CS 3EA3: Optional Assignment - A Survey of
Binary Search

James Zhu 001317457
26 April 2017

1 Abstract

This paper presents a general survey of the functional, syntactic and logistical
aspects of two variants of the Binary Search Algorithm— one ”traditional”
variant as introduced by Sedgewick and Wayne in [1], and the other by Musa
Al-hassy in [3]. Specifically, a brief overview of the major steps in the derivation
of each algorithm will be discussed, followed by an analysis of the structure,
operations and implications inherent in each within the context of efficiency both
execution and implementation. Lastly, a conclusion will be made as to which
algorithm can be considered to be better within the scope of these considerations.

2 Introduction

In this paper, a comparison of a instance of the Binary Search Algorithm as
presented by Sedgewick and Wayne in [1], and the general variant as presented in
the course material of the CS 3EA3: Software Specifications and Correctness will
be made. Specifically, a brief description of the operation of both variants will
be provided, and an analysis of their respective structure and operations on the
input data will be conducted. Additionally, the run-time and implementation
efficiency of both variations will be dissected, and use cases for both established.
Lastly, the ease of memorisation and application of both will be evaluated, and
the context for the utilisation for each variant will be outlined.

3 What is Binary Search?

Two varying descriptions and implementations of ”Binary Search” are de-
scribed below, (i) one presented by Sedgewick and Wayne in [1], and (ii) the
other by Musa Al-hassy within the course material of the CS 3EA3 Course.



3.1 Binary Search as Proposed by Sedgewick and Wayne

Given a list of elements contained in a list which contains a Comparable key
and an associated value, provided with some desired key, Binary Search will
return the index of the key within the list if it is present, and -1 otherwise. [1]
Specifically, a key is said to be Comparable if each of the elements belonging to
the same class has a natural ordering which is imposed on it. [2] This allows
for the definition of the notion of a comparison between objects — in this case,
keys — by some natural comparison method.

Additionally, elements are stipulated to be sorted according to their respective
natural ordering.

To perform the search for a specified element, two variables 1o and hi are
maintained, indicating the current low and high indices of the search bound,
respectively. The lo value is set prior to the beginning of the search process to
the lowest index in the list, and the hi value to the highest. Then, the algorithm
continuously makes comparisons, while 1o <= hi, utilising the natural compar-
ison method, between the key of the desired element, and that of the median
element mid within the interval of the list bounded by lo and hi.

The result of this comparison may be one of three cases:

e The key of the desired element is smaller than that of the mid element.
In this case, the algorithm will cut the interval size in (approximately
half), by setting the value of hi to the index value which is one below
that of mid. The search then continues in the same manner described
above within this interval.

e The key of the desired element is larger than that of the mid element.
In this case, the algorithm will cut the interval size in (approximately)
half, by setting the value of 1o to the index value which is one above that
of mid. The search then continues in the same manner described above
within this interval.

e The key of the desired element is exactly equal to than that of the mid
element. In this case, the mid element is the desired element, and the
value of mid is returned, thus indicating the index value of the searched-
for element within the list. The algorithm then terminates.

At the termination of this while loop, should no index be found, then a -1
value is returned, indicating that the desired element was not found in the list.

3.2 Binary Search as Proposed by Musa Al-hassy

The General Binary Search algorithm presented by Musa Al-Hassy stip-
ulates that:



Given: a < b, such that a Z b, where Z is some co-transitive relation,
such that V x, y, m : integers,x Z mV m Z y < x Z y, to find:

Required: two neighbours z and z+1, such that it is bounded by the interval
set by a and b from above: a <z < b. [3].

The proposed algorithm firstly assigns an x and y to be equal to the lower
and upper bound of the interval. Then, while ensuring the invariant a < x <
y < b A xZy holds, while x + 1 # y, a median m is found. Then, as this
implies that x < m < y, there exists two cases:

e If m Z y then assign x tom

e If x Z m then assign y to m

The above two cases has the effect at each iteration of either:
e Moving the lower bound in the search interval to be the median; or

e Moving the upper bound in the search interval to be the median.

