Accuracy of Gaussian mechanism:

Suppose
$$D = \{x', \dots, x''\}$$
 where each $x' \in \mathbb{R}^K$ & $q_0 = \frac{1}{N} \sum x' \in \mathbb{R}^K$.

we output ZD= 90+ N

$$E[\|Z-Q_0\|_2] = O(\frac{3/2}{n5})$$

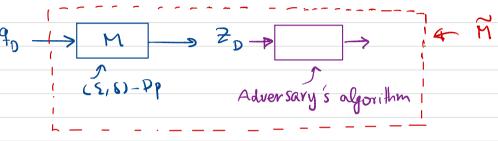
* Gaussian mechanism leads to accuracy that is

better that of Laplace

Caussian noise: NN N(0, 2K log/s) E[||2-90||2]= O(K)

Properties of Approximate Pp

1- Post-Processing



* Assumption: Adversary's algorithm doesn't have access to datatet.

If M is LE182-DP, then so is M.

In otherwords, approximate op is closed under post-processing!

Proof. Similar as before, proof is a simple application of DPI.

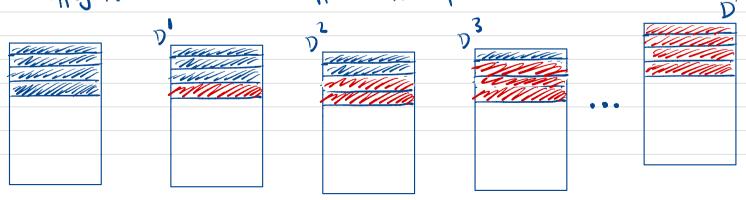
2- Group privary.

theorem. If M is (2,8)-Dp, then:

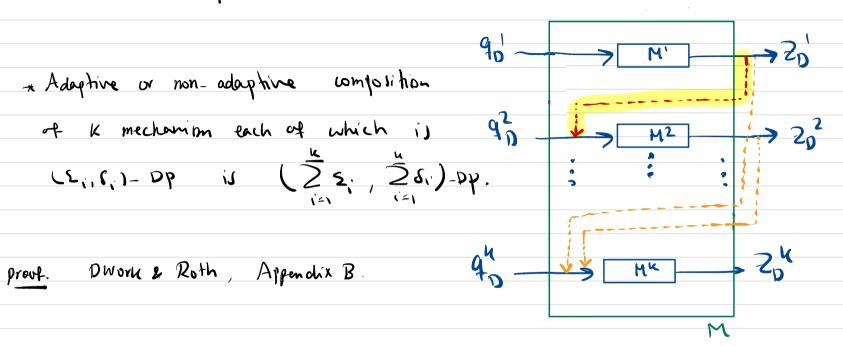
 $M(A) \leq e M(A) + Ke . \delta$ vevent A

for any pair of datasets D2D differing in kentries.

prouf. Similar as before construct (K-1) pairwise neighboring data set & approximate Dp.



3- Basic composition:



Basic composition looks rather identical to the basic composition for the pure DP. However, there is a fundamental difference.

* While basic composition is Optimal for pure DP, it is indeed Very far from being optimal for approximate DP.

there are several known attempts on improving (& even optimiting) composition results. Here, we introduce the oldest one.

Theorem (Advanced composition). Let M be ΣDP . The k-fold composition of M is $(\Sigma_1 S) - DP$ for any $S \in (O(1))$ $\Sigma = K \Sigma_0^2 + \Sigma \sqrt{2K \log V_S}$

Note that this theorem implies that composition of pure DP mechanism satisfies approximate DP; a phenomenon that Can't be obtained from basic composition.

proup. we need the following two temmas:

such that $|Y_i| \le \alpha \ \& \ E[Y_i | Y_i = Y_i, ..., Y_{i-1} = Y_i - 1] \le \beta$.

Pr(ZY: > KB+tVKa) < et/2 Then. * this type of results are typically called "concentration inequaly" For any E-DP mechanism: that aim to bound D(M0 || M0) < (e -1) 2 the probability of tail events E (MD | | MD) = 0 } = D (M | (M) < (E-1) E

E S (M, | | MD) = 0

E S (M, | | MD) = 0 In other words, Proup of this result: D(Mp/IMp) & DUMD/IMp) + D(Mp/IMp) = $\frac{2}{M_0(x)} - M_0(x) \log \frac{M_0(x)}{M_0(x)}$ = \(\frac{Mai \ \ \frac{Mo'(\alpha) - Mo(\alpha)}{Mo(\alpha)} \) \(\log \frac{Mo'(\alpha)}{Mo(\alpha)} \) \(\frac{Mo'(\alpha)}{Mo(\alpha)} \) \(\frac{Mo'(\alpha)}{Mo'(\alpha)} \) \ < (e3) 2

with these two results at hand, we proceed with the proof of the advanced composition: consider two neighboring dataset DND's let ZNM's & ZNM's

FO(2) 2,-2,--2,--2; Since M' is & DP = 1Yil < & W.P. 1.

