
CS 3EA3: Sheet 9 Optional Assignment - The

Importance of Algebraic Properties

James Zhu 001317457

21 April 2017

1 Abstract

Algebraic properties (such as associativity and commutativity) may be defined
and applied across many domains in order to provide optimisations to the
problem-solving process. The properties of associativity and commutativity and
the corresponding manipulations which they allow are defined in the domain of
propositional formulas, and applications of these properties onto solutions in
the computing industry and their associated benefits are explored. At the same
time, the consequences of a lack of such properties is highlighted. Lastly, the im-
portance of the consideration to employ such properties in all problem domains
is emphasised.

2 Introduction

In the fields of formal logic and specification, especially as it is applied for
the purpose of computing and the practise of the correct-by-construction
programming paradigm, we may observe certain properties across the domain
of the data over which one is working.

When working across such domains, which may be reduced to an instance of
a defined and acceptable language, one may observe a set of properties known
as the algebraic properties, in that they define some attribute of the symbols
within the said language, which may be exploited in some way to manipulate
the symbols and/or their relationship with other symbols within a sentence. [1]

A core subset of these algebraic properties will be explored in this report
within the context of propositional formulas over boolean-valued variables. Specif-
ically, an informal, colloquial definition will be provided for each property, and
the significance of the truthfulness (or lack thereof) of the property within the
domain of computing.

1

3 Background and Mathematical Preliminaries

Boolean variables may be defined as the set of values over the set of {true,
false }. Note that they may also be defined as ranging over the set 2 . [2]

Furthermore, the set of propositional operators may be defined as the
operations ¬, ∧, ∨, → and ↔.

Now, with these two sets defined, the notion of a propositional formula may
be introduced, the latter which is composed from the propositional operators,
along with a finite set V of boolean variables. [3]

As stated above, the properties, applications, and implications of algebraic
properties will be explored within the context of this domain.

4 What are Algebraic Properties?

4.1 Definition

Formally, algebraic properties may be defined as ”the fundamental laws
by which reasoning is performed [within a certain domain]... and upon this
foundation, establish the Science of Logic”. [1] Informally, they may said to
be the properties which apply to the members of the set over which a certain
problem has established its domain. In the context of this paper, the domain is
specified to be closed under propositional formulas.

4.2 Properties under Observation

Within this report, the algebraic properties of associativity, and commutativ-
ity will be discussed.

4.3 Algebraic Property: Associativity

4.3.1 Definition

The algebraic property of associativity may be defined for some proposi-
tional (binary) operator such that, given a propositional formula containing
three boolean-valued variables a, b and c, which are composited by this opera-
tor, the order in which the operations are carried out does not affect
the final result. [1]

Thus, given a binary propositional operator ⊕ , the propositional formula: a
⊕ b ⊕ c may be evaluated as either : (a ⊕ b) ⊕ c OR a ⊕ (b ⊕ c), for all
values in the domain of a, b, and c.

2

4.3.2 Applications to Propositional Formulas

In establishing the significance of associativity within propositional logic, con-
sider the following example:

Three boolean-valued variables are defined as such:

1. a: Mary has brown hair.

2. b: David has brown hair.

3. c: John has brown hair.

Assume that both a and b evaluate to true, while c evaluates to false.

Furthermore, the propositional operator ∧ (conjunction) is said to satisfy the
associative property.

Then, the propositional formula: (1) Mary has brown hair ∧ David has brown
hair ∧ John has brown hair may be evaluated as:

1. (Mary has brown hair ∧ David has brown hair) ∧ John has brown hair

OR

2. Mary has brown hair ∧ (David has brown hair ∧ John has brown hair)

would evaluate to the same result — false.

Thus, it has been established that within the above formula (1), the order in
which the boolean conditions are considered and simplified does not matter.

In matters of application, this would allow for the evaluation of the proposition
without discrimination to the order that each term must be evaluated within the
expression. Thus, for any individual wishing to establish the truthfulness of this
proposition, they may compare either the truthfulness of Mary and David or
David and John having brown hair first, and then take the resulting answer and
apply it to a comparison with the remaining individual, without affecting the
result of the proposition.

