
McMaster University
Department of Computing and Software

Musa Al-hassy

COMP SCI 3EA3
Sheet 7

COMP SCI 3EA3 — Software Specification and Correctness
February 17, 2017

Exercise 7.0 The “Assignment Rule” Rules!

Simplify the following —as succinctly as possible—, assuming all subscripts are in range.

1. wp “i , j ∶= i + 1, j + i” (i = j)

2. wp “i ∶= i + 1; j ∶= j + i” (i = j)

3. wp “z , x , y ∶= 1, c,d” (z ∗ x y = cd)

4. wp “x ∶= b[i]” (x = b[i])

5. wp“x ∶= E”R assuming x does not occur freely in R.

6. wp “b[i] ∶= 5” (b[i] = 5)

7. wp “b[i] ∶= 5” (b[i] = b[j])

8. wp “b[b[i]] ∶= i” (b[i] = i)

9. wp “b[n] ∶= b[n − 1]⊕ b[n]” (b[n] = (⊕j 3 ≤ j < n ● b[j]))

Exercise 7.1 Calculating Assignments

Solve for x in the following assignments; do not be ‘ad hoc’ —guess and check—; instead calculate!

That is, use the definition of wp, or “the assignment rule”, to derive the assignments —consequently, they will be
“correct by construction”.

Unknowns may depend on all variables!

1. { i = j} i , j ∶= i + 1, x{i = j}

2. { i = j} j ∶= x ; i ∶= i + 1 {i = j}

3. { z + a ∗ b = c} z ,a ∶= z + b, x {z + a ∗ b = c}

4. { evena ∧ z + a ∗ b = c} a ∶= a ÷ 2; b ∶= x {z + a ∗ b = c}

5. {true} a, b ∶= a + 1, x {b = a + 1}

6. {true} a ∶= a + 1; b ∶= x {a = b} (Hint: why is x = a + 1 wrong?)

7. {i + p = c} i ,p ∶= m + 1, x {i + p = c}

8. {true} n, total ∶= 0, x {total = (⊕j 0 ≤ j < n ● b[j])}

9. {n > 0 ∧ total = (⊕j 0 ≤ j < n ● b[j])} n, total ∶= n + 1, x {total = (⊕j 0 ≤ j < n ● b[j])}

Exercise 7.2 Swap It!

Prove that the following are swapping algorithms, and do so in 2 ways: as a usual calculation, and as a proof outline
via bottom-up approach.

1. t := x ; x := y ; y := t

Hint: you want to prove, for arbitrary X and Y ,

wp “t ∶= x ; x ∶= y ; y ∶= t” (y = X ∧ x = Y) ≡ x = X ∧ y = Y

2. x, y := y, x

3. x := x + y ; y := x - y ; x := x - y

4. x := x * y ; y := x / y ; x := x / y

5. x := x ^ y ; y := x ^ y ; x := x ^ y where ^ is bit-wise xor.

For the last three: what happens if the values are really big? What if one of the values is 0? What if x = y?

Generalise the last three so that we can perform a swap using a pair of inverse functions.

Exercise 7.3 Getting Comfortable With Choice / Selection / Alternatives

1. Define a procedure fig so that fig(x ,n) prints either squares or triangles of size n × n according to whether x is
‘S’ or ‘T’. Implement this method in C using the GCL notation defined in alhassy_gcl2.c.

2. Given your answer to the previous exercise, what is printed by fig(’H’,-1)? [Hint: in at least one of these
cases the procedure will probably be equivalent to a sequence which contains a meaningless instruction.]

3. Using the definition, prove the order of arms in a selection does not matter, for the case of two arms

if B1 → S1 B2 → S2 fi ≈ if B2 → S2 B1 → S1 fi

4. Use alhassy_gcl2.c —which implements guarded commands non-deterministically— to write a program in C

to “increase x non-deterministically by an arbitrary amount”.

Discuss why such a program is “bad” and suggest a possible solution.

Exercise 7.4 — Programming Project: Optional Assignment, 5% —due before the next quiz

Do the previous “Optional Assignment”, at its original worth,

OR

for 5%, write a correct version of the algorithm on page 30, Exercises 3.6, of the course text, that given four numbers
a, b, c,d will present a proof derivation solving for X in

√
a +

√
b X

√
c +

√
d as is done on pages 28-29.

Write and submit a report similar to the indications on Sheet 5. —including, Frama-C annotations, troubles encoun-
tered, and possible future directions—

