How to implement DP ?

Laplace mechanism:

Suppose q is a vector:
$$q_0 = (q_0, q_0, ---, q_0) \in \mathbb{R}^k$$

$$q \longrightarrow Z = q_0 + N$$

$$N = (N', \dots, N'')$$

$$Z_0' \sim L(q_0 + \mu', b)$$
where
$$N \sim L(\mu, b)$$
iid

what values of µ & b make this mechanism & Dp? * Mu shouldn't play any role in privary ! 90' - Z = 90'+N Z', ~ L(q', +\mu,b) Because \mu can be absorbed by the query! Note that Hs divergence between L(a,b), L(a,b) is a function of 6 & 1a-a1. thus, when computing E(L(qi+\u03b4,6) | L(qi+\u03b4,6)),

we can assume $\mu = 0$

* Pact: For mechanisms with additive noise the mean of noise can be considered to be Zero. What values of b makes this mechanism EDp ? anestion. 9: # individuals in Example 1: Example 2: "one dimensional query" D, younger than 40 11 one-dimensional 9> What's the HIV Statum query " with covid positive of the highest-Paia Natus. professor at Mac?

Since the second group is much more targeted toward one particular individual in dataset, it must be harden to make it Dp than the first one.

= Noite parameter (i.e., b) Should depend on queries.

Definition: For any
$$q$$
; we define query is with the query is with Δq : = Sup $\|q_D - q_D\|$ one individual.

Let i get back to Laplace mechanism:
$$(q_{D}^{i}, -, q_{D}^{i})$$

$$Z = q_{D}^{i} + (N, -, N^{k})$$
Where N^{i} and $Z(0, b)$
thus, $Z_{D}^{i} \sim Z(q_{D}^{i}, b)$

thun, Z, ~ Z(91, 6)

To show this mechanism is SIDP, we need to show: $\frac{M_{O}(A)}{M_{O}(A)} \leq e^{\Sigma}$ Fevent A CRK M(A) is the distribution that Z takes value Re Call, in A SIRK. Since Zon Llquib) & lince each M (A) = $\begin{cases} \frac{1}{2b} & \frac{1}{2b} = \frac{1}{2b} =$ 2 pdf of Z at point (x'-1x')
which is product of pdf of Z'
at point x'

Similarly:

$$A = \frac{2|x-q_0|}{b} dx - dx^k$$

My (A)= $\frac{2|x-q_0|}{b}$

We here do to show that

$$A = \frac{2|x-q_0|}{b} dx - dx^k$$

Where $A = \frac{2|x-q_0|}{b} dx - dx^k$

$$A = \frac{2|x-q_0|}{b} dx - dx^k$$

$$A = \frac{2|x-q_0|}{b} dx - dx^k$$

For any event A in R^k .

Note that if show that - Z 124:- 901 < e > x = (x', , x') EIR (**) - 2 121- 901 (+) follows imme diately. Jaffarda Se VACR we need to show (* +). Let look at it LHS: Z 121-901-121-901 Because: Since Fixice gives

Standa & Se. guilda - Z |x - 90 | - 2 121- 9p = e f gw.dx

Triangle inequality fm.dx <e def of f-sensitivity b gens de 1x+51 & 1x1+151 7 P 50 need w

17

Theorem. Let g be a vector-valued query of dimension to then the following mechanism: $Z_{D} = g_{D} + (N^{2} - N^{2})$ $z_{D} = D + (N^{2} - N^{2})$ is $z_{D} = D + N^{2}$.

Sonity check: High sensitivity of for a guery indicates that it targets one individual, rather than aggregate. So it d intuitively be harder to release it Privately. This is reflected in the fact that the

hoise variance increases with the sensitivity.

Larger 27 => Larger noise variance required for E-DP

Example: Suppose we have k queries of form: f' = # individuals in dataset D having disease i

Each query is integer-valued.

Counting queries

How to release the ont put of these k queries with E_DP gaurantee?

