
CS 3EA3: Optional Assignment - Binding

Theory to Practise: The Benefits of

Correct-By-Construction Programming

James Zhu 001317457

26 April 2017

1 Abstract

Correct-by-construction programming is a programming philosophy wherein
the proof of the proposed solution (often in the form of mathematical specifi-
cations) is developed alongside (and ideally, prior to) to the implementation.
Thus, the specification and the program forms a theorem which expresses that
the program satisfies the specification and the problem statement. The use cases
in industry for the design and development of large systems is presented and
compared with other models of development (eg. Test-Driven Development).
Finally, a case study of the use of correct-by-construction programming in the
deviation of an algorithm to verify well-definedness of Guards and Bodies in the
pState probablistic model checker is presented.

2 Introduction

The definition of the term ”correct-by-construction” has permeated and formed
the basis of the discussion and material presented in the CS 3EA3: Soft-
ware Specification and Correctness course. Indeed, this concept of proof-by-
construction declares more of a philosophy under which any product (software
or otherwise) ought to be developed. Moreover, it will be demonstrated that
the use of such a development model is ever more essential when large, multi-
layered and multi-modal systems are under consideration, especially when the
latter are utilised in production within safety critical environments. This latter
point will be additionally illustrated through the examination of a case study
in relation to the implementation of the well-definedness of Guards and Bodies
for the pState verification toolkit.

1

3 Background and Mathematical Preliminaries

3.1 What is Correct-by-construction?

As discussed above, the idea of Correct-by-construction describes a develop-
ment philosophy wherein, given a specific problem, the solution program and its
proof [are] developed hand in hand, [and] with the proof usually leading the way.
[1]. In practise, it may be said that this process consists of the following steps,
in order to derive a solution from any given problem statement : [1]

1. (As succinctly as possible) describe the requirements of the problem
using natural language.

2. Formulate these requirements into a mathematical specification.
This chiefly includes the following steps [2]:

(a) Formalisation of Givens and Requireds presented by the Problem.

(b) Derivation of a corresponding invariant P, and initialise the variables
in order to make it true.

(c) Bridge from the invariant to the post-condition. This involves solving
for B within the statement P ∧ ¬ B ⇒ R.

(d) If ¬ B holds, then nothing more needs to be done; otherwise, a loop
should be constructed to obtain it.

(e) Solve for a bound function bf such that P ∧ B ⇒ bf > 0.

(f) Very importantly , any solution must make progress towards ter-
mination — or else an output may never be returned! — See these
notes by Dr. Jeffery Zucker at McMaster University on ’The Halting
Problem” for further discussion on divergence. [3].

(g) It must also be ensured that the solution upholds the invariant.

3. Convert the specifications into an implementation (ie. program
code .

3.2 Correct-By-Construction vs Other Methods of Devel-
opment

Although not of the all the above steps in Step 2 may be applicable to the
given problem, dependent on the latter’s context and domain, the application of
this paradigm nonetheless brings many advantages when considering the formal
verification of the correctness of any solution. Namely, the provision of
formalised specifications and proof for any implementation enables
for the assertion that this solution satisfies the problem in all aspects
within the relevant domain .

2

3.2.1 Comparison with Test-Driven Development (TDD) Within Vary-
ing Domains

In comparison with other paradigms of development, such as Test-Driven
Development (TDD), which encourages rapid prototyping, and re-factoring
of small ”units” within the system until it satisfies some pre-defined unit test(s),
Correct-By-Construction fosters careful consideration and analysis of the prob-
lem holistically, in both a functional and mathematical manner, prior to the
start of the implementation process.

3.2.2 The Financial Case for Correct-By-Construction

Whilst certainly a TDD-based model may be highly beneficial (and even
desirable!) for certain (smaller) domains of application which prioritise high-
turnover of features and versions over correctness, which do not justify the
financial and resource expenditure required in developing a formal specification,
for larger, more complex systems, the adoption of a proof-first development
model may even reduce expenditure in the longer-term.

This is chiefly due to the fact that for more complex systems containing
multiple different systems operating and interacting under a common interface,
a unit-based development approach will not enable the developer to analyse and
appreciate fully how the interactions between the system affects the behaviour
and run-time of the system as a whole. The latter will introduce potentially
exponential risks for the developer should a component require re-factoring, as
should this component be depended on by (and dependent on) many other sub-
systems, a lack of formal specifications will make tracing a very time-consuming
and labour-intensive process. Indeed, even if the issue is identified, within a
highly-coupled system, the rectification process may involve the revision (and
even rebuilding) of many inter-dependent modules — the latter which may have
either contributed to or inherited the fault.