ETY: \ Z' = z, ..., Z = z] = D(Pzi | Pzi | z | z - z |) < €[e=:1) from the second lemma in frevious pogl

Note that ZY: is the privary loss random Variable for K. fold composition: $\log \frac{P_{20} Z_0^2 \dots Z_N^k}{P_{20} Z_0^2 \dots Z_N^k} = \sum_{i=1}^{k} Y_i$ where (Z -- Z)~ joint density f₂, 2² ... 2^k (2,...3) Recall that to prove that the k-told composition is (5,87-Dp me need this: Any mechanism Mic (S,8)-DP if P(Z,0,7 2) & 8 2 PLRV

Thus, we need to say something like:

$$P(ZY; > something) \leq 8$$

This is where Azwna Inequality kicks in. Apply Azuma for d= & & B = & (e -1) Pr (2 4: > K = (e=1) + 5 Vag/8 Vk) ≤ 8 K_ told composition is (2, 81-Dp with E= K = (e -1) + E VKlog V6 can be approximated by 8.12

Comparison with basic composition:

Suppose we want to answer k queries of sensitivity one, with a given

privay guarantee (5.8)-DP.

Basic composition: K Laplace mechanism each of which $\frac{\varepsilon}{\kappa}$ -Op so each adds N~ L(0, 4,5).

Advanced composition: K aplace mechanism each of which

is
$$\left(\frac{2}{\sqrt{2\kappa \log V_{\delta}}}\right)$$
 Dp so each adds $N \sim L(0, \sqrt{\frac{2\kappa \log V_{\delta}}{S^{2}}})$

*why? * The required variance is OWK) smaller! Let M be E Dp.

According to advanced composition, DP pavameter of K fold composition of M is

 $\frac{K}{2} \cdot \left(\frac{S}{\sqrt{2}}\right)^{2} + \left(\frac{S}{\sqrt{2}}\right)^{2}$

In the advanced composition: $\frac{\Sigma^2}{4 \log 16} \approx \frac{\Sigma^2}{60}$

If $K \Sigma^2$ is small, then we can ignore the first term.

$$2 = 2 \sqrt{2 k \log V_S}$$

the previous advanced composition shows that K-fold composition of an S-DP becomes an (5.6) DP mechanism with 2 increasing Sub-linearly in K.

How about K-fold composition of (5,8) - Dp mechanism?

Here is a more general advanced compositions

Theorem (Advanced composition). Let M be
$$(5,8)$$
-DP. The k-fold composition of M is $(5,8)$ -DP where
$$S = \frac{K5^2}{2} + \frac{5}{2} \sqrt{2K \log V_S}$$

$$6 = KS + 6$$
 For any $6 \in (0,1)$.

Proof. The proof of this result relies on some neat reduction technique: Reduction of approximate DP to Pure DP! E (PILA) < 6 3 p' & a' such that Es (allp) < 8 Es (p'11a') =0 2 Es (a'(1p')=0 2 TV(P(P) x 80 2 TV(0,0)x 80

with this result, we can prove the advanced composition result using the previous composition result (for pure op mechanisms).

mechanism:

an (E, S.) - Dp Gaussian mechanism is (5) 2k log/s, KS+8) Dp

$$8 = \frac{5}{2}$$

$$2 \times \log \left(\frac{1}{2} \right) = \frac{5}{2}$$

As you can see, & is a design parameter. We need to pick & in a way that the resulting noise variance is minimal. Another option for 8 in the above example is

$$S'=S$$
.

This choice results in Variance $\frac{4K}{52}$ ($\log \frac{K+1}{5}$) which is

strictly worse than what we had before.

Rényi DP & composition results

Recall that differential privacy was intuitively defined by ensuring M > M, are close, according to HS divergence.

why not other distance measures?

we already know that TV doesn't work.

It turns out that Rényi divergence is a good candidate.

Definition. We say that a randomized mechanism M is (Mironov 2017) (a,5)-Reny: DP (or (d,5)-RDP) for a>1 & \$20 17 Da (M/M) & S the main motivation [which made RDP extremely yopular in AI] is the following result:

Theorem. For any a>1, we have

In Particular, if Pxy = Px. Py & Qxy = Qx. Qy, then:

D (Pyllax) = D (Pyllax) + D (Pyllax).

Proof. See Lemma 2.2 of "concentrated Pifferential Privacy" by
Bun & Steinke.

this simple result leads to the following simple composition result that resembles basic composition.

Theorem. Let M' be (a,5,)_RDP & M2 be (a,5)_RDP. Then
their composition is (a,5,+52)_RDP.
adaptive

Proof. Simple application the previous theorem.

According to this result, K-fold composition of any GISI-RDP is (d. KS)-RDP.

Limitation of RDP. (d. S)-RDP guarantee doesn't enjoy

unitation of RDP. (d, \$)-RDP guarantee doesn't enjoy

any Operational interpretation, in terms

of hypothesis testing.

In fact, it was shown that Da

with as I has nothing to do with

binary hypothesis testing performance.

* Read "Hypothesis testing interpretation & RDP" by Balle et al., AISTAT

How to fix it? RDP Privacy gnarantee needs to be converted back to approximate DP.

Theorem. If M is $(a_1 \xi) - RDP$ with a>1, then it is $(\epsilon_1 \xi) - DP$ Mironov with $\delta \in (011)$ & $\epsilon = \xi + \frac{1}{a-1} \log \frac{1}{2} \epsilon$.

Moments accountant: Was the state-of-the-art technique for studying composition of iterative algorithms used for training A1 models (Such as SGD).

We discuss it further later.