 $(9_D, 9_D^2 - ..., 9_D^4) + (N' - ..., N')$ What is 4-sensitivity 2 $N' \sim L(0, \Delta_{\underline{z}}^{q})$

A = Sup [1 q i q i] & 1 But this bound is acheivable be cause

Prob we can construct Dad such that q i = q i + 1

 $Z_{D} = q_{D} + (N'_{1} - N'_{1})$ $N'_{1} Z(0, \underline{K})$ is E-DP. thm, we need to add wife with Per-coordinate Variance of 2 to make this gray S-Dp. Example: Let q'.-. qk be k queries of form. gi = # individual, with some proporties Size of dataset in q whati D4? $\Delta^{+} = \frac{k}{n}$ proportion gueries

Since this query has smaller & rensitivity, its easier to be privetized than the gravious guary.

De theorer says No LLO, K, nE)

we talked about privey guarantee of Laplace mechanism.

But privay makes sense only when discussing it in the privay wtility trade-off

To characterize this trade_off, we need to formulate utility.

Utility of Laplace mechanism

 $Z_0 = q_0 + N_2$ L(0, $\frac{\Delta^q}{z}$) (as apposed to 4-sensitivity) Lett begin with Scalar case.

we are interested in how big the gap between input 2 output of the mechanism is.

option: $E[] = E[]N1] = \Delta^{+}$ This definition of whility is intuitive prove this either directly or by invoking

but doesn't offer any flexibility. the fact that: [Z~ Lloib) then 121~ EXP(1/6)

Option 2: Pr (Z - 90 (> t) for some t>0.

* we wish the output of the mechanism Zo to with high probability

be within t of the input 90%. Toking t to be 5,

this means 9-5 < Z < 9-5

Recall that
we phoned:

For ZnZ(0,b), we have

Pr(1217tb) = e

This gives a precise formulation for the whity-privacy trade-off.

To have E-DP for a scalar gueng with sensitivity Δ^9 ,

we necessarily have:

with probability e D.

Given this trade-off we can answer questions like this:

What's the best privary offered by Laplace mechanism for a query

with D9=1, if I tolerate

Utility for Vector-Valued Laplace

consider the query q = (q', -1, q''), & the vector-valued captace

mechanim

 $Z_0 = Q_0 + N$ where N = (N', -, N'')

8 each component

Nin Pla, Ag

As before, we define utility as:

me cond compare this probability exactly to the

unfortunately, we can't compute this probability exactly. Instead we characterize an upper-bound on it.

Theorem. For any too, we have:
$$\frac{-t \epsilon}{\kappa A^{q}}$$

$$\Pr(||Z-q_{0}|| \ge t) \le \kappa \epsilon$$

Proof. we can write:

union bound

R

Pr(IN,1)t)

A) before
$$\frac{K}{2} = \frac{t \cdot \epsilon}{\Delta_i^2}$$

or equivalently:
$$-\frac{t}{\kappa A^{q}}$$

$$||z-q_{b}|| \geq t \leq \kappa e$$

sometimes, this whiley is equivalently expressed as

While this is not a precise privacy whity trade-off, it has been used in practice to find achievable a given a desired whility constraint.

1_ Post- Processing:

Can adversary come up with an algorithm/ processor to violate privacy of M? In other words, can M be EDP with E> E? the answer is NO! [Assuming adversarys algorithm Only operates on the output of M & doesn't have access of dataset] Let Zo & Zo' be outputs of M when running Mhy > data sets DND', & let You You be the output of the adversary i algorithm.

Let $Z_0 \sim M_0$ & $Z_0' \sim M_0'$ $V_0 \sim M_0$ & $Z_0' \sim M_0'$ Since M is s-Dp, we have E(M|IM) = 0 V PND'

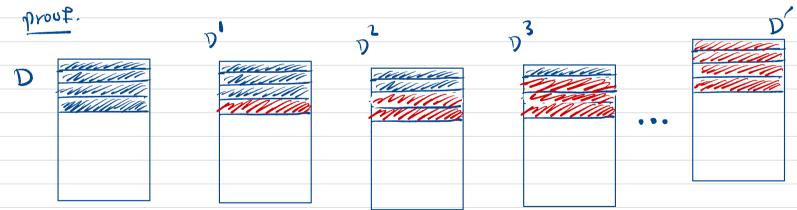
then, according to DPI:

= M is 2-DP

2_ Group Privacy: Does E-DP Provide Privacy to a group of individuals as well?