Thus, it is clear that for large commercial systems containing many hundreds
and even thousands of interwoven and interdependent modules, and for which
stability and robustness of implementation is a highly-important consideration
in deployment, that such rapid-revision development paradigms do not provide
the mathematical certainty to which these products require. Take for instance,
the example of a Mars-bound rover. Should any major, unexpected system
faults occur, the developers are highly limited in the scope of modifications
and fixes which may be issued. Thus, the financial risk of any unaccounted for
behaviours may potentially be in the millions (if not billions!) of dollars.

In contrast, a considered development approach based strictly on adherence to
proven specifications will largely negate many of the risks outlined above, as the
development of these descriptions (and justifications) of behaviour will ensure
that the system(s) will always make progress towards their expected output,

3

while in addition, operating within their expected domains. While these systems
built on specification will may also be susceptible to faults, (for example, due
a discrepancy between the expected and actual operational domains), the latter
are generally much less time-consuming and much more straight-forward to fix:
one only has to refer to the proof, and either expand the scope of the system,
or remedy some disproven assumption.

However, as with all development models, correct-by-construction is not with-
out its shortcomings. Namely, one must be able to ensure that the implementa-
tion of the solution proposed has been constructed with the utmost loyalty to the
specification, as only then will the benefits of a proof-based development model
be fully realised. Indeed, it is often the case that if the specification has not
been followed fully and unequvocially in implementation, that it may introduce
significant challenges during debugging, in the case of an error.

To illustrate the use of the correct-by-construction philosophy, a case study
will be presented and analysed relating to the implementation of verification for
the well-definedness of Guards and Bodies within the pState model-verification
system.

4 Binding Theory to Practise: A Case Study in
pState

To demonstrate the process of correct-by-construction programming as ap-
plied to a large system, a case study will now be explored with regards to the
specification and implementation of a verification system for the well-definedness
of guards and Bodies within pState, as described by Lee and Zhu in [5].

4.1 A Brief Overview of pState

pState is a software toolkit which facilitates for the design, validation and
formal verification of complex systems. A system is chiefly represented through a
hierarchy of statecharts, which, together with probabilistic transitions adjoining
them, represent the behaviour of the modelled system. [5].

• A state is defined in this context as the values of all the variables, includ-
ing input and output, of a system at a specific moment in time. [3].

• A transition is additionally defined as an n-tuple, consisting of an Event
name E, an optional guard g, (the latter which is a boolean expression),
as well as a non-empty set of probabilistic alternatives, [each of which
leads] to a set of optional statements referred to as bodies. [5]. Each
transition must also originate from a Source State, as well as lead to a
Target State, which are the states of the system prior to and right after
taking the aforementioned Transition, respectively.

4

4.1.1 Invariants and Accumulated Invariants

In addition, each State within the System has an associated state invariant
defined, which is described by Lee and Zhu [5] as a condition which must
hold for every incoming transition into a particular state, and such
that every outgoing transition may assume the validity of this condi-
tion. This invariant is represented within pState internally as an expression,
consisting of the grammar <term> | <operator>.

Within the ”correct-by-construction” paradigm, this is analogous to the con-
cept of the (identically-named) invariant, which is defined in its domain as a
property of the data being manipulated that holds irrespective of the number of
repetitions that have been executed. [6]. An invariant in this instance is also
represented by an <Expression>.

Thus, in both instances, an invariant is used to formally describe properties
and conditions which must be met, in order for a program (or system) to be con-
sidered correct in relation to its defined requirements. Similarly, this condition
is also expressed in the form of an Expression. This is an unsurprising notion,
however, as the pState implementation under study facilitates in the modelling
of systems using correct-by-construction programming.

However, as pState is a hierarchy of states (as stated above), any state within
the hierarchy must both inherit the conditions of its ancestor states, as well
as itself be a combination of the conditions of its child states. [5]. Therefore,
Lee and Zhu introduces the concept of an accumulated invariant , which is a
conjunction of:

• Invariants from all the ancestor states of the current State.

• Invariants from all states which form the closure of the current State.

• Invariants from all the child states of the current State.

As part of the state hierarchy, there additionally exists a root state at the
top, whose invariant will always be true.

4.2 Well-Definedness of Guards and Bodies

As Lee and Zhu in [5] set out to specifically solve the problem of the verifi-
cation of Guards and Bodies withinpState, within the conditions of correctness
(or invariant) as defined with any system modelled in pState, it must be estab-
lished what these invariants are, in order to be able to derive and assert the
correctness of any implementation in code.

