
McMaster University
Department of Computing and Software

Musa Al-hassy

COMP SCI 3EA3
Sheet 6

COMP SCI 3EA3 — Software Specification and Correctness
Feburary 7, 2017

Read Chapter 9 on “The Assignment Statement” and do the exercises in the text.

Exercise 6.0 — Division Algorithm and Ghost Variables

The division algorithm states, for any naturals n and d ≠ 0 there are unique solutions q , r to
n = q × d + r ∧ 0 ≤ r < n and we call these two ’integer division’ and ‘remainder after division’:

n ÷ d = q ∧ n mod b = r ≡ n = q × d + r ∧ 0 ≤ r < n

This problem is devoted a whole chapter in the course text, chapter 15.

The idea that division is the number of times that the denominator goes into the numerator immediately gives rise
to the program,

q , r ∶= 0,n,d

; do r ≥ n → q , r ∶= q + 1, r − b od

However, this takes time n ÷ d many steps to compute.

Numbers are implemented in binary and so we tend to have very fast division and multplication by 2 —by shifting
the bits right and left. So assuming we have ‘− ÷ 2’ as a primitive operation, we obtain a more efficient algorithm:

q , r , b ∶= 0,n,d

; do r ≥ b → b ∶= b ∗ 2 od

; do b ≠ n →
q , b ∶= q ∗ 2, b ÷ 2

; if r < b → skip r ≥ b → q , r ∶= q + 1, r − b fi

od

This one essentially divides by 2 ∗ d rather than just d and so takes half as many steps, and so twice as efficient!
More formally, the variable b is defined by the invariant

n = q ∗ b + r ∧ 0 ≤ r < b ∧ (∃k ● 0 ≤ k ∧ b = 2k ∗ n)

Such an invariant may be difficult to work with due to the existential quantifier, what we can do is ignore the symbols
‘∃k ● ’ and add “ghost variable” k and the aforementioned properties to our invariant; then we alter k in the program
appropriately to maintain the invariant, such as //@ ghost int k = 0; //@ ghost k = k + 1; //@ ghost k = k - 1;

Implement both algorithms in C and prove them correct in Frama-C.



Exercise 6.1 — Pragrammatic Galois Connections, and other examples

Recall —see previous sheet!— the Galois Connection characterisation

L ⊣ U ≡ (∀x , y ● L x ⊑ y ≡ x ⊑ U y)
Prove the following are connections.

1. Negation is self-adjoint (in the dual order): ¬p⇒ q ≡ p⇐¬q (¬) ⊣ (¬)
2. Conjunction is adjoint with implication: p ∧ q⇒ r ≡ p⇒(q⇒ r) (∧ q) ⊣ (q⇒)

— this is essentially the division connection in a pomonoid!

Since p⇒ q ≡ ¬p ∨ q , we can rephrase this connection as: p ∧ q⇒ r ≡ p⇒¬q ∨ r (∧ q) ⊣ (¬q ∨)
Using double negation, we obtain: p⇒ q ∨ r ≡ p ∧¬q⇒ r (∧¬q) ⊣ (q ∨)

3. Subtraction is self-adjoint (in the dual order): −x ≤ y ≡ x ≥ −y (−) ⊣ (−)
4. Addition is adjoint to subtraction: x + y ≤ z ≡ x ≤ z − y (+y) ⊣ (−y)

More generally, every “order-isomorphism” pair form a Galois Connection

f # g = id = g # f ∧ monotone f ∧ monotone g ⇒ f ⊣ g

for this reason Galois connections are known as “approximate inverses”!

5. Ceiling and floor are adjoint to real-number (implicit) type-casting, for x ∶ R and n ∶ Z,

⌈x ⌉ ≤ n ≡ x ≤ n and, dually, n ≤ ⌊x ⌋ ≡ n ≤ x

The first read right-to-left: “ceiling of x is the least integer containing x”.
The second read right-to-left: “floor of x is the greatest integer contained in x”.

6.

even m⇐ b ≡ if b then 2 else 1 fi ∣ m and, dually, odd m⇒ b ≡ if b then 1 else 2 fi ∣ m

Similarly,

x ∈ S⇐ b ≡ S ⊇ {e e = x ∧ b} and, dually, x ∈ S⇒ b ≡ S ⊆ {e e = x ⇒ b}

Note that {e e = x ⇒ b} = if b then U else U/{x} fi and {e e = x ∧ b} = if b then {x} else ∅ fi

Moreover the property “lower adjoints can always look up” applied to these last two yield the famialr laws
—verify! Note the dual order!—

x ∈ (∩i ∶ 0..n ● Si) ≡ (∀i ∶ 0..n ● x ∈ Si) and, dually, x ∈ (∪i ∶ 0..n ● Si) ≡ (∃i ∶ 0..n ● x ∈ Si)
We get these for free since we’ve shown membership is a lower adjoint in two ways!

