
3EA3 Pellets Report

James Lee - 1318125

April 13, 2017

1 Abstract

This report deals with one of Google’s foo.bar questions, where you are given a positive starting number
of items or ”pellets” as a string, and you are asked to return the minimum number of operations required in
order to transform the number of pellets to 1. There are only three operations permitted, and they are as
follows:

1. Add one item.

2. Remove one item.

3. Divide the number of items by 2 (only allowed if there is an even number of items).

The following report details my personal solution to this problem. It was originally done in Python (code
can be found in the appendix), however it was translated into C in order to implement ACSL specifications
and prove correctness using Frama-C. As to what Frama-C is, it is just a source code analyzer and prover
of C software. More information can be found at https://frama-c.com/.

2 Structure

The structure of the report will mainly consist of program functions listed one by one with their cor-
responding ACSL specifications, along with a short explanation of what each function does, and how the
specifications verify the correctness of the functions.

3 Implementation and ACSL

We will first begin with the two Math functions, power() and intLog(). These functions needed to be
created as the standard Math library functions cannot be called in the specifications.

3.1 power()

/∗@ axiomat ic power {
@ l o g i c i n t e g e r pow(i n t e g e r x , i n t e g e r y) ;
@ axiom base pow : \ f o r a l l i n t e g e r x ;
@ pow (x , 0) == 1 ;
@ axiom unfold pow : \ f o r a l l i n t e g e r x , i n t e g e r y ;
@ pow (x , y) == x ∗ pow(x , y−1);
@ }

∗/
/∗@

r e q u i r e s x > 0 ;
r e q u i r e s y >= 0 ;
ensure s \ r e s u l t == x ∗ pow(x , y−1);

1

∗/
i n t power (i n t x , i n t y)
{

i f (y == 0) re turn 1 ;
e l s e re turn x∗power (x , y−1);

}

This power function is just a simple implementation that takes in integer x and integer y, and recursively
returns the value x to the power of y. It requires that x ≥ 0 and y > 0. y is not allowed to be 0 to avoid the
case where x and y are both 0, resulting in a math error. It is relatively straightforward, just multiplying x
at each level with the recursive call of pow(x, y-1). At the base case pow(x, 0) where y is 0, it just returns
1. The correctness of this function is verified by the fact that x to the power of y can also be represented as
x multiplied by x, y times.

3.2 intLog()

/∗@ axiomat ic intLog {
@ l o g i c i n t e g e r l og (i n t e g e r x , i n t e g e r y) ;
@ axiom b a s e l o g : \ f o r a l l i n t e g e r x , i n t e g e r y : x < y ;
@ log (x , y) == 0 ;
@ axiom u n f o l d l o g : \ f o r a l l i n t e g e r x , i n t e g e r y ;
@ log (x , y) == 1 + log (x/y , y) ;
@ }

∗/
/∗@

r e q u i r e s x >= 0 ;
r e q u i r e s y > 0 ;
ensure s \ r e s u l t == 1 + log (x , y) ;

∗/
i n t intLog (i n t x , i n t y)
{

i f (x < y) re turn 0 ;
e l s e re turn 1 + intLog (x/y , y) ;

}

This function returns the integer logarithm of x, under the base of y. For example, intLog(8, 2) would
return the base 2 logarithm of 8. Again, this function is straightforward, as the base case returns 0 if x is
less than y, and the unfolding recursively calls log while dividing x by y. Since the logarithm of a number is
just finding the largest power of the base that goes into that number, this function is correct as x is divided
by y at each stage, simulating division by powers of the base. For the purposes of this program, we only
need the integer logarithm as the decimals after do not matter, for reasons explained in the next function.

3.3 longToBin()

This is another one of the helper functions in the program. It takes in a long number n, and the integer
pointer count, and returns the number n converted into it’s binary representation, as a character array.
ACSL specifications ensure that n is initially greater than or equal to 0, as well as making sure that count
is non negative. The ensures clause performs the following: for each index i, it goes through \result and
multiplies the value of \result[i] by pow(2, i), and sums all these values together. By ensuring that
the resulting sum is equal to n, then that means that longToBin() is able to successfully represent n as a
character array.

