CAS751: IT Metods in Trustworthy ML September 3, 2025

Lecture 0: Basics of Probability
Instructor: Shahab Asoodeh

1 Elements of Probability

Probability theory is the study of uncertainty. Through this class, we will be relying on concepts
from probability theory for deriving machine learning algorithms. These notes attempt to cover
the basics of probability theory at a level appropriate for introductory course of differential privacy
(such as CS 3DP3). The mathematical theory of probability is rather sophisticated, and delves
into a branch of analysis known as measure theory. In these notes, we provide a basic treatment of
probability that does not address these finer details.

1.1 Definition of probability space

In order to define a probability on a set we need a few basic elements:

e Sample space (2: The set of all the outcomes of a random experiment. Here, each outcome
w € ) can be thought of as a complete description of the state of the real world at the end
of the experiment.

e Event space F: A set whose elements A € F (called events) are subsets of 2 (i.e., A C Q
is a collection of possible outcomes of an experiment)E]

e Probability measure: A function P : F — R that satisfies the following properties,

— Non-negativity: P(A) >0, for all A e F
— Completeness: P(2) =1
— Countable Additivity: If A;, As,... are disjoint events (i.e., A; N A; = () whenever

i # j), then N N
P (U AZ-) =Y P(A).
i=1 =1

These three properties are called the Axioms of Probability.

Example 1. Consider the event of tossing a six-sided die. The sample space is = {1,2,3,4,5,6}.
We can define different event spaces on this sample space. For example, the simplest event space is
the trivial event space F = {0, 2}. Another event space is the set of all subsets of Q. For the first
event space, the unique probability measure satisfying the requirements above is given by P()) = 0,
P(Q2) = 1. For the second event space, one valid probability measure is to assign the probability
of each set in the event space to be é where i is the number of elements of that set; for example,
P({1,2,3,4}) = 4 and P({1,2,3}) = 3.

!The event space F is technically required to satisfy three properties: (1) § € F; (2) A€ F = Q\ A € F; and (3)
A17A2,"' 6.7::>U2A1 e F.



1.2 Properties of probability

Proposition 2. The following properties can be derived from the axioms of probability.
e I[f AC B then P(A) < P(B).
e P(AN B) <min(P(A),P(B)).

P(A°) 2 P(Q\ A) =1— P(A).

P(AUB) < P(A)+ P(B). This property is known as the union bound.

If Aq,..., Ay are a set of disjoint events such that Ule A; = Q, then Zle P(Ay) =1. This
property is known as the Law of Total Probability.

1.3 Conditional probability and independence

Let B be an event with non-zero probability. The conditional probability of any event A given B
is defined as P(AN B)
N
P(AB) & —————

In other words, P(A|B) is the probability measure of the event A after observing the occurrence of
event B. Two events are called independent if and only if P(ANB) = P(A)P(B) (or equivalently,
P(A|B) = P(A)). Therefore, independence is equivalent to saying that observing B does not have
any effect on the probability of A.

In general, for multiple events, Ay, ..., Ag, we say that Ay, ..., Ay are mutually independent
if for any subset S C {1,2,...,k}, we have

P (ﬂ AZ-) =[P4
ies ieS
1.4 Law of total probability and Bayes’ theorem

In practice, it is often helpful to compute the marginal probabilities from the conditional proba-
bilities. The following Law of total probability expresses the total probability of an outcome
which can be realized via several distinct events:

Theorem 3 (Law of total probability). Suppose A1, ..., A, are disjoint events, and event B sat-
isfies B C |, A;, then

P(B) =) P(A;)P(B|A)). (1)
=1

This theorem can be proved directly by applying the definition of the conditional probability.
Note that Theorem (3| holds for any event B if |J;”; A; = Q. As a common special case, for any
event A, it is the case that

P(B) = P(A)P(B|A) + P(A°)P(B|A°). (2)

An important corollary of the law of total probability is the following Bayes’ theorem



Theorem 4 (Bayes’ theorem). Suppose A1, ..., A, are disjoint events, and event B satisfies B C
Ui, A;. Then if P(B) > 0, it is the case that

P(A;)P(B|A;)

PIE) = o P (A P(BIA,) )
A special case of the Bayes’ theorem is
_ P(A)P(B|A) P(A)P(B|A)
PAIB) = =55y =~ BA)P(BIA) + P(A°)P(B|A7)" )

Bayes’ theorem is widely applied in various topics in statistics and machine learning.

