return of The Great De Morgan — 5 marks — 6

1 Sqrt Forevermore — 9 marks —

For N ∶ Z, solve for ? in the following triple such that your solution is logarithmic in time,

{1 ≤ N } ? {x 2 ≤ N < (x + 1)2}

—remember that a such a triple is a theorem and so requires a proof!

You may need to use the facts that 0 is a fixed point of the squaring function and the squaring function is strictly
monotonic on N.

2 Binary Search Bonanza — 21 marks —

With reference to the following algorithms, choose ONLY seven (7) of the following true/false questions to answer
and provide justifications to your answers. Answers with no justifications receive zero marks, and good justifications
get a non-zero mark irrespective of whether the right checkbox is ticked or not.

If more than 7 questions are answered, only the first seven encountered will be considered.

(Predicate Instance of Binary Search)

Provided predicate b defined on 0..N − 1,

{0 ≤ N ∧ b (−1) ∧ ¬b N }
x , y ∶= −1,N
;do x + 1 ≠ y →

m ∶= (x + y) ÷ 2
; if b m → x ∶= m

¬b m → y ∶= m
fi

od
{−1 ≤ x < N ∧ b x ∧ ¬b (x + 1) }

(General Binary Search)

Provided Z is a co-transitive relation,

{a < b ∧ a Z b }
x , y ∶= a, b
;{ Invariant a ≤ x < y ≤ b ∧ x Z y , Bound y − x }
do x + 1 ≠ y →
m ∶= (x+y)÷2
; if m Z y → x ∶= m

x Zm → y ∶= m
fi

od
{a ≤ x < b ∧ x Z (x + 1) }

true false

1. ◻ ◻ In the predicate variant, the algorithm requires at most log2(N + 1) repetitions.

2. ◻ ◻ Binary Search is fast since it separates the search space into 2 pieces; an improvement, in the
antitonic case, would be to split the search space into more pieces and the resulting algorithm will be slightly
more complicated but far more efficient!

3. ◻ ◻ Binary Search is best used if the underlying array b is sorted.

4. ◻ ◻ In the general schema, the co-transitivity condition ensures that the conditional is well-defined and
so does not abort.

5. ◻ ◻ If you were to play the “guess my number game” in the interval 1 to 1 billion and you guessed
each number in sequence —ie Linear Search— then it would take you at most 1 billion guesses, whereas if you
guessed using a Binary Search approach it would take you about 30 tries. If the interval was enlarged upto 4
billion, the linear search approach would worsen for each new element thereby taking at most 4 billion guesses,
whereas Binary Search barely grows; requiring 2 more tries for the additional 3 billion new elements!

6. ◻ ◻ Some iterations do not make progress, that is do not decrease the bound since the midpoint of two
numbers is not always strictly between both numbers; for example the integral midpoint of 1 and 2 is 1.

7. ◻ ◻ Every co-transitive relation is precisely the complement of a retract of a transitive relation;
ie Z is co-transitive iff it is of the form ¬(f x ∼ f y) for a transitive relation ∼.

8. ◻ ◻ For antitontic b, if ¬b 0 holds initially in the predicate variant of Binary Search, the algorithm will
establish x = −1.

9. ◻ ◻ If b 0 holds initially in the predicate variant of Binary Search, the algorithm will establish x ≥ 0
—thus we can replace x ∶= −1 with x ∶= 0 in the beginning of the algorithm and strengthen the post-condition
by adding x ≥ 0.

10. ◻ ◻ Suppose we use the predicate variant of Binary Search on the predicate b ∶ Z→ B ∶ m ↦ true on the
interval 0..N − 1 with N = 10. Since b is antitonic, the algorithm returns the largest index in 0..N − 1 satisfying
b and so it ensures x = N − 1. Moreover it ensures b(N) ∧ ¬ b(N + 1) and so any immediate code after the
algorithm may use the fact that b(11) is false.

11. ◻ ◻ Computing the midpoint using m ∶= x + (y − x) ÷ 2 is not always better than m ∶= (x + y) ÷ 2.

12. ◻ ◻ If b is antitonic, then the algorithm returns the smallest solution to b.

13. ◻ ◻ If b is antitonic, we can replace y ∶= m with y ∶= m − 1 in the predicate variant of the algorithm.

14. ◻ ◻ The above general schema is sufficiently symmetric and as such easy to remember and derive.

3 (Bonus) The Return of The Great De Morgan — 5 marks —

In this bonus exercise, we’d like to prove the following properties:

� The union of two class rooms is empty precisely when the rooms are themselves empty.

� The greatest pay a union of workers makes is minimum wage precisely when all its members make minimum wage.

� The catenation of two sequences is empty precisely when the given sequences are themselves empty.

� The least tree containing two given trees is empty precisely when the given trees themselves are empty.

Rather than prove each of these results directly, we realise them as the same result in the abstract setting of bounded
join-lattices. That is, for all x and y , we calculate:

Proving x ⊔ y = � ≡ x = � ∧ y = � :

x ⊔ y = �

= { }
x ⊔ y ⊑ � ∧ � ⊑ x ⊔ y

= { }
x ⊔ y ⊑ �

= { }
x ⊑ � ∧ y ⊑ �

= { }

(x ⊑ � ∧ � ⊑ x) ∧ (y ⊑ � ∧ � ⊑ y)

= { }
x = � ∧ y = �

	Sqrt Forevermore — 9 marks —
	Binary Search Bonanza — 21 marks —
	(Bonus) The Return of The Great De Morgan — 5 marks —