An interesting interaction we can notice here is how we can multiply \result which is a character with
an integer and still get the correct result, without having to cast the character to an integer first. This is
because of the integer values of the characters ’0’ and ’1’. The decimal value of ’0’ in ASCII is 48, and ’1’

2

is 49. When multiplying 48 by a power of 2, the resulting hexadecimal value will end up with the last two
places being ’00’, and since char is 1 byte, it will only retain the last two places resulting in an integer value
of 0.

/∗@
r e q u i r e s n >= 0 ;
r e q u i r e s ∗ count >= 0 ;
ensure s n == \sum(0 , ∗count , \ lambda i n t e g e r i ;

\ r e s u l t [i] ∗ pow(2 , i)) ;
∗/
// func t i on that conver t s from long to binary
char ∗ longToBin (long n , i n t ∗ count)
{

char ∗ array = (char ∗) mal loc (1) ;

long cur rent = n ;
//@ a s s e r t cur rent == n ;

// minimum number o f b i t s needed p lus an
// extra 0 (f o r add i t i on)
// intLog r e tu rn s f l o o r , add 1 f o r c e i l
∗ count = intLog (n , 2)+1+1;
//@ a s s e r t ∗ count == log (n , 2)+2;

// add the end o f s t r i n g charac t e r
array [∗ count +1] = ’\0 ’ ;
//@ a s s e r t array [∗ count +1] == ’\0 ’ ;

// s t a r t at index count and go down
/∗@ loop i n v a r i a n t i > −1; ∗/
f o r (i n t i = ∗ count ; i > −1; i−−){

i f (cur r ent − power (2 , i) >= 0){
array [∗ count−i] = ’ 1 ’ ;
cur r ent −= power (2 , i) ;
//@ a s s e r t array [∗ count−i] == ’ 1 ’ ;

}
e l s e {

array [∗ count−i] = ’ 0 ’ ;
//@ a s s e r t array [∗ count−i] == ’ 0 ’ ;

}
}
re turn array ;

}

First of all, this function works by calculating the minimum number of bits required to represent the
number, by using the intLog() function with base 2. Since intLog() returns the integer floor, we add 1 to
simulate the ceiling, and another 1 because we want an extra bit in case addition is necessary later. Thus,
we assert that *count == log(n, 2) + 2.

After adding an end of string character to the end of the character array, we can then start at the index of
count and move backwards, calculating the binary representation of the number n. The loop keeps running
as long as i > -1, meaning that it will iterate through the entire character array, from the index count to
the index 0. If the value of current is greater than or equal to the value returned by power(2, i), then

3

current is subtracted by power(2, i) and the character at index i is set as a ’1’. Otherwise, no subtraction
is done and the character at index i is set as a ’0’.

An example of this function at work would be if we input n as 30. intLog(30, 2) would return 4, then
*count = 4+1+1 = 6. During the loop, i is initialized as 6. current is initially initialized as n, and 30 is
less than power(2, 6), which is 64. array[6] is thus set as ’0’, and the same is done for array[5], as 30 is
still less than power(2, 5). Once i becomes 4, current - power(2, 4) ≥ 0, thus current is subtracted
by 16 and array[4] is set as ’1’. By repeating this process, and stopping at i = -1, we end with array being
’0011110’, and this result is returned.

3.4 reduce()

We will first show the reduce() function in its entirety, and then break it down in smaller sections.

/∗@
r e q u i r e s n >= 0 ;
ensure s \ r e s u l t == 1 | | 0 <= \ r e s u l t <= log (n , 2) ;

∗/
// c a l c u l a t e s the number o f s t ep s i t takes to get to 1
i n t reduce (long n){

long input = n ;
//@ a s s e r t input == n ;
i n t numOps = 0 ;
//@ a s s e r t numOps == 0 ;
char ∗ po in t e r ;
i n t index = 0 ;
//@ a s s e r t index == 0 ;
// get the binary r e p r e s e n t a t i o n o f n
po in t e r = longToBin (input , &index) ;

p r i n t f (” Binary s t r i n g i s : ”) ;
p r i n t f (”%s \n” , &po in t e r [0]) ;

// i f binRep = 0 return 1 op
i f (po in t e r [0] == ’0 ’ && index == −1){

//@ a s s e r t index == −1 && po in t e r [0] == ’ 0 ’ ;
numOps = 1 ;
re turn numOps ;