This thus cuts the searched interval by (approximately) half at each iteration.
This while loop continues to run until x becomes one less than y. Then, x is
returned. Note that the input data does not have to be ordered according to
its specified natural ordering.

4 A Comparison of Structure and Operations on
Input Data

In terms of the structure and operations on input data performed by both
variants of Binary Search, it may be observed that:

1. The (negation of) the termination condition of the while loop is
expressed differently. For the traditional version proposed by Sedgewick
and Wayne, this condition is expressed as while[lo <= hi], while for the
version General Binary Search implementation, it is: do x + 1 # y. This
is due to the fact that as the former version always reduced the search in-
terval to a range that is bounded by, but not including the median, the
case where the lower bound is equal to — but not higher than the upper
bound must be considered. Contrastingly, for the General Binary Search
presented by Musa Al-hassy, as any shrinkage in the interval, while also
bounded by the median, also includes the latter. Structurally, this allows
the algorithm to terminate when x == y, rather than one above with lo
> hi. Logistically, this also decreases the complexity of the information
which must be recalled during implementation, as with regards to the di-
vider of the two different partitions within the Binary Search instance,



one does not have to recall that the range must be either beginning one
entry before or after the median, as is the case with the instance proposed
by Sedgewick and Wayne.

2. The calculation of the median varies in complexity. Asthe General
Algorithm as introduced by al-Hassy in [3] utilises an invariant imposed
on the lower and upper bounds of the search interval, to ensure that
the the median will always remain valid within this range. Namely, the
invariant x < m < y must always hold in each iteration of the while loop,
prior to the evaluation of any guards. However, as no such invariant is
implemented in the version as proposed in [1], an extra addition of the
value of the index of the lower bound must also be made: mid = lo +
[hi - lo].

5 A Comparison on the Time and Space Effi-
ciency

It can be observed that in both variants of Binary Search, the search interval
is cut approximately by half at every iteration. Thus, the run-time is O [log
n]. Assuming, however, that the input data or list is unsorted, then it must be
done first, thus, necessitating a run-time which is more analogous to O [n log
n] in this latter case.

This sorting is required, as only with monotonicity introduced by the natural
ordering of the elements can it be guaranteed that the median element which
1s found through the above method actually represents the median value within
the search interval. The latter fact must be true in order for the Binary Search
algorithm to be certain that the desired element is within either the lower or
the higher side of the partition. However, with the General Binary Search as
presented by Al-hassy, monotonicity is has already been assured through the
invariant stated above: z < m < y.

6 Debunking the Myth: return is better!

Whilst the argument might be put forth that the Traditional variant of Binary
Search (as exemplified by Sedgewick and Wayne) may be superior due to the
presence of return statements which allow the algorithm to end early should the
desired element be found (eg. in the case that key = mid), it can be shown that
this mechanism only goes to introduce extra guards (and therefore complexity),
which must be evaluated in each iteration, and does not introduce any functional
variance in the output.

In the version proposed by Sedgewick and Wayne, it may be seen that upon
the satisifiability of key = mid), the index of the searched for element is re-



turned, al-Hassy’s implementation already implicitly accommodates for this,
once again through the invariant x < m < y, which again, must be satisfied be-
fore the evaluation of any guard. Otherwise, the loop will terminate in a very
short period of time and the algorithm will arrive at the desired post-condition.
This thus again lowers the amount of factors which must be explicitly defined
and accounted for in implementation, and in extension, makes for a more concise
and elegant specification.

7 Conclusion

Thus, it can be said that whilst the differences between the two specifications
of the Binary Search algorithm are relatively small, when the ease of memori-
sation, derivation and implementation are taken into consideration, then it is
very clear from the above comparisons that the General Binary Search as
proposed by Musa Al-Hassy in [3] is far more mathematically concise — both
in a syntactic and semantic context.

References

[1] R. Sedgewick, K. Wayne Algorithms Fourth Edition. Boston, United States:
Addison-Wesley, 2011.

[2] Oracle, ’Interface Comparable,” [Online document], Available:
https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

[3] M. Al-hassy, Class Lecture, Topic: ”Binary Search - Revisited” CS 3EA3,
Department of Computing and Software, McMaster University, Hamilton,
Canada, 8 March 2017.