If we suppose that the comparator is a student named Daniel who is in a
class with Mary and David in the morning, and with John in the afternoon,
assuming that neither Mary nor David are in this latter class, and that neither
of the individuals being compared are previously known to Daniel, then the
associativity property would enable Daniel to track down Mary and David in the
morning, and carry out the evaluation of that respective part of the expression,
and then apply this result in an evaluation with John in the afternoon to get a
result.

3

However, in the case that the associativity property does not hold for ∧,
namely that (a ∧ b) ∧ c 6= a ∧ (b ∧ c) then, assuming that it always associates
to the right, Daniel must first wait for the afternoon class to do the evalua-
tion with David and John (even as he was in a class with Mary and David
in the morning), and then track down Mary to complete the evaluation of the
proposition.

As Mary may have already departed by that time, Daniel will then have to
wait for the next day in order to get a result.

Thus, the associativity property thus allows for the evaluation of an expression
(and any associated sub-expressions) without the prior need to transform or
specify the preposition in some pre-existing form or order. Thus, the most
”effective” order (as described in the above example) may be selected. [1]. This
may lead to (often substantial) improvements with regards to the running time
of any task (or computer program) which utilises combinations of ∧ in this way.

4.3.3 Applications to Computing - Parsing

As established above, associative property over propositional formulas
may result in significant time savings in any program requiring the evaluation
of the latter. This property may also be applied to gain practical improvements
in the computing domain.

For instance, consider a parser evaluating an expression containing n terms,
stored as a linked-list: t1∧t2∧t3 ∧tn. If the associative property were to hold,
then the parser may simply conduct the simplification of sub-expressions as it
encounters them (from left to right). This would require n accesses and n − 1
conjunction operations. However, if the associative property were to not hold,
namely, if as above, it were to be right-associative — then the parser must first
traverse through the entire expression prior to the beginning of evaluation. Thus,
this introduces an additional n access operations. In implementation, should the
terms of the expression be stored within a singly-linked-list a stack may also be
required in order to hold the terms as the parser encounters them, and then pop
and process them in the reverse order. This also introduces additional space
requirements.

Whilst this may not introduce significant overhead for expressions with a
smaller number of terms, consider a situation in which a several trillion terms
are within the expression — for instance, if some simulation must verify some
property of all the cells within a virtual human body (estimated at about 30
trillion). In this case, the additional n accesses required for traversal would
significantly increase the practical time required to compute the result, even as
the complexity remains at O(n).

4

If we consider, for example, that the parsing is being conducted on a cluster
of server farm which is capable of 1 billion access operations per second .
Assuming that the solution is time-critical, and that there is per-cluster cost of
$ 10 000, regardless of the number of computations carried out, then the intro-
duction of 30 trillion extra accesses would result in a significant financial
penalty to the user.

4.3.4 Conclusion

Inasmuch as the benefits of associativity have been established in real-world
applications, the implications of such an algebraic property not holding, have
also been brought to light. Especially in the case for relatively-simple operations
which may be computed many* (see above) times within common computing
solutions (such as multiplication), the advantages brought to industry by the
existence and application of the algebraic property can be very clearly felt.

5 Algebraic Property: Commutativity

5.1 Definition

The algebraic property of commutativity may be defined for some proposi-
tional (binary) operator such that, given a propositional formula containing two
boolean-valued variables a and b, which are composited by this operator, the
order in which the operands appear does not affect the final result. [4]

Thus, given a a binary propositional operator ⊕ , the propositional formula:
a ⊕ b is equivalent to b ⊕ a, for all values in the domain of of a and b.

5.1.1 Applications to Propositional Formulas

In establishing the significance of the commutative property within proposi-
tional logic, the example provided in Section 4.3.2 is once again considered.
However this time, the following proposition is made: (2) Mary has brown hair
∧ David has brown hair.

If the algebraic property of commutativity holds over the ∧ operator ,
then the expression may be rearranged and evaluated in the order: David has
brown hair ∧ Mary has brown hair, while producing the exact same result as
(2) — true.

Thus, it has been established that within the above formula (2), the order in
which the boolean operands appear does not matter.