In other words, can we ensure that a group enjoys a plausible demiability?

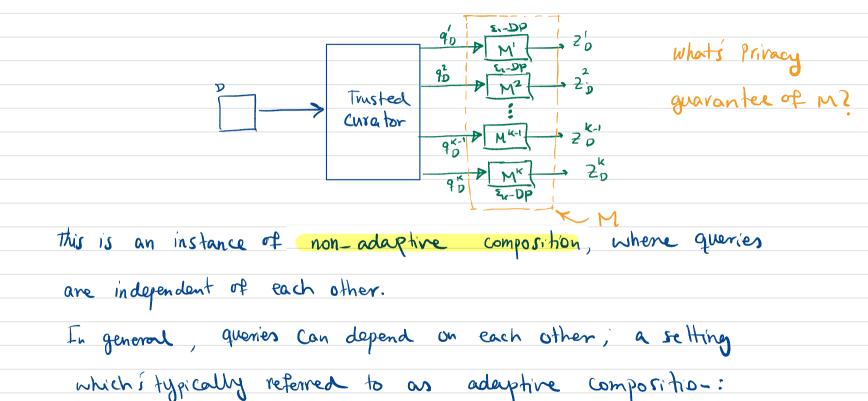
theorem. Let M be an s-Dp mechanism. Then for any D & D' that differ in K entries, we have: $Pr(Z_b \in E) \leq Pr(Z_b, CE)$ for any event E.

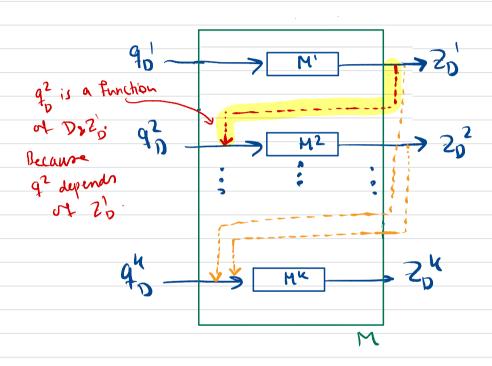


R(Z, CE) < e R(Z, CE) Since DND < e Pr (2,2 EE) Since DND2 (k-) E 5 e | Pr (Zk-1 EE) since D ~ D K-1 4 e Pr (Z CE) Since D~D Composition:

Let M be 2:-DP, & we use them to answer Several

queries. What's the overal privacy guarantee?





* If all mechanisms are the same, then their composition is usually

called K-fold composition

Theorem (Bosic composition). If M'is Si-Dp for it 41,2..., kz.

Then, the composition of M'..., M's is Zsi-Dp.

Proof. We give the proof only for the non-adaptive setting. The proof for the adaptive one is a bit long.

Let Z' Z's be the outputs of M'... M's respectively.

Thus, the output of the composition mechanism is $(Z_0, --, Z_p^k)$.
Let's find the Polf of the output when using dataset D

2 D.

From
$$\vec{x}$$
 = \vec{x} \vec{x}

Privacy concept.

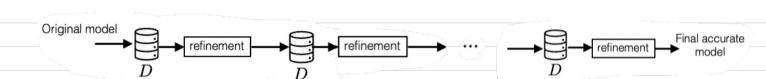
designing private ML. In such cases, an important concept is

Answering k non-adaptive queries

Vector-valued Laplace: 90 - MI ZD Z = (90,--, 90)+ (N'--, N") $f_D - \overline{M^2} - Z_D^2$ • • • id ~ florb) *This mechanism is E-DP 9h - [MK - 2h if $b = \frac{\Delta_c^4}{c}$. Privary budget = E Suppose each q' is counting. of each mechanism is &-Dp, than $\Rightarrow D \qquad \Delta^{q} = K$ basic compo =0 KE-DP Thus, per-component noise we want each mechanism to be & pp is Lo, K). Each mechanism adds 2(0, K/E)

Privary budget

Any ML training algorithm can be viewed as an iterative process, in each of iteration dataset is accessed once



To make this algorithm differentially private, we need to pass any computation on dataset through a mechanism:

Original model

D

refinement

D

refinement

Thus, all training algorithm can be thought of as adaptive composition.

