Survey of Binary Search

Lokesh Podipipireddy
April 2017

1 Abstract

The purpose of this document is to explore binary search in various shapes that
are set out to accomplish different tasks. We also analyze the different variations
of binary search in relation to the general scheme of binary search.

2 Introduction

In this paper, we discuss the general schema of binary search. From there we
examine the bisection method and exponential search. Bisection method is
for finding the root of a function while exponential search is used for finding an
element in a sorted list. We try to analyze the difference and similarties between
these variations and the general schema

3 Binary Search

Binary search is a search algorithm that finds the position of a target value
inside of a sorted array. It starts off by comparing the target value with the
middle element of the sorted array. If the value is unequal it elminates one half
side of the array and compares the target value to the middle element of the
array that isn’t eliminated. It continues to do this until the middle element is
found.

The way it determines which half to eliminate is by comparing the target
value to the middle element of the array. If the middle element is less than the
target value, it eliminates all the element from the beginning of the array to the
middle element. If the middle element is greater than target value, it eliminates
all the elements from the element right after the middle of the array to the end
of the array.

4 Binary Search General Schema

{a < b}
X, y :=a, b

dox+1<y—>
m:=(x+y) /2
if arr[m] < key -> x :=m
[l arr(m] > key -> y :=m //[] is the guard
fi

od

As you can see, given an index where is x is the start and y is the end (xjy)
we and a given key to compare against mid-pont. We can determine which half
of the array to eliminate.

5 Binary Search in Bisection Method

The Bisection is a classic method in numerical computation that is used to find
the roots of a given function. Let’s say you have a given function f that we
want to the roots. We know that in order to the root of a function, we find
the x-intercept of the function. The way we do this by starting out with two
guesses for the x-intercept. Let’s call this a and b. We then take the value of
f(a) and f(b) and multiply them together. If this value is greater than 0 than
we change a:=m. If this value is less than 0, we change b:=m and then repeat
the process until we have zeroed in on the root of the function.

{a < b}
X, y :=a, b
dox+1<y—>
m:= (x+y) /2
if f(a)*f(b) > 0 -> x:=m
[0 £f@)*f(b) < 0 >y :=m //[] is the guard
fi
od

6 Similarties and differences from binary search

Bisection method is definately an instance of binary search. The calculation
of midpoint and assigning the start and end index to midpoint is the same.
The difference arises in the gaurd statements and instead of an array, it using
a continous function. From gaurd statements you can tell instead of checking
against some midpoint, it is checking to see if product of f(a) and f(b) is greater
than 0. this is because this method assumes the key to be f(x) = 0 and it trying
find that x value.

7 Binary Search in Exponential Search

Exponential Search is another searching algorithm. It works on an unbounded,
infinite list. What it does is, it determines the approximate range that a given
key would resides in and performs binary search in that range. Assuming that
the list is sorted in ascending order, the algorithm looks for the first exponent, j,
where the value of the exponent is greater than the search key. It then performs
binary search on the subarray where the beginning index is exponent of j-1 and
the ending index is exponent of j.

{a < b}

bound = 1

do bound < size && arr[bound] < key ->
bound = bound*2

od

X, y := bound/2, bound
dox+1<y—>
m:=(x+y) /2
if arr[m] < key -> x :=m
[arr[m] > key -> y :=m //[] is the guard
fi

od

8 Similarties and differences from binary search

There really isn’t much of a difference in the binary search portion of it but
there is an addition which is determining the range to operate within.

9 Conclusion

The Binary Search Algorithm can be found in many new algorithms with vari-
tions on the operands and the subarray elimination gaurds as well. It may not
be as easy to view these algorithms through the lens of binary search because
they operate under different circumstances. For example bisection method is
not a comparison of a key to the midpoint. We treat f(a)=0 to be the midpoint
and 0 is the key that is being compared. The bisection method operates on a
continous function which means it can be reprented by a continous graph and
easier to visualize the process of the bisection through this lens. At the end, the
general priniciple of binary search exists in bisection method and exponential
method.

10 References

Bentley, Jon L.; Yao, Andrew C. (1976). ” An almost optimal algorithm for un-
bounded searching”. Information Processing Letters.

Willams, Jr., Louis F. (1975). A modification to the half-interval search (bi-
nary search) method. Proceedings of the 14th ACM Southeast Conference. pp.

95-101.

