
How to train Private models ?
there are 3 broad approaches for Solving ERM with privacy

guarantee :

1 Output Perturbation : Suppose we have an algorithm that

approximate o*

P. -For
To make of private , we can add voice

to it
of (N !-e

tod,



Potential drawback : Sensitivity of O
* might be large !

*
In SVM

,
OP is close to a datapoint I support rector,

so changing that datapoint might drastically change
o* - highsensitivity.

Potential solution : Appropriate regularization & 110, 612:) +
↑ to

&

Resulting of might have regularizer

reasonable sensitivity (under some restrictive
assumption)



2- Objective perturbation : Instead of minimizing ICCO
, whitis

we minimize

Gaussian
random

2 rector.

Zeawiti) + < N ,0 (*)

It was shown that the optimizer for this objective can be

thought of as the private version of the optimizer of original ERM.

Drawback : All early works on objective perturbation required the
-

optimization problem to find exact minimum for the
-

objective function (*) :
this turns out to be

very

unrealistic as most popular optimizers are iterative ,



that is they only approximate the optimum value.

* there areseveral recent works that relax this

requirement , showing objective perturbation can be

quite practical .

3- Gradient Perturbation : This is by far the most popular approach

which is partially inspired by the fact that gradient-

based iterative algorithms are ubiquitous in Al.

this approach is best described in Gradient Descent Alg.
(GD(



dataset
Non-Private GD :

:= 210 ,DY

anguin,
0 - C where CIRC

is a set where

I should live in.

--

Projected GD
--

Input : Dataset D = \kill ,
loss function & , parameter set e

& It

1 . Pick &C arbitrarily
-

Projection operator
2- For tl to

-

at a =T( - 1 +2(p)
Output 0.. 02. -- Or

I



It is widely known that moving along the negative of gradient

gets as closer to the minimum. Why ?

You can formalize this observation using Taylor expansion-

To assess utility of this algorithm ,
we use this folklore

theorem

Theorem
. (Shamira Zhang 2013 ,

"

SGD For non-smooth optimization")
Let F be a convex function & let O* argmin F10).

ol

Let O be an arbitrary point in &

= Te (8-1@) ,
where ELGI,] = DFO) a



diameter of
C

ELIIGI)-62 the learning rate 1- He
then For any Tyo ,

we have

ETFLO] -
FLO) =0GlogT

we can immediately apply this theorem ,
with GIE) = DL(G , D).

"which happens
To ensure that EIIIGI11] 162 ,

me need to be

deterministic"
to make a highly restrictive assumption :

Assumption : loss functiont10, mys) is L-lipschitz
for all piy) : that is

1 +10 , mys) - 120 mys) /= L . 110-011,



Note : f is L-lip = 118t1L

thre
, ETIGII] = ET1/DECODI] (12)

&

BecauseIt is) UL-Lip .

Thus ,
for the GD algorithm ,

me have :

310 ,D) -
20&D) E 11 el1 n . L to-

Excess empirical risk
(T-d

If we run this algorithm sufficiently large , then [IE,D)- L10*D).

--

something like

Torin?



Drawback :

At each iteration
, we need to takea gradient ,

so in

total, nT gradients (ov gradients).

* Is there anyway to reduce computation at each iteration ?

perhapsOnly one gradient at each iteration? Yes !



Stochastic GD (SGD)

--

Projected SGD
--

Input : Dataset D = 4 kbh ,
loss function & , parameter set e

& It

1 . Pick &C arbitrarily

2- For tl to

-

Select It(1, 2, ... ,n3 uniformly at random

- a m-)
Output 0.. 02. -- Or



Claim : XSLO,Y) is a good estimate of

TL(0
, D) .

Note that

Eve 10] = -DeL)=
#> n EIDeCO,Tl] = VeLO,D)

what this means is that De (0,) is an unbiased

estimate of XLLO, D).

The computation is way less in SGD than in GD :



at each iteration
, we only need be gradient , so in total

we need only" gradient , down from 3 in GD.

What is the catch? Convergence is probabilistic !

Using the previous general purpose result (Shamir & Ghang 2017) :

with SCO : = n Of Y)) -> ETGOD = Ve1O, D)

& EIIIGLOII] &222 again me assume loss is L-lip

So: ET2(@D3] - FLOYD) I 11 n) logt same as GD

but probabilistic
convergence



noisy

Private Projected SGD (PE-SOD)

7
,1)------on

- A

DeLo, LETE

To make projected SGD
, differentially private, we need to make

each iteration private . To do so
, we need to pass the query response

through a DP mechanism
, say Garisian mechanism.

A
----on

DeLo, LITE)+ Noise Gaussion

mecha



Thus
,

each iteration proceeds as follows :

--

Private Projected GD
--

Input : Dataset D = \kill ,
loss function & , parameter set e

& It

1 . Pick &C arbitrarily

2- For tl to

- Select IESli2-,n3 uniformly at random

- a -Th(-[ve+)y

Output 0.. 02. -- Or MindNCo,o



At each iteration , query is110 ,3) which is an adaptive

quey as it depends on the previous iterations output.

Each iteration becomes 15 .51-pp with ?=to
Note that : At 212 for the query VeCO, ) ·

Therefore
, advanced composition can be used to obtain the privacy

guarantee. But
,

we can do better ! At each iteration , we don't

use the whole dataset ! We only use the data record ,I not

all the records. Thus
,
the privacy must be significantly better !



How to quantify this improvement :

* privacy amplification by Sub-sampling :

Let M be an (2, 8) -Dp mechanism. If it is run on a uniformly
selected subset of dataset of Size Wn IV) ,

then it will

Provide (oglierie)) , 28) -Dp ·

qD1-1-E E provides more privacy
depends· first part↑
only the compared to the case

dataset when GID) depends on

the whole datacet
.



In the SGD : Wel (as the size of dataset = 1)

Gaussian mechanism coupled with this subsampling is typically
called : Sub-sampled Gaussian mechanism.


