
CAS751: IT Metods in Trustworthy ML Homework 4 - Due: 08/12/2024

Differential Privacy and Machine Learning
Instructor: Shahab Asoodeh

1. (30 points) Let the dataset D = {(x1, y1), . . . , (xn, yn)} be given, where xi and yi for i ∈ {1, 2, . . . , n}
represent feature vectors and labels, respectively. Consider the typical minimization problem

min
θ

n∑
i=1

`(θ, (xi, yi)),

where `(θ, (xi, yi)) quantifies the loss associated with representing datapoint (xi, yi) with the model
parameter θ ∈ Rd.

• Describe gradient descent and stochastic gradient descent (SGD) algorithms for solving this min-
imization problem.

• Let qtD denote the query at the tth iteration of SGD algorithm. Considering the gradient clipping
constant C, we can describe qtD as:

qtD =

{
n∇`(θt−1, (xi, yi)) if ‖∇`(θt−1, (xi, yi))‖1 ≤ C
nC ∇`(θt−1,(xi,yi))
‖∇`(θt−1,(xi,yi))‖1 if ‖∇`(θt−1, (xi, yi))‖1 > C.

Notice that this is the `1-norm clipping (as opposed to `2-norm clipping discussed in class). Follow
the three steps given in lecture to characterize the privacy guarantee of SGD algorithm when we
add Laplace noise in each iteration.

2. (40 points.) Given a closed bounded (i.e., compact) set C ⊂ Rd, define the projection operator ΠC :
Rd → C by

ΠC(a) = arg min
b∈C

‖a− b‖2.

With this definition at hand, let’s define the following variant of SGD algorithm (known as projected
noisy SGD, or PNSGD): Let the dataset D = {x1, . . . , xn} and an arbitrary distribution µ0 on C be
given. The algorithm initiates with Y0 ∼ µ0 and iterates as follows:

Yt = ΠC(Yt−1 − η[∇`(Yt−1, xt) +Nt]),

to generate Y1, Y2, . . . , Yn, where Nt ∼ N (0, σ2Id). Assume that the loss function `(·, x) is L-Lipschitz
for any x. This algorithm is detailed in the following:

Algorithm 1 PNSGD Algorithm

Require: Dataset D = {x1, . . . , xn}, learning rate η > 0, initial point Y0 ∼ µ0 and iid copies Nt of N (0, σ2Id)
for t ∈ {1, . . . , n} do
Yt = ΠC(Yt−1 − η[∇`(Yt−1, xt) +Nt])

end for
return Yn

There are two main differences between this algorithm and the one we saw in the class:

• Here, the algorithm goes over the dataset sequentially with batch size = 1. That is, each datapoint
contributes exactly once. Therefore, the number of iteration is equal to the size of the dataset;
T = n.
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• All intermediate parameters Y1, Y2, . . . , Yn−1 are assumed to be hidden. The algorithm releases
only Yn.

Notice that the tth iteration of this algorithm can be described as the composition of three operations:
1. the function ψt(y) := y − η∇`(y, xt), 2. Gaussian noise addition with variance N (0, η2σ2Id), and 3.
projection operator ΠC . Thus, the PNSGD algorithm can be viewed as the concatenation of n channels
K1, . . . ,Kn as depicted in Fig. 1.

Figure 1: PNSGD algorithm running on dataset D

Let µt be the distribution of Yt (or equivalently the output distribution of Kt, which is in fact the input
distribution of Kt+1).

(a) Consider a neighboring dataset D′ = {x′1, x2, . . . , xn}. Similar as before, PNSGD algorithm for
this dataset can be viewed as the concatenation of n channels K′1,K2 . . . ,Kn as depicted in Fig. 2,
where ψ′1(y) := y − η∇`(y, x′1).

Figure 2: PNSGD algorithm running on dataset D′

Since only Yn is released, differential privacy guarantee is determined by deriving Eeε(µn‖µ′n)
where µ′n is the distribution of Y ′n. Use DPI and the contraction coefficient under hockey-stick
divergence to upper bound Eeε(µn‖µ′n).

*You may need the following*: If the loss function y 7→ `(y, x) is L-Lipschitz for any x, then it
can be shown that ||ψi(y1)−ψi(y2)||2 ≤ ‖C‖2 + ηL for any y1, y2 ∈ C, where ‖C‖2 is the diameter
of C. (No need to prove it, but feel free to do so!)

(b) Now consider another neighboring dataset D′ = {x1, x2, . . . , xn−2, x′n−1, xn}. Again use DPI and
the contraction coefficient under hockey-stick divergence to upper bound Eeε(µn‖µ′n).

(c) (Bonus. 15pt) As you can see in you answers to Parts (a) and (b), Eeε(µn‖µ′n) depends on
the index in which D and D′ differ. As such, different individuals in the dataset are promised
different levels of privacy (which is not what you expect from an appropriate privacy-preserving
mechanism!). How would you modify the algorithm to resolve this issue?

3. (30 points.)

(a) Prove that for any pair of distributions P and Q and any γ ≥ 1, we have Eγ(P‖Q) ≥ γTV(P,Q)+
1− γ.
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(b) Let M be an ε-LDP mechanism, i.e., Eeε(Mx‖Mx′) = 0 for any possible input x and x′, where Mx

is the output distribution of the mechanism M when the input is x. Prove that TV(Mx,Mx′) ≤
1− e−ε.

(c) Prove that
M is ε-LDP ⇐⇒ ηeε(M) = 0.

(Recall that ηγ(M) denotes the contraction coefficient of M under the hockey-stick divergence.)

(d) Prove that
M is ε-LDP =⇒ ηTV(M) ≤ 1− e−ε.
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