5

In the realm of application, this algebraic property would thus allow for the
evaluation of the proposition without discrimination to the order in which each
term appears as an operand. Thus, taking the task undertaken by Daniel from
the previous example once more, he may either check the hair colour of Mary
OR David first, and then the other, and apply the conjunction correspondingly,
arriving at the same result. Thus, if for instance, Daniel is in a class with
Mary in the morning, and David in the afternoon, and he additionally knows
beforehand that Mary will have departed at lunchtime, then Daniel can choose
to evaluate the condition for Mary first, prior to David. Thus, once again, he
would have saved an additional day (or more) of waiting to be in class with
Mary again (even though David may be available all day!).

Again, the commutative property thus allows for the evaluation of an expres-
sion and any associated sub-expressions, with the operands in any order which
may be more convenient to suit the operands or purpose. This may lead
once more to significant improvements of in the run-time of tasks (or computer
programs), whose operators exhibit this property.

5.1.2 Applications to Computing - Prioritisation for Efficiency

As established above, commutative property over propositional formu-
las may also be applied to gain practical improvements in computing solutions,
similar to associativity.

Consider the Cell Processing Problem presented in Section 4.3.3. If
commutativity were to hold for ∧, then the processing program may select any
of the cells to be verified in any order which is desirable, without changing the
final result. Thus, for instance, if the property which is to be verified for each
cell requires more processing power to satisfy for a certain type of cell compared
to others, and the server farm charges for usage based on user-demand, then
the researcher may select to verify these former cells at a time of day wherein
the demand for processing power may be lower. This would lead to significant
financial savings, as stated in Section 4, if the amount of cells required to be
verified is in the magnitude of billions or trillions.

If however, commutativity does not hold, then in the above example, the cells
may have to be processed in a pre-defined order, the latter which may not
necessarily be the most efficient use of resources, dependent on the nature of
the computing device.

5.1.3 Conclusion

As with associativity, the benefits of commutativity — as well as the draw-
backs of operations which do not sport this aforementioned algebraic property
is evident when considering solutions which may be used in the commercial
realm. This is especially applicable to applications which are either time and/or

6

resource-sensitive. In fact, the latter may also be taken into consideration for
instances wherein the amount of ”workers” to complete a certain task is limited,
and wherein a greater amount of terms within the expression that is resolved per
unit-time provides greater benefit (in lieu of a final result). Thus, this may en-
courage the ordering of operands such that ”smaller” sub-expressions (or which
require less computational power) are processed first, instead of a larger sub-
expression which may potentially delay the processing of other sub-expressions
that appear later in the queue.

6 Conclusion

In the course of this paper, the algebraic properties of associativity and
commutativity have been defined within the context of propositional formu-
las. Specifically, the ways in which the properties expose certain patterns of
manipulation on the operators to which they apply, as well to the data which
lie their respective domains, has been established. Following on this, the pos-
sibilities for the application of such algebraic properties to provide significant
optimisations and improvements in efficiency to solutions in the computing and
software industry (among others) were explored. Lastly, the (significant) conse-
quences which may arise due to the non-existence of these properties for some
operations was highlighted.

All in all, algebraic properties not only allow for expressions to be manipu-
lated in such a way which best suits the domain (input, requirements, expected
output, etc) of a specific problem, but more essentially, allows for the creative
and dynamic resolution of these problems in ways which often provide much
greater benefit in comparison to the ”cost” that is required to apply them.

References

[1] R. Backhouse, Program Construction: Calculating Implementations from
Specifications. Chichester, United Kingdom: John Wiley & Sons, Ltd, 2003.

[2] J. Zucker, Class Lecture, Topic: ”Recursive Function Theory and Com-
putability: Introduction; Mathematical Preliminaries.” CS 3TC3, Depart-
ment of Computing and Software, McMaster University, Hamilton, Canada,
January 2017.

[3] H. Zantema, ”SAT solving, SMT solving and Program Verification”, Eind-
hoven University of Technology, Eindhoven, Netherlands, 2011.

[4] M. Al-hassy, Class Lecture, Topic: ”Lattice Theory” CS 3EA3, Department
of Computing and Software, McMaster University, Hamilton, Canada, Win-
ter Term 2017.

7