Heuristic: to prove a function distributes over arbitrary meets or joins, try to show it is part of a Galois Connection

7. Direct image is adjoint with preimage: f →A ⊆ B ≡ A ⊆ f ←B f → ⊣ f ←

where
f →A = {x x ∈ A ● f x} and, dually, f ←B = {x f x ∈ B ● x}

The inverse image operation is interesting ;) Consider the operations ‘∃f ’ and ‘∀f ’ on sets

∃f S = {y (∃x x ∈ f ←{y} ● x ∈ S)} and, dually, ∀f S = {y (∀x x ∈ f ←{y} ● x ∈ S)}
Then we have an adjoint triple: ∃f A ⊆ B ≡ A ⊆ f ←B and f ←B ⊆ C ≡ B ⊆ ∀f C ∃f ⊣ f ← and f ← ⊣ ∀f

Hence, quantifiers can be seen as adjoints in a Galois Connections!

( Adjoints are unique and indeed it is not much trouble to show that ∃f = f → )

With these adjoints in-hand, the aforementioned heuristic, informs us that the direct image distributes over arbitrary

unions, whereas the inverse image distributes over both arbitrary unions and arbitrary intersections —since it has both a

lower and an upper adjoint!

https://en.wikipedia.org/wiki/Image_(mathematics)#Consequences


8. Strongest transfomer is adjoint with the weakest: sp(S ,p)⇒ q ≡ p⇒wp(S , q) sp S ⊣ wp S

where {p}S{q} means that program S when executed in state p is guaranteed to terminate in a state satisfying
q , and sp(S ,p) is the strongest postcondition candidate q while wp(S , q) is the weakest precondition candidate
p:

{p}S{q} ≡ p⇒wp(S , q) and, dually, {p}S{q} ≡ sp(S ,p)⇒ q

9. Supremum/join is adjoint with the constant function: sup f ⊑ u ≡ f
.⊑ K u sup ⊣ K

Infimum/meet is adjoint with the constant function: l ⊑ inf f ≡ K l
.⊑ f K ⊣ inf

In-particular, for the Boolean lattice, the first one becomes:

(∃x ● P x)⇒ q ≡ (∀x ● P x⇒ q)

which in set notation becomes:

S ≠ ∅⇒ b ≡ S ⊆ {e b} and, dually, S = ∅⇐ b ≡ S ⊆ {e ¬b}

Note {e q} = if q then U else ∅ fi .

For a space of size two, we can specialize these definitions to get the usual characterizations of binary meet and
join

z ⊑ x ∧ z ⊑ y ≡ z ⊑ x ⊓ y and, dually, x ⊑ z ∧ y ⊑ z ≡ x ⊔ y ⊑ z

In turn these can be specialized to the case of natural numbers ordered by division to obtain

k ∣ m ∧ k ∣ n ≡ k ∣ x gcd y and, dually, m ∣ k ∧ n ∣ k ≡ m lcm n ∣ k

Finally, applying these to a space of size ‘one’ —let 1 = {⋆} be the set with one element named ‘⋆’— then
elements � and ⊺ are the top and bottom elements of a poset precisely when K� ⊣ K⋆ and K⋆ ⊣ K⊺ ; Verify!

10. Composition is adjoint to residuation (# S) ⊣ (/S) and (R #) ⊣ (R/)

R # S ⊆ T ≡ R ⊆ T /S and, dually, R # S ⊆ T ≡ S ⊆ R/T

where “relation composition” and inclusion are defined by

a (R # S) c ≡ (∃b ● a R b ∧ b S c) and R ⊆ S ≡ (∀x , y ● x R y ⇒ x S y)

and residuals, or ‘factors’, are defined by

x (T /S) y ≡ (∀z ● x T y ⇐ y S x) and, dually, x (R/T) y ≡ (∀z ● z R x ⇒ z T y)

Notice that (1) the connections are nothing more than division in a pomonoid, and (2) the residual definitions
generalize the principles of indirect inclusion!

11. Covariance and contravariance: If L ⊣ U then (# L) ⊣ (# U ) and (U #) ⊣ (L #) .

12. Pointwise meets are adjoint with pointwise joins
if L ⊣ U and L′ ⊣ U ′ then (L

.⊓ L′) x ⊑ y ≡ x ⊑ (U
.⊔U ′) y L

.⊓ L′ ⊣ U
.⊔U ′

where the pointwise extension of a binary operation ⊕ is defined by: for any functions f and g , (f
.⊕g) x = f x⊕g x .

