CAS751: IT Metods in Trustworthy ML Homework 2 - Due: 11/3/2024

Foundations of Differential Privacy
Instructor: Shahab Asoodeh

1. (25 points) Let M be a mechanism, and Mp and Mp: be its output distributions when running on
datasets D and D’, respectively. Let also fp and fpr be their corresponding densities. Define the
following random variable

Z
Zp,p =log ]{5/((2))’ where Z ~ Mp.

This random variable is typically referred to as privacy loss random variable.
(a) Prove that M is e-DP if and only if
PF(‘ZD,D/‘ > 5) = O7

for any pair of neighboring datasets D and D’.

(b) We say that M is (g,9)-DP fore > 0 and ¢ € [0,1] if Ecc(Mp||Mp/) < § for all neighboring datasets
D and D’. Prove that M is (e, §)-DP if

PF(ZD’D/ > 5) < (5,

for any pair of neighboring datasets D and D’.

(c) (Bonus: 10 points) Derive an equivalent expression for (g,d)-DP in terms of the privacy loss
random variables Zp p-. That is, how do you change Part (b) to ensure it is if and only if?

2. (25 points) Let D = {x1,...,2,} € {0,1}" be a given dataset and suppose that we want to answer
a count query: ¢(D) = "  x;. In class, we learned the Laplace mechanism: simply add Laplace

noise with scale parameter % But what if we did not have access to Laplace noise? Suppose N is

a continuous uniform random variable drawn from the interval [—g 3] for some £ > 0. Consider the

following mechanism :
Zp =q(D)+ N.

Determine the privacy guarantee of this mechanism.

3. (25 points) Consider the following mechanisms M that takes a dataset D = {x1,...,2,} € [0,1]™ and
returns an estimate of the mean ¢(D) = (Y7, z;)/n. We let Lap(0, b) denote the Laplace distribution
with mean 0 and scale parameter b.

(1) Zp = [q¢(D) + Z]§, for Z ~ Lap(0,2/n), where for real numbers y and r < s, [y]¢ denotes the
“clamping” function:
r, ify<m,
ylr =4y ifr<y<s,
s, ify>s.

(2) Zp =q(D) + [Z]-, for Z ~ Lap(0,2/n).
(3)

7 1, with probability ¢(D),
P70, with probability 1 — ¢(D).



(4) Zp = Z where Z has probability density function fz given as follows:

e—nlz—a(D)|/10 .
Fz(2) = { o e7rlvmaIm0dy’ if 2 € [0,1],
0, if 2 ¢ [0, 1].

(This is an instantiation of the so-called “exponential mechanism”.)

(a) Which of the above mechanisms meet the definition of e-DP? For what values of € are they e-DP
(possibly as a function of n)? Note that we are treating n as public knowledge, so it is not a
privacy violation to reveal n.

(b) Counsider those mechanisms that satisfy e-DP. Describe how you would modify these algorithms
to have a tunable privacy parameter ¢ when data domain becomes [a,b] (rather than [0, 1]).

4. (Bonus 10 points) Suppose M is a mechanism satisfying TV(Mp,Mp,) < § for all neighboring
datasets D, D', where Mp denotes the output distributions of M when running dataset D. In this
problem, we wish to show that, depending on the setting of §, such a definition either does not allow
for any useful computations or does not provide sufficient privacy protections. Let n be the size of all
possible datasets.

(a) 6 < 5-. Use properties of total variation to show that TV(M4,Mp) < 3 for all (non-neighboring)

datasets A and B. This implies that with probability %, the output of the mechanism is indepen-
dent of the dataset. Thus, the mechanism does not convey useful information about datasets.

(b) 6 > ﬁ Argue that in this case, the following trivial mechanism satisfies the above constraint:
“with probability %, the mechanism outputs a random row of the dataset”. Since this mechanism
is brazenly non-private, the above constraint is a not valid definition for privacy.
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