Et each mechanism M' is E-DP, then according to basic composition, this iterative algorithm is TE-DP, after T number of iterations.

Which is typically termed privacy budget.

Given the privacy budget Σ^* for the above algorithm, we have from basic composition: $\sum_{i=1}^{K} \Sigma_i = \Sigma^*$

If all mechanisms are the same (ray s-Dp), then we must have

 $\Sigma = \frac{\Sigma^*}{T}$

Now, we need to design mechanism for each iteration that is Σ^* DP.

Remark: If we want to make an algorithm to be, say, 5-Dp, then each iteration should be Ξ -Dp. The issue is that T is often very large (\approx 10°). Thus, each iteration must be extremely private, or equivalently, the noise is dominant \Longrightarrow the algorithm can't be accurate!

This is caused because of basic composition, & would be improved if we can come up with a better result than basic composition.

Question: Is basic composition Optimal? That is, is there an E-DP mechanism M such that its k-fold

an Σ -DP mechanism M such that its K-told composition is Σ^* -DP, where $\Sigma^* < K\Sigma^?$

Example: Consider k quaries q'.-. 9k each of which is Counting

Basic composition is optimal 1

" so sentivity = 1 1

Suppose D & D' are neighboring &
$$q_D^3 = q_D^3$$
, $+1 \text{ Y}_J^3$.

Let Z_D & Z_D be the k-dimensional aniport of a k-fold composition of a Laplace mechanism & let f & f_{Z_D} denote their pdf. For any $x \in IR^k$

$$f_{Z_D}(x) = \begin{cases} x & x \in IX \\ x & x \in IX \\ x & x \in IX \end{cases} = f_{Z_D}(x) - f_{Z_D}(x) = f_{Z_D}(x)$$

Let
$$x = (a, a, -, a) \in \mathbb{R}^k$$
 where $a > q^j$ $\forall j$.

thus:

$$\frac{f_{20}(a)}{f_{20}(a)} = \prod_{n=0}^{\infty} e^{\sum_{n=0}^{\infty} (a_{n}^{n} - a_{n}^{n})} = e^{\sum_{n=0}^{\infty} (a_{n}^{n} - a_{n}^{n})} = e^{\sum_{n=0}^{\infty} (a_{n}^{n} - a_{n}^{n})}$$

Thus, the vario of Polf is exactly equal to e^{k2} , & hence there exist at least one event E such that $\frac{lr(2pEE)}{pr(2pEE)} = \frac{ks}{e}$,

implying basic composition can't be improved in general.

[Note that this doesn't mean that basic composition can I be improved for a particular mechanism]

this begs the question:

How can we integrate DP into accurate M2

How can we integrate DP into accurate M2?

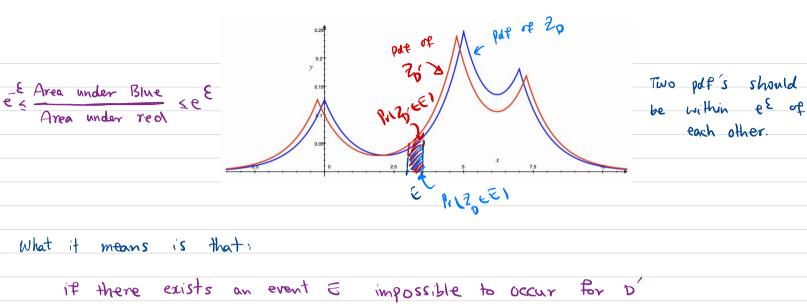
Pure DP turns out to be very stringent, meaning its

too Strong to be applicable in practice!

Recall that:

A mechanism M is E-DP it

 $e^{-\epsilon} < \frac{\ln(20 \in E)}{\ln(21 \in E)} < e^{\epsilon}$ for any possible event E



then, it has to be impossible for D too.

This is very stringent. Why?

Suppose there exist E: P(\(\frac{7}{2}\) \(\infty\) \(\frac{7}{2}\) \(\infty\) \(\frac{7}{2}\) \(\infty\) \(\i

the definition of E-Dp is unpractically stringent