}

//@ a s s e r t index >= 0 ;

/∗@ loop i n v a r i a n t index >= 0 && numOps >= 0 ; ∗/
// whi l e we are not at the second l a s t element
// (we end at ’ 01 ’)
whi l e (index > 1 | | numOps < 0){

//@ a s s e r t index > 1 ;

// i f number i s 3 then i t takes 2 ope ra t i on s
i f (po in t e r [index −2] == ’0 ’

&& po in t e r [index −1] == ’1 ’
&& po in t e r [index] == ’1 ’ && index == 3){

numOps += 2 ;
index −= 1 ;
//@ a s s e r t numOps > 0 ;

4

}
// I f i t ends as 001 , then i t j u s t equa l s 1
e l s e i f (po in t e r [index −2] == ’0 ’

&& po in t e r [index −1] == ’0 ’
&& po in t e r [index] == ’1’&& index == 2){

index −= 1 ;
//@ a s s e r t numOps >= 0 ;

}
// i f ends in 0 then cut i t (d i v i d i n g by 2)
e l s e i f (po in t e r [index] == ’0 ’){

index −= 1 ;
numOps += 1 ;
//@ a s s e r t numOps > 0 ;

}
// i f ends in 01 then subt rac t then cut
e l s e i f (po in t e r [index −1] == ’0 ’

&& po in t e r [index] == ’1 ’){
index −= 1 ;
numOps += 2 ;
//@ a s s e r t numOps > 0 ;

}
// i f ends in 11 then add then cut
e l s e i f (po in t e r [index −1] == ’1 ’

&& po in t e r [index] == ’1 ’
&& numOps >= 0){

//@ a s s e r t numOps >= 0 ;

/∗ Addit ion i s pre t ty much turn ing
the c l o s e s t 0 in to a 1 and changing
a l l the in t e rmed ia te 1 ’ s i n to 0 . Find
c l o s e s t 0 , can s t a r t from 2 s i n c e we
know i t a l r eady ends in ’11 ’ ∗/

i n t c l o s e s t = 2 ;
//@ a s s e r t index >= c l o s e s t ;

/∗@ loop i n v a r i a n t c l o s e s t >= 2
&& index >= c l o s e s t
&& numOps >= 0 ; ∗/

whi l e (index < c l o s e s t
| | po in t e r [index−c l o s e s t] != ’0 ’){

//@ a s s e r t index >= c l o s e s t ;
i f (index > c l o s e s t)

//@ a s s e r t
index > c l o s e s t ;

c l o s e s t ++;
//@ a s s e r t index >= c l o s e s t ;

}
//@ a s s e r t c l o s e s t >= 2

&& index >= c l o s e s t && numOps >= 0 ;

// change i t to a 1
po in t e r [index−c l o s e s t] = ’ 1 ’ ;
// can cut a l l o f the numbers and
// add ops equal to numbers cut

5

index −= c l o s e s t ;
numOps += 1+ c l o s e s t ;
//@ a s s e r t numOps > 0 ;

}
}
//@ a s s e r t index >= 0 && numOps >= 0 ;
// f r e e (po in t e r) ;
r e turn numOps ;

}

We will first take a look at the first section, which includes the function definition as well as basic initial-
ization of variables and print statements.

/∗@
r e q u i r e s n >= 0 ;
ensure s \ r e s u l t == 1 | | 0 <= \ r e s u l t <= log (n , 2) ;

∗/
i n t reduce (long n){

long input = n ;
i n t numOps = 0 ;
char ∗ po in t e r ;
i n t index = 0 ;
po in t e r = longToBin (input , &index) ;

p r i n t f (” Binary s t r i n g i s : ”) ;
p r i n t f (”%s \n” , &po in t e r [0]) ;

i f (po in t e r [0] == ’0 ’ && index == −1){
numOps = 1 ;
re turn numOps ;

}

reduce() takes in a long number n, and returns an integer representing the minimum number of operations
required to reduce that number to 1. It requires that the number n is initially greater than or equal to 0.
The result is ensured to either be 1 (in the case where n = 0) or in the range between 0 and log(n, 2). The
minimum is when n = 1, resulting in numOps being 0, and the maximum is when n is a power of 2, such as
2, 4, 8, etc. First, the variables are initialized, with input = n, numOps = 0, index = 0, and *pointer =

longToBin(input, &index). The longToBin() function as explained earlier takes in a number n, which is
in this case input, and an integer pointer *count, which is in this case index. The character array *pointer

ends up as the binary representation of the number n, and index is set to be the minimum number of bits
necessary to represent this number.