5

Thus, Lee and Zhu define well-definedness of an expression or statement to
be true ”if and only if it does not violate any of the operational conditions and
constraints which may be imposed on it by the components of the system from
which it is derived (or a child of”) [5]. As this clearly reflects the definition of the
invariant as established in the previous section, the solution for the verification
of a Guard or Body must therefore ensure that a Guard and/or Body does not
violate the invariants established on any components of the system of which it
is a part of.

In order to determine this above condition, recall that a Guard is an optional
boolean expression which forms one component of an n-tuple Transition. This
is illustrated below in the components of a Transition, as depicted in Figure 1.

Figure 1: The components of a Transition in pState. Image Credit: [5]

More specifically, the Guard is evaluated in pState on the occurrence of the
Event on the Transition to which it belongs, in order to determine if the Tran-
sition may be taken.

Similarly, a Body is also a component in the n-tuple of a Transition, which
are optional statements which are executed as its associated Transition is taken
from the latter’s Source and Target States (Refer to Figure 1 above).

Notice that as both the Guards and the Bodies within a system are defined
as a component of a Transition, then from above, it must follow that any Guard
or Body must satisfy (at least some) portion of the invariant established on its
hosting Transition (It will be discussed as to why it may not be required to
satisfy the entire invariant of the Transition shortly). Thus, an examination of
the notion and implementation of the well-definedness of Transitions is in order.

4.2.1 Well-Definedness of Transitions

Lee and Zhu in [5] defines the invariant of a Transition to be definable by the
Hoare Triple {P} T {Q}, where:

6

1. P is the pre-condition — the conjunction of (i) the accumulated in-
variant in the Source States(s) of the Transition, along with (ii) the
guard, the latter which must hold initially prior to the traversing of any
Transition.

2. T is the Transition trigger, in this case the Event. Should Event occur
and the Transition be taken (assuming that the Guard holds), then any
actions which occur in the Bodies of the Transition are also performed in
T.

3. Q is the post-condition: This is the accumulated invariant of the Target
State(s). If were not the case, then the Transition would never be able to
be taken without invalidating the correctness of the system as a whole.

Thus, it can be said that a Transition is well-defined if it satisfies this above
Hoare Triple.

4.2.2 An Extension to the Well-Definedness of Guards

By the definition for the well-definedness of Transitions given in the previous
section, it can be reasoned that in the context of the well-definedness for the
associated Guard , the pre-condition P established in this former definition
should hold. This is as the system must be both: (i) in the Source State of
the Transition to which the guard belongs (and thus, must satisfy all of the
conditions placed on it); as well as (ii) satisfy the guard condition (or else the
Transition will never be taken and the guard will be functionally useless).

However, it is interesting to note that the post-condition does not have to hold
when considering the well-definedness of Guards. This is as the accumulated
invariant of the Target State do not have to be satisfied, as it could be the
case that the conditions for ”truthifying” the Guard may not exist any longer
after the traversal of the Transition.

Thus, as Lee and Zhu stipulate, the invariant (or condition) which must hold
to ensure the well-definedness of Guards is: accumulated invariant of the
Source State of its associated Transition ∧ Guard .

4.2.3 Another Extension to the Well-Definedness of Bodies

With consideration to the conditions for establishing the well-definedness of
Guards above and the definition of the Bodies of a Transition, the latter which
are carried out as its respective Transition is being taken to advance the System
from its Source State to its Target State, it can be inferred that all the conditions
established for the well-definedness of the Guard must hold. This is due to the
fact that if the Guard of its’ Host Transition is not satisfiable, then it cannot
be the case that this latter Transition will ever be traversed. If this is the case,
then it follows that the Body will never be executed as well.

7

Contrastingly, one major difference may be observed when in the correct-
ness of Bodies which are not present in Guards: Namely, the Accumulated
Invariant of the Target State of its associated Transition must also
hold!

To establish why this is the case, it can be noticed that as the Bodies are
executed as the system transitions between the Source State of its affiliated
Transition to Target State. Should the Target State’s invariant no longer hold,
then the Transition itself cannot make progress towards this Target State, with-
out invalidating the invariant – and thus correctness of the entire system. It can
be observed that this effect is amplified by the hierarchical nature of a pState
system, in that modifications impacting the status of an invariant — (or the
negation of) — will always affect (”distribute to”) the status of the invariants
which are declared on either it’s ancestor and or child states, as well. (And the
propagation of this ”invalidation” of invariants continues to spread through the
state hierarchy of the entire system.)

Once again, as Lee and Zhu states, the invariant on a Body must then consist
of: accumulated invariant of the Source State of its associated Tran-
sition ∧ Bod(ies) ∧ accumulated invariant of the Target State of its
associated Transition .