2 Random Variables

2.1 Definition and examples

Consider an experiment in which we flip 10 coins, and we want to know the number of coins that
come up heads. Here, the elements of the sample space ) are 10-length sequences of heads and
tails. For example, we might have wg = {H,H,T,H,T,H,H,T,T,T} € Q. However, in practice,
we usually do not care about the probability of obtaining any particular sequence of heads and
tails. Instead we usually care about real-valued functions of outcomes, such as the number of heads
that appear among our 10 tosses, or the length of the longest run of tails. These functions, under
some technical conditions, are known as random variables.

More formally, a random variable X is a function X : Q — RE] Typically, we will denote
random variables using upper case letters X (w) or more simply X (where the dependence on the
random outcome w is implied). We will denote the value that a random variable may take on using
lower case letters x.

In our experiment above, suppose that X (w) is the number of heads which occur in the sequence
of tosses w. Given that only 10 coins are tossed, X (w) can take only a finite number of values, so
it is known as a discrete random variable. Here, the probability of the set associated with a
random variable X taking on some specific value k is

P(X =k):=P{Hw: X(w) =k}).

As an additional example, suppose that X (w) is a random variable indicating the amount of time
it takes for a radioactive particle to decay. In this case, X (w) takes on a infinite number of possible
values, so it is called a continuous random variable. We denote the probability that X takes
on a value between two real constants a and b (where a < b) as

Pla< X <b):=P({w:a < X(w) <b}).

2Technically speaking, not every function is acceptable as a random variable. From a measure-theoretic perspec-
tive, random variables must be Borel-measurable functions. Intuitively, this restriction ensures that given a random
variable and its underlying outcome space, one can implicitly define the set of events on the original outcome space
w €  for which X (w) satisfies some property (e.g., the event {w : X (w) > 3}).




2.2 Cumulative distribution functions

In order to specify the probability measures used when dealing with random variables, it is often
convenient to specify alternative functions (CDFs, PDFs, and PMFs) from which the probability
measure governing an experiment immediately follows. In this section and the next two sections,
we describe each of these types of functions in turn.

A cumulative distribution function (CDF) is a function Fx : R — [0, 1] which specifies a

probability measure as,
Fx(x) £ P(X < ). (5)

By using this function one can calculate the probability of any event in F E] Figure 1 shows a
sample CDF function. A CDF function satisfies the following properties.

e 0L Fx((L') < 1.
o lim, , o Fx(xz)=0.

e x <y= Fx(x) < Fx(y).

1 FX(JU)
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Figure 1: A cumulative distribution function (CDF).

2.3 Probability mass functions

When a random variable X takes on a finite set of possible values (i.e., X is a discrete random
variable), a simpler way to represent the probability measure associated with a random variable is
to directly specify the probability of each value that the random variable can assume. In particular,
a probability mass function (PMF) is a function px : Q@ — R such that

px(z) = P(X = 2).

3This is a remarkable fact and is actually a theorem that is proved in more advanced courses.




In the case of discrete random variable, we use the notation X for the set of possible values that the
random variable X may assume. For example, if X (w) is a random variable indicating the number
of heads out of ten tosses of coin, then X = {0,1,2,...,10}.

A PMF function satisfies the following properties.

e 0 <px(z)<l1.

© D rexpx(z) =1
° erApx(ZL‘) = P(X S A)

2.4 Probability density functions

For some continuous random variables, the cumulative distribution function F'x (z) is differentiable
everywhere. In these cases, we define the Probability Density Function (PDF) as the derivative

of the CDF, i.e.,
N de(x)

fx(z) = ——. (6)

Note here, that the PDF for a continuous random variable may not always exist (i.e., if Fx(x) is
not differentiable everywhere).
According to the properties of differentiation, for very small Az,

Pz <X <z+Ax)= fx(z)Ax. (7)

Both CDFs and PDF's (when they exist!) can be used for calculating the probabilities of different
events. But it should be emphasized that the value of PDF at any given point x is not the probability
of that event, i.e. fx(x)# P(X = z). For example, fx(x) can take on values larger than one (but
the integral of fx(x) over any subset of R will be at most one).

A PDF function satisfies the following properties.

e fx(z) = 0.
o [% fx(x)dx=1.
o [cafx(z)dr=P(X € A).