The next two lines just print out the binary string, allowing the user to visually confirm that the value of
the string is equal to the number they inputted. After this, there is just a quick check, returning the number
of operations to be 1 if the number inputted was 0.

/∗@ loop i n v a r i a n t index >= 0 && numOps >= 0 ; ∗/
whi l e (index > 1 | | numOps < 0){

i f (po in t e r [index −2] == ’0 ’
&& po in t e r [index −1] == ’1 ’
&& po in t e r [index] == ’1 ’ && index == 3){

numOps += 2 ;
index −= 1 ;

6

}
e l s e i f (po in t e r [index −2] == ’0 ’

&& po in t e r [index −1] == ’0 ’
&& po in t e r [index] == ’1’&& index == 2){

index −= 1 ;
}
e l s e i f (po in t e r [index] == ’0 ’){

index −= 1 ;
numOps += 1 ;

}

Next we look at the first half of the while loop. This loop has invariants that index ≥ 0 and numOps ≥
0. This is correct as the loop should continue to run as long as we are not at the second last element (or as
long as index > 1), as ’01’ means that the number at 1 and that is the number that we want to arrive at.

The first if is a special case. If the number is 3, then we decrement index by 1 and increase numOps by 2.
In binary, the representation would be ’11’, so decreasing index by 1 is the same as subtracting by 2 in this
case. We also need to check that index is currently at 3, so we avoid situations where numbers like ’1111’
from falling into this case.

The second part of the if occurs very rarely, but when it does happen, we just decrease index by 1 and
don’t do anything to numOps. Decrementing index for ’001’ would just result in ’01’ and is 1. It may seem
that this function does not serve any purpose, but remember that we need to decrement index or else the
loop will never end.

The last else if in this first segment is one of the main cases that will occur frequently. We take advantage
of the fact that binary numbers have the trait that a right shift is essentially dividing the number by 2.
Examples include ’100’ = 4 becoming ’10’ = 2 after a right shift, and ’1100’ = 12 becoming ’110’ = 6.
Therefore, if the character array ends in ’0’, we decrement index by 1 and increase the number of operations
by 1 as well.

e l s e i f (po in t e r [index −1] == ’0 ’
&& po in t e r [index] == ’1 ’){

index −= 1 ;
numOps += 2 ;

}
e l s e i f (po in t e r [index −1] == ’1 ’

&& po in t e r [index] == ’1 ’
&& numOps >= 0){

i n t c l o s e s t = 2 ;

/∗@ loop i n v a r i a n t c l o s e s t >= 2
&& index >= c l o s e s t
&& numOps >= 0 ; ∗/

whi l e (index < c l o s e s t
| | po in t e r [index−c l o s e s t] != ’0 ’){

i f (index > c l o s e s t)
c l o s e s t ++;

}

po in t e r [index−c l o s e s t] = ’ 1 ’ ;
index −= c l o s e s t ;

7

numOps += 1+ c l o s e s t ;
}

}
// f r e e (po in t e r) ;
r e turn numOps ;

}

If the character array ends in ’01’, then we can first subtract 1, turning it into ’00’, and then cut the last
element off, making it ’0’. We do this by decreasing index by 1 and increasing numOps by 2. For example,
if the number is ’101’ = 5, we subtract 1 making it ’100’ = 4, then ”divide by 2” making it ’10’ = 2.

The next case is efficient but also requires a while loop of its own. It handles the case where the character
array ends in ’11’. In this case, we want to add 1 instead of subtracting, as it is in fact more efficient to
add as it generates more consecutive ’0’s. For example, if we had ’01111’ = 15, instead of subtracting and
then cutting the 0 each time, which would result in numOps being 6 (subtract, then divide, each repeated 3
times), if we add 1 first, it would become ’10000’ = 16, allowing us to get a final result of numOps being 5
(add, then divide 4 times).