4.3 Ready for Implementation

Having defined:

• The pre-condition to be the existence of a Guard or Body on a Tran-
sition leaving a State;

• The invariants which must hold for Guards and Bodies respectively,
in order for the former to be classified as being well-defined ;

• The conjunction of many (accumulated invariants) to make progress
towards obtaining a verification result; and

• The post-condition to be the result indicating the well-definedness of a
Guard and/or Body

the specification now contains the required information to be implemented
in code, which will be discussed in the following section.

4.4 Implementation Details

To benefit the understanding of the mapping of the various components of the
formal specification to the Program, the Program will be discussed in relation
to the various components indicated above. Zhu and Lee [5] indicated in their
implementation that due to a technical limitation with a solver which is used to

8

verify the satisifability of first-order the predicate logic of which invariants are
composited as, only the verification of the well-definedness of Guards is currently
effective in implementation. The program for Bodies, however, is expected to
be similar, in accordance with the variations as indicated in the mathematical
specification in the previous sections.

4.4.1 Well-Definedness for Guards

1. Pre-Condition: For the selected Transition, check to see if there is an
associated Guard. If not, the Guard is assumed to be true, as per pState
convention.

2. Construction of the Invariant:

(a) Firstly, the Accumulated Invariant of the Source State is
derived, and progress to made towards the post-condition:
The Source State of the selected Transition is retrieved. The Invari-
ants of all of it’s ancestor States, which are composited to form the
Accumulated Invariant, is recursively retrieved and placed in a list.
Then, iterate through the list to format it for use in the YICES Satisi-
fiability Modulo Theories (SMT) solver (*outside of the scope of this
report– see [5] for further details). This invariant is then parsed into
suitable YICES syntax and sent off to YICES (through its API) to
be verified for satisifiability. The conjunction of the satisifability of
each Invariant within the Accumulated Invariant indicates whether
the entire Accumulated Invariant is satisifiable.

(b) Then, the Guard is retrieved and conjuncted with the result
from the above step to check for satisifiability.

3. We have reached the post-condition As the well-definedness of Guards
has been successfully verified and returned in accordance with the math-
ematical specification indicated in the previous section, it may be said
that the program along with its specification is a theorem which
expresses that the program satisfies its specification . [1]

4.5 Conclusion

As the exercise in algorithm derivation examined in this paper with regards
to the well-definedness of Guards and Bodies within the pState software has
strongly asserted, the design and implementation of solutions which solve prob-
lems within larger and more complex systems is a highly concise task.

Whilst it has been established that there are cases in which such a stringent
development process as dictated by the ”correct-by-construction” philosophy is
not warranted (and may even prove to be a hindrance to effective solutions!)—
in the case of more complex, and interconnected systems, consisting with many

9

modules, the effectiveness of this approach is seldom under question. Indeed,
for such systems in which operation will be conducted in safety-critical environ-
ment, and wherein robustness is prized above all else, the use of a proof-first
development model, while adding to the initial production time to a usable pro-
totype, brings long-term benefits far outweighing the burden brought on by the
increased initial investment.

Inasmuch as ”correct-by-construction” allows for the quicker detection, trac-
ing and effective remedy of errors in complex systems, when conducted to a
concise enough degree, it achieves something even more remarkable. Namely, it
allows scientists to send a billion-dollar rover a billion kilometers into the depths
of unexplored space, turn it on, and with confidence, know precisely when and
where it will ”call home”.

References

[1] M. Al-hassy, Course Quiz 1 Solutions, Topic: ”The Main Purpose of This
Class” CS 3EA3, Department of Computing and Software, McMaster Uni-
versity, Hamilton, Canada, 15 January 2017.

[2] M. Al-hassy, Course Theorem Sheet, Topic: ”Program Construction The-
orem List” CS 3EA3, Department of Computing and Software, McMaster
University, Hamilton, Canada, 10 April 2017.

[3] J. Zucker, Class Lecture, Topic: ”The Halting Problem; The Universal Func-
tion Theorem” CS 3TC3, Department of Computing and Software, McMas-
ter University, Hamilton, Canada, March 2017.

[4] D. Janzen, Class Lecture, Topic: ”Software Construction: What is Test-
Driven Development” CSC 405, Computer Science, California Polytechnic
State University, San Luis Obispo, United States, Winter Term 2010.

[5] J. Lee, J. Zhu, Verifying Well-Definedness of Guards and Bodies in pState,
Unpublished technical report for the Department of Computing and Soft-
ware, McMaster University, Hamilton, Canada, 13 April 2017.

[6] R. Backhouse, Program Construction: Calculating Implementations from
Specifications. Chichester, United Kingdom: John Wiley & Sons, Ltd, 2003.

10