2.5 Expectation

Suppose that X is a discrete random variable with PMF px(z) and g : R — R is an arbitrary
function. In this case, g(X) can be considered a random variable, and we define the expectation
or expected value of g(X) as
Elg(X)] £ ) gla)px ().
TEX
If X is a continuous random variable with PDF fx(z), then the expected value of g(X) is defined
as

Elg(X)] = / h g(x) fx(z)dx.

—00



Intuitively, the expectation of g(X) can be thought of as a "weighted average” of the values that
g(X) can take on for different values of x, where the weights are given by px(z) or fx(x). As a
special case of the above, note that the expectation, E[X], of a random variable itself is found by
letting g(x) = z; this is also known as the mean of the random variable X.

Expectation satisfies the following properties:
e E[a] = a for any constant a € R.
e Elaf(X)] = aE[f(X)] for any constant a € R.

o E[f(X)+g(X)]=E[f(X)]+E[g(X)]. This property is known as the linearity of expecta-
tion.

e For a discrete random variable X, E[l;x_j] = P(X = k).

2.6 Variance

The variance of a random variable X is a measure of how concentrated the distribution of a
random variable X is around its mean. Formally, the variance of a random variable X is defined as

Var[X] £ E[(X — E[X])?].

Using the properties in the previous section, we can derive an alternate expression for the variance:

E[(X - E[X])’] = E[X? - 2E[X]X + E[X]*]
= E[X?] - 2E[E[X]X] + E[E[X]?]
= E[X?] - 2E[X]? 4+ E[X]?
= E[X?) - E[X]?,

where the second equality follows from linearity of expectations and the fact that E[X] is actually
a constant with respect to the outer expectation. We note the following properties of the variance.

e Var(a) = 0 for any constant a € R.
e Var(af(X)) = a®*Var(f(X)) for any constant a € R.

Example 5. Calculate the mean and the variance of the uniform random variable X with PDF
fx(x) =1,Vz € ]0,1], and 0 elsewhere. The expectation of X is

[N

E[X]:/OO azfx(x)dx:/ola:dx:

—00

The variance of X can be computed by first computing the second moment of X:

E[X?] = /OO 22 fx(z)dx = /1 2ide = é
—00 0

Var(X) = E[X? - E[X]* =

Therefore



Example 6. Suppose that g(z) = ly,c4; for some subset A C Q. What is E[g(X)]? Discrete
case:

Eg(X)]= Y lgeayPx(@)de =) Px(x)dr=P(z € A).
zEX(Q) z€eA

Continuous case:

Blo(x)) = [ T e fx(@)de = / _ Ixw)ir = P e 4)

2.7 Some common distributions

In this subsection, we review several common discrete and continuous distributions that are com-
monly used throughout any ML courses.
Discrete random variables

e X ~ Bernoulli(p) (where 0 < p < 1): one if a coin with heads probability p comes up heads,

zero otherwise.
P ifp=1
p(x) = {

1—p ifp=0

e X ~ Binomial(n,p) (where 0 < p < 1): the number of heads in n independent flips of a coin
with heads probability p.

) = (1)

X

e X ~ Geometric(p) (where p > 0): the number of flips of a coin with heads probability p until

the first heads.
p(x) =p(1—p)*~"

e X ~ Poisson(A) (where A > 0): a probability distribution over the nonnegative integers used
for modeling the frequency of rare events.

A7
:eA—

p(z) p

Continuous random variables

e X ~ Uniform(a,b) (where a < b): equal probability density to every value between a and b
on the real line.

fz) =

0 otherwise

{bla ifa<az<b

e X ~ Exponential(\) (where A > 0): decaying probability density over the nonnegative reals.

fa) = {Ae—M if >0

0 otherwise



e (Very important for this course) X ~ £(u,b): also known as the Laplace distribution

f(x) = j?be—tlw—u

e (Very important for this course) X ~ N (u,0?): also known as the Gaussian distribu-

tion

flz)= = 6720%(17#02
2o

The following table is the summary of some of the properties of these distributions.