After adding 1, we know that there are at least 2 ’0’s in a row. We look for the maximum number of
consecutive 0’s so we can cut them all at once. This while loop has invariants such that closest ≥ 2,
index ≥ closest and numOps ≥ 0 at all times. As stated earlier, we want to find the largest number of
consecutive ’0’s, so while the current character at the index is ’0’, we continue iterating through the loop.
Notice that we don’t actually perform any addition, we merely change the closest non ’0’ into a ’1’, which
simulated addition. After this, we cut off all the consecutive ’0’s by subtracting index by closest, and add
operations equal to 1 + closest (one addition operation plus ’closest’ number of division operations).

The end of the reduce() function just has 2 lines, a commented out free(pointer) line, and the return

line. To my knowledge, Frama-C does not have any specifications for freeing memory after use, so this line
was commented out as it could not be proven.

3.5 main()

i n t main ()
{

long n ;
whi l e (1){

p r i n t f (” Enter a p o s i t i v e long i n t e g e r : ”) ;
s can f (”% ld ”,&n) ;
i f (n >= 0){

p r i n t f (”Number o f Operat ions : %i \n” , reduce (n)) ;
}

}
re turn 0 ;

}

This is just the main() function that runs upon program start through the command line, and takes in a
long integer as input, passes it to the function reduce(), and returns the number of operations required to
transform the given number to 1. This is run in a never ending while loop. There are no ACSL specifications
for this function.

8

4 Conclusions

4.1 Challenges

As with most projects, there were a few hurdles that had to be overcome in order to complete this
assignment. The first hurdle was deciding how to represent and convert the data. In Python, through the
use of built in functions that converted between binary and decimal, the total implementation was very short
(only about 20 lines!). However, in C, I had to make my own function to do this. Another hurdle was with
memory allocation and freeing of this memory. I stored the number as a binary string in a character array, and
Frama-C to my knowledge does not have nice specifications towards the allocating and freeing of memory.
In the end, the free memory line was just commented out as it would not turn green to indicate proven
specifications. One more challenge was creating my own math functions. The Math functions in the Math
library could not be used in the ACSL specifications themselves, so in order to use math operations (such as
power or log) in the ACSL specifications I actually had to write my own functions and their corresponding
axioms.

4.2 Future Work

Further improvements could include adding better defined specifications for the reduce() function, and
cleaning up some specifications for other functions such as intLog(). There are some fringe cases where
Frama-C returns a green or correct result, even though it should not be correct. One example is intLog(0,
1), which would return 0 from the code, even though the ensures clause would expect a return value of 1.
Another example is multiplying a character by an integer in the function longToBin(). Up to the value 256,
the cutoff would be correct and it would return the correct value, but for numbers larger than 256 it should
result in the wrong cutoff and therefore a wrong value. As with the previous example, Frama-C also returns
a green, or correct specification.

In the future when Frama-C receives some additional functionality maybe the reduce() function can see
some stronger specifications. Wrong fringe cases might also be fixed, forcing the user to analyze their code
in more depth as well. For now however, Frama-C was still very helpful in generating correct specifications
for this program.

4.3 Final Remarks

Adding ACSL specifications to functions and statements caused me to realize that my guards or invariants
were not strong enough to cover branch cases where my program would fail or be incorrect. In conclusion, I
can safely say that this project was very worthwhile, and will most likely help me create programs that have
proper specifications and are correct by construction.

5 Appendix

The source code for the Python implementation.

de f answer (n) :
””” Convert the s t r i n g to binary ”””
binRep = bin (i n t (n))
binRep = binRep [2 :]
numOps = 0 ;
i f (binRep == ” 0 ”) :

r e turn 1
whi l e (binRep != ” 1 ”) :

i f (binRep == ”11”) :
r e turn numOps+2

binRep = s t r (binRep)

9

i f (binRep [−1 :] == ” 0 ”) :
binRep = binRep [: −1]
numOps+=1

e l s e :
””” I f the re are more 1 ’ s f o l l o w i n g then add in s t ead ”””
i f (binRep [−2:−1]==”1”):

binRep=bin (i n t (binRep ,2)+1)
binRep=binRep [2 :]

e l s e :
binRep=bin (i n t (binRep ,2)−1)
binRep=binRep [2 :]

numOps+=1
return numOps

10