Exercises, similar to the setoids and posets, show that a monoid (M ,⊕, e) gives rise to a “pointwise monoid”
(X →M ,

.⊕,K e), for any type X .

13. Many problems in computing are of the form “find a candidate to a problem, and make sure
it is optimal in some way” and these can be specified using Galois Connections, from which
implementations may be derived.
For example, “take n xs is the longest prefix of xs with at-most n items” yields connection:

ys ⊑ take n xs ≡ length ys ≤ n ∧ ys ⊑ xs



where ‘⊑’ is the prefix relation on lists. A more informal definition of take is

take n [x0, x1, . . . , xl ] = [x0, x1, . . . , xn]

Using the former, the specfication, it may be easier to reason about this function, while using the latter, the
direct definition, means we are forced to prove properties about it using induction —since it is defined directly
as a recursive operation.

For example, prove using the connection and then prove using induction, and see how the latter is
more cumbersome, the following properties

take m # take n = take (m ↓ n) and take n xs = xs ≡ length xs ≤ n

Notice that the connection, like pointwise order, lives in a product-space and as such can be seen more direcly
as: ys ⊑ take(n, xs) ≡ (∆ #(length × Id)) ys (≤ × ⊑) (n, xs) where
∆ y = (y , y) , (f × g)(x , y) = (f x , g y), and (a, b) ≤ × ⊑ (c,d) ≡ a ≤ c ∧ b ⊑ c.
These pieces allow also us to view binary joins and meets as Galois Connections.

Spefiy the following operations,

� The dual of take, also known as drop —use the suffix order.

� The self-explanatory function for the “longest common subsequence” —use the subsequence order.

� “takeWhile p xs is the longest prefix of xs whose elements all satisfy predicate p.”

Exercise 6.2 — Program Derivation: Optional Assignment, 2% —due before the next quiz

Do the previous “Optional Assignment”, at its original worth,

OR

for 2%, select an algorithm on lists —say from the Haskell prelude—, specfiy it as a Galois Connection and then use
that specification to derive an implementation. Write and submit a report similar to the indications on Sheet 5.

An example of such a derivation —for the division algorithm of the previous sheet— can be found on page 73 of
Principles and Applications of Algorithmic Problem Solving by João Ferreira.

http://joaoff.com/wp-content/uploads/2011/06/thesis-a4-colour.pdf


Exercise 6.3 — Fixed Points

See §6.1 of Roland Backhouse’s tutorial on motivating the need for fix points.

The purpose of this exercises is to prove

Knaster-Tarski Lemma: every monotonic function on a complete lattice has a least and greatest fixed point.

Assume,
f monotonic —i.e., (∀x , y ● x ⊑ y ⇒ f x ⊑ f y)

and let
µf = (⊓x f x ⊑ x ● x)

This is our candidate for the least fixed point; let’s prove that it is.

Prove —see the theorems list on the website!—

µf -induction rule: (∀x ● µf ⊑ x ⇐ f x ⊑ x)

With that in-hand, complete the following proof:

Proving µf is a fixed point of f :

!

= { antisymmetry }
! ∧ µf ⊑ f (µf )

= { let’s work with the right conjunct first and see what we can do
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

µf ⊑ f (µf )
⇐ { ! }

f (µf ) is a prefix point

= { definition }
f (f (µf )) ⊑ f (µf )

⇐ { ! }
f (µf ) ⊑ µf

Hence, we’ve proven µf ⊑ f (µf ) ⇐ f (µf ) ⊑ µf now we can simplify the
initial expression using “Definition of ⇐”: p⇐ q ≡ p ∧ q ≡ q }

f (µf ) ⊑ µf

= { ! }
f (µf ) ⊑ (⊓x f x ⊑ x ● x)

= { ! }
∀x f x ⊑ x ● f (µf ) ⊑ x

= { ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Proving f (µf ) ⊑ x ⇐ f x ⊑ x :

f (µf ) ⊑ x

⇐ { ! }
f (µf ) ⊑ f x ∧ f x ⊑ x

⇐ { ! }
µf ⊑ x ∧ f x ⊑ x

= { ! }
f x ⊑ x

}
true

Dualise the definition of µf to obtain ‘νf ’ and prove that it is the greatest fixed point of f .
Do so in two ways: directly and via the duality principle.

http://www.cs.nott.ac.uk/~psarb2/G53PAL/FPandGC.pdf