Distribution PDF or PMF Mean | Variance
. D, ifx=1, B
Bernoulli(p) { | —p ifz=0. D p(1—p)
Binomial(n, p) (Z)pk(l —p)"F 0<k<n| np npq
1 1—
Geometric(p) p(1—p)*1, k=1,2,... - 2p
p p
>\Z‘
Poisson(A) e_)‘—', k=1,2,... A A
i
_ 1 a+b | (b—a)
Uniform(a, b) A :r:(e (a);b) 5 B
1 G
N(u,0?) e 207 o o
oV 2w
L(u,b) L5 202
9 —F€ o
K o/ 27w /; I
Exponential(X) Ae ™™ 2 >0,A>0 X 2

Table 1: PDF/PMF, mean, and variance of some common distributions.

3 Two Random Variables

Thus far, we have considered single random variables. In many situations, however, there may

be more than one quantity that we are interested in knowing during a random experiment.

instance, in an experiment where we flip a coin ten times, we may care about both:

X (w) = the number of heads that come up,
Y (w) = the length of the longest run of consecutive heads.

In this section, we consider the setting of two random variables.

3.1 Joint and marginal distributions

For

Suppose that we have two random variables X and Y. One way to work with these two random
variables is to consider each of them separately. If we do that we will only need Fx(z) and Fy (y).
But if we want to know about the values that X and Y assume simultaneously during outcomes of



a random experiment, we require a more complicated structure known as the joint cumulative
distribution function of X and Y, defined by

Fxy(z,y) = P(X <z,Y <y)

It can be shown that by knowing the joint cumulative distribution function, the probability of any
event involving X and Y can be calculated. The joint CDF Fxy(z,y) and the joint distribution
functions Fx(z) and Fy (y) of each variable separately are related by

Fx(z) = yi_ggo Fxy(x,y)dy

Fy(y) = Jim Fxy(z,y)dzx.

Here, we call Fx(x) and Fy (y) the marginal cumulative distribution functions of Fyy (x,y).
The joint CDF satisfies the following properties

e 0 < ny<$,y) < 1.
o lim, y o0 Fxy(z,y) = 1.

o lim, oo Fxy(z,y) =0.

Fx(z) =limy_o0 Fixy(z,y).

3.2 Joint and marginal probability mass functions

If X and Y are discrete random variables, then the joint probability mass function pxy :
R x R — [0, 1] is defined by

Here, 0 < pxy(z,y) < lforall z,y, and 3 >, cypxy(z,y) = 1. How does the joint PMF over
two variables relate to the probability mass function for each variable separately? It turns out that

px(@) =Y pxy(z,y).
Yy

and similarly for py(y). In this case, we refer to px(x) as the marginal probability mass
function of X. In statistics, the process of forming the marginal distribution with respect to one
variable by summing out the other variable is often known as “marginalization.”

3.3 Joint and marginal probability density functions

Let X and Y be two continuous random variables with joint distribution function Fxy. In the
case that Fxy(z,y) is everywhere differentiable in both z and y, then we can define the joint
probability density function,

82ny(x,y)

fXY(wvy) = 8.738?/



Like in the single-dimensional case, fxy(z,y) # P(X = z,Y = y), but rather

/ /A fxy (@, y)dedy = P((X,Y) € A).

Note that the values of the probability density function fxy (x,y) are always nonnegative, but they
may be greater than 1. Nonetheless, it must be the case that ffooo ffooo fxv(z,y) = 1. Analogous
to the discrete case, we define

@) = [ " fxv (@ y)dy,

as the marginal probability density function (or marginal density) of X, and similarly for

Ty (y).

3.4 Conditional distributions

Conditional distributions seek to answer the question, what is the probability distribution over
Y, when we know that X must take on a certain value z? In the discrete case, the conditional
probability mass function of Y given X is simply

pXY(% Y)
px(z)

pY|X(y’$) = )
assuming that px(z) # 0. In the continuous case, the situation is technically a little more compli-
cated because the probability that a continuous random variable X takes on a specific value z is
equal to zero. Ignoring this technical point, we simply define, by analogy to the discrete case, the
conditional probability density of Y given X = z to be

fY|X(y’l‘) = f)?;((a;)y) .

An important relationship of conditional distribution and marginal distribution is the law of total
expectation. This result can be viewed as an extension of the law of total probability discussed
in Section 1.

Theorem 7 (Law of total expectation). Let X,Y be two random variables defied on the same
probability space. Then
E[X] = EE[X|Y]].

