
CAS751: IT Metods in Trustworthy ML Homework 2 - Due: 11/3/2024

Foundations of Differential Privacy
Instructor: Shahab Asoodeh

1. (25 points) Let M be a mechanism, and MD and MD′ be its output distributions when running on
datasets D and D′, respectively. Let also fD and fD′ be their corresponding densities. Define the
following random variable

ZD,D′ := log
fD(Z)

fD′(Z)
, where Z ∼ MD.

This random variable is typically referred to as privacy loss random variable.

(a) Prove that M is ε-DP if and only if

Pr(|ZD,D′ | > ε) = 0,

for any pair of neighboring datasets D and D′.

(b) We say that M is (ε, δ)-DP for ε ≥ 0 and δ ∈ [0, 1] if Eeε(MD‖MD′) ≤ δ for all neighboring datasets
D and D′. Prove that M is (ε, δ)-DP if

Pr(ZD,D′ > ε) ≤ δ,

for any pair of neighboring datasets D and D′.

(c) (Bonus: 10 points) Derive an equivalent expression for (ε, δ)-DP in terms of the privacy loss
random variables ZD,D′ . That is, how do you change Part (b) to ensure it is if and only if ?

2. (25 points) Let D = {x1, . . . , xn} ∈ {0, 1}n be a given dataset and suppose that we want to answer
a count query: q(D) =

∑n
i=1 xi. In class, we learned the Laplace mechanism: simply add Laplace

noise with scale parameter 1
ε . But what if we did not have access to Laplace noise? Suppose N is

a continuous uniform random variable drawn from the interval [− 3
ε ,

3
ε ] for some ε > 0. Consider the

following mechanism
ZD = q(D) +N.

Determine the privacy guarantee of this mechanism.

3. (25 points) Consider the following mechanisms M that takes a dataset D = {x1, . . . , xn} ∈ [0, 1]n and
returns an estimate of the mean q(D) = (

∑n
i=1 xi)/n. We let Lap(0, b) denote the Laplace distribution

with mean 0 and scale parameter b.

(1) ZD = [q(D) + Z]10, for Z ∼ Lap(0, 2/n), where for real numbers y and r ≤ s, [y]sr denotes the
“clamping” function:

[y]sr =


r, if y < r,

y, if r ≤ y ≤ s,
s, if y > s.

(2) ZD = q(D) + [Z]1−1, for Z ∼ Lap(0, 2/n).

(3)

ZD =

{
1, with probability q(D),

0, with probability 1− q(D).
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(4) ZD = Z where Z has probability density function fZ given as follows:

fZ(z) =

{
e−n|z−q(D)|/10∫ 1

0
e−n|y−q(D)|/10dy

, if z ∈ [0, 1],

0, if z /∈ [0, 1].

(This is an instantiation of the so-called “exponential mechanism”.)

(a) Which of the above mechanisms meet the definition of ε-DP? For what values of ε are they ε-DP
(possibly as a function of n)? Note that we are treating n as public knowledge, so it is not a
privacy violation to reveal n.

(b) Consider those mechanisms that satisfy ε-DP. Describe how you would modify these algorithms
to have a tunable privacy parameter ε when data domain becomes [a, b] (rather than [0, 1]).

4. (Bonus 10 points) Suppose M is a mechanism satisfying TV(MD,MD′) ≤ δ for all neighboring
datasets D,D′, where MD denotes the output distributions of M when running dataset D. In this
problem, we wish to show that, depending on the setting of δ, such a definition either does not allow
for any useful computations or does not provide sufficient privacy protections. Let n be the size of all
possible datasets.

(a) δ ≤ 1
2n . Use properties of total variation to show that TV(MA,MB) ≤ 1

2 for all (non-neighboring)
datasets A and B. This implies that with probability 1

2 , the output of the mechanism is indepen-
dent of the dataset. Thus, the mechanism does not convey useful information about datasets.

(b) δ ≥ 1
2n . Argue that in this case, the following trivial mechanism satisfies the above constraint:

“with probability 1
2 , the mechanism outputs a random row of the dataset”. Since this mechanism

is brazenly non-private, the above constraint is a not valid definition for privacy.
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