3.5 Bayes’ rule for random variables

We can derive the bayes’ rule for random variables as follows. It arises when trying to derive
expression for the conditional probability of one variable given another. In the case of discrete
random variables X and Y,

Pxy (z,y) Pxy (z|y) Py (y)

Prixyle) = =5 T, €VPxy (@, )Py (y)

If the random variables X and Y are continuous,

fyix(ylz) = fxy(z,y) _ fxy (zly) fy ()
Y|X fx(x) ffooo fXY(fU|y/)fy(y’)dy"

10



3.6 Independence of random variables

Two random variables X and Y are independent if Fxy (z,y) = Fx(z)Fy(y) for all values of z
and y. Equivalently,

e For discrete random variables, pxy (z,y) = px(2)py (y) for all z € X, y € V.

e For discrete random variables, py|x (y|z) = py (y) whenever px(z) # 0 for all y € V.

e For continuous random variables, fxy(z,y) = fx(z)fy(y) for all z,y € R.

e For continuous random variables, fy|x(y|r) = fy(y) whenever fx(z) # 0 for all y € R.

Informally, two random variables X and Y are independent if “knowing” the value of one variable
will never have any effect on the conditional probability distribution of the other variable, that is,
you know all the information about the pair (X,Y’) by just knowing f(z) and f(y). The following
lemma formalizes this observation:

Lemma 8. If X and Y are independent then for any subsets A, B C R, we have,
P(X €AY eB)=P(XeAPY €B).

By using the above lemma one can prove that if X is independent of Y then any function of X
is independent of any function of Y.

3.7 Expectation and covariance

Suppose that we have two discrete random variables X,Y and g : R> — R is a function of these
two random variables. Then the expected value of g is defined in the following way,

Elg(X, V)] 2> > gla,y)pxy (x,y).
reX yey

For continuous random variables X, Y, the analogous expression is

BV = [ [ g tertey)dndy

We can use the concept of expectation to study the relationship of two random variables with each
other. In particular, the covariance of two random variables X and Y is defined as

Cov(X,Y) 2 E[(X — E[X])(Y — E[Y])]
Using an argument similar to that for variance, we can rewrite this as,
Cov(X,Y) =E[XY — XE[Y] — YE[X] + E[X]E[Y]]
=E[XY] - E[X]E[Y] — E[Y]|E[X] + E[X]|E[Y]
=E[XY] - E[X]E[Y].
Here, the key step in showing the equality of the two forms of covariance is in the third equality,
where we use the fact that E[X]| and E[Y] are actually constants which can be pulled out of the

expectation. When Cov(X,Y) = 0, we say that X and Y are uncorrelated.
We note the following properties of expectation and covariance

11



(Linearity of expectation) E[f(X,Y) + ¢(X,Y)] = E[f(X,Y)] + E[g(X,Y)].

Var(X +Y) = Var(X) + Var(Y) 4+ 2Cov(X,Y).
e If X and Y are independent, then Cov(X,Y) = 0.

If X and Y are independent, then E[f(X)g(Y)] = E[f(X)]E[g(Y)].

4 Multiple Random Variables

The notions and ideas introduced in the previous section can be generalized to more than two
random variables. In this section, for simplicity of presentation, we focus only on the continuous
case, but the generalization to discrete random variables works similarly.

4.1 Basic properties

Suppose that we have n continuous random variables, X;(w), X2(w),..., Xp(w). We can define
the joint distribution function of Xi, X5,..., X,,, the joint probability density function
of X1, Xo,...,X,, the marginal probability density function of X, and the conditional
probability density function of X; given Xo,..., X, as

FX17_..7Xn<1'1,...,.’L'n) = P(X1 <z1,X9<x0,..., X, < l‘n)

0"Fx,,.. x (331 )
le ..... Xn(‘rlw'-,xn): 181_1” ; s L
fxy (1) / / Ixi,Xn (@1, - 2n)day .. day,
le ey X (L‘17 xn)
fX o Xn X1y, Tn) = 1 An
1 n( > > n) sz,,,,,Xn(QZQ,...,xn)

To calculate the probability of an event A C R™ we have,

P(([El, x9,. .. ,xn) € .A) = / fX17_,,7Xn(x1, - ,wn)dafl - dmn.
(z1,e.yzn)EA

From the definition of conditional probabilities for multiple random variables, one can establish the
following theorem of chain rule.

Theorem 9 (Chain rule). We have

flxi, o, ... xn) = flap|z,. .y 2n—1) (21, o, Zp—1)

= f(a;n|ac1, e ,mn_l)f(xn_lla;l, e ,xn_g)f(l'l, e ,{L‘n_2>

= f(I1) H f(xi]xl, Ce ,l’i_l).
=2

Particularly, we say that random variables Xy, ..., X,, are independent if
[y, an) = flz) fz2) . f(2n).

12



Here, the definition of mutual independence is simply the natural generalization of independence
of two random variables to multiple random variables. Independent random variables arise often in
machine learning algorithms where we assume that the training examples belonging to the training
set represent independent samples from some unknown probability distribution. To make the
significance of independence clear, consider a “bad” training set in which we first sample a single
training example (a;(l), y(l)) from the some unknown distribution, and then add m — 1 copies of
the exact same training example to the training set. In this case, we have (with some abuse of

notation)
m

P(a:(l), y(l), R ACON y(m)) + HP(«T(i),y(i))-
i=1
Despite the fact that the training set has size m, the examples are not independent! While clearly
the procedure described here is not a sensible method for building a training set for a machine
learning algorithm, it turns out that in practice, non-independence of samples does come up often,
and it has the effect of reducing the “effective size” of the training set.

4.2 Random vectors, expectation and covariance

Suppose that we have n random variables. When working with all these random variables together,
we will often find it convenient to put them in a vector X = [X1, Xo,..., X,]7. We call the re-
sulting vector a random vector (more formally, a random vector is a mapping from Q to R™). It
should be clear that random vectors are simply an alternative notation for dealing with n random
variables, so the notions of joint PDF and CDF will apply to random vectors as well.

Expectation. Consider an arbitrary function from g : R® — R. The expected value of this
function is defined as

E[g(X)] = / g(iL’l, Ly ey xn)le,Xg,...,Xn (.7}1, T2y . .. ,:Un)d$1d$2 . dl‘n,

where fan is n consecutive integrations from —oo to co. If g is a function from R” to R™, then the
expected value of g is the element-wise expected values of the output vector, i.e., if g is

g1(z)

g(x) = o0)

Then,

13



Covariance. For a given random vector X : {0 — R"”, its covariance matrix X is the n x n
square matrix whose entries are given by ¥;; = Cov(Xj, X;). From the definition of covariance, we
have

COV(Xl,Xl) e COV(Xl,Xn>
2= : :
Cov(X,,X1) ... Cov(X,,X,)
E[(X1 — E[X1])?] o Bl(Xh1 - E[X4]) (X — E[Xq])]
) : :
E[(Xn — E[Xn])(X1 —E[X4])] ... E((X, — E[X4])?]

= E[X?] - EX|E[X]T — EX]E[X]" + E[X]E[X]T
= E[XX'] - E[X|E[X]" = E[(X - E[X])(X - E[X))7],

where the matrix expectation is defined in the obvious way. As seen in the following proposition,
the covariance matrix of any random vector must always be symmetric positive semidefinite.

Proposition 10. Suppose that 3 is the covariance matriz corresponding to some random vector
X. Then X is symmetric positive semidefinite.

Proof The symmetry of ¥ follows immediately from its definition. Next, for any vector z € R",
observe that

ZTEZ = Zn: Zn: EijZiZj

i=1 j=1

= ZZ(COV(XZ‘, X;))zizj
i=1 j=1

=> ) (Bl(X; - E[X))(X; — E[X;))]) 2z
i=1 j=1

=E > > (X~ EXi])(X; - E[X;])zz

=1 j=1
=E (Z(XZ — E[Xl])%) Z(X] - E[Xj])zj
i—1 =1

" 2
=K (Z Zi(X; — E[XZ-]))

i=1

Here, the first equality follows from the formula for expanding a quadratic form (see section notes
on linear algebra), and the last equality follows by linearity of expectations (see probability notes).
To complete the proof, observe that 27z > 0 for any z, thus ¥ is positive semidefinite. ]

14
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Figure 2: The figure on the left shows a univariate Gaussian density for a single variable X. The figure on
the right shows a two-dimensional Gaussian density over two variables X; and Xo.

5 Multivariate Gaussian Distribution

One particularly important example of a probability distribution over random vectors X is called
the multivariate Gaussian or multivariate Normal distribution. A random vector X € R?
is said to have a multivariate normal (or Gaussian) distribution with mean p € R? and covariance
matrix X € Si + (where Sﬂlr . refers to the space of symmetric positive definite d x d matrices) if

Ix1, X0, X (T1, @2, g5 1, 5) = W exp <—;($ - #)Tz_l(fﬂ - M)) .
We write this as X ~ N (u, X). In this section, we describe multivariate Gaussians and some of their
basic properties. Generally speaking, Gaussian random variables are extremely useful in machine
learning and statistics for two main reasons. First, they are extremely common when modeling
“noise” in statistical algorithms. Quite often, noise can be considered to be the accumulation of
a large number of small independent random perturbations affecting the measurement process;
by the Central Limit Theorem, summations of independent random variables will tend to “look
Gaussian.” Second, Gaussian random variables are convenient for many analytical manipulations,
because many of the integrals involving Gaussian distributions that arise in practice have simple
closed form solutions. We will encounter this later in the course.
Figure [2] illustrates the density of a two-dimensional Gaussian random variable.

5.1 Relationship to univariate Gaussian

Recall that the density function of a univariate normal (or Gaussian) distribution is given by

e (; (”;“f) |

Here, the argument of the exponential function, —ﬁ(l’ — )2, is a quadratic function of the variable

x. Furthermore, the parabola points downwards, as the coefficient of the quadratic term is negative.

flasp,0%) =
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The coefficient in front, is a constant that does not depend on z; hence, we can think of it

_1
. . . 271—0 ’
as simply a “normalization factor” used to ensure that

[ (o) =1
exp | —=—=(z — =1.
oo V2o P 202 H
1

In the case of the multivariate Gaussian density, the argument of the exponential function, —3(z —
w) Y2z —p), is a quadratic form in the vector variable z. Since ¥ is positive definite, and since
the inverse of any positive definite matrix is also positive definite, then for any non-zero vector z,
2I'¥712 > 0. This implies that for any vector = # p,

—(z =)= @ —p) <0

—%(w —p)s @ —p) <0,

Like in the univariate case, you can think of the argument of the exponential function as being

a downward opening quadratic bowl. The coefficient in front (i.e., W) has an even more

complicated form than in the univariate case. However, it still does not depend on x, and hence it
is again simply a normalization factor used to ensure that

1 - = 1 Ty—1 _
WW/_OO"'/_OOGXP<_2(1'—M) by (x—u))dml...d:xd—l.

5.2 Covariance matrix

The following proposition gives an alternative way to characterize the covariance matrix of a random
vector X:

Proposition 11. For any random vector X with mean u and covariance matrix 3, we have
S = E[(X — p)(X — p)7] = E[XXT] — uu”.

Proof We prove the first of the two equalities in the theorem; the proof of the other equality is
similar. Recall that the covariance can be written as

Cov(X1,X1) ... Cov(X1,Xy)
2= : :
COV(Xd,Xl) N COV(Xd,Xd)
(X1 —m)? s (X = ) (X — pa)
=E : :
(Xa = pa) (X1 — 1) ... (Xa — pa)?

— E[(X — u)(X — p)].

Here, the last equality follows from the fact that for any vector z € RY,

Z1 2121 R122 ... Z1%2d

T zZ9 Z9%1 RQRQ ... 29224
zZT = . [Zl 29 ... Zd] =

Zd ZdR1 RdR2 ... ZdZd
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In the definition of multivariate Gaussian, we require that the covariance matrix 3 be symmetric
positive definite (i.e., ¥ € S‘i +)- Why does this restriction exist? First, ¥ must be symmetric
positive semidefinite in order for it to be a valid covariance matrix. However, in order for ¥~ to
exist (as required in the definition of the multivariate Gaussian density), then ¥ must be invertible
and hence full rank. Since any full rank symmetric positive semidefinite matrix is necessarily
symmetric positive definite, it follows that ¥ must be symmetric positive definite.

5.3 The diagonal covariance matrix case

To get an intuition for what a multivariate Gaussian is, consider the simple case where d = 2, and
where the covariance matrix ¥ is diagonal, i.e.,

2
T w1 oy O
xr= = Z: .
L@] 8 [MJ [0 05]

In this case, the multivariate Gaussian density has the form,
0 [331 - m]
f; T2 — [H2

z1—
_ ! exp —}[m — 1 ®2 — po] o1
27_‘_0_10_2 9 1 1 2 2 JZQ—QMQ )

03

= »—Aqw‘ =

[l p,X) = ! exp <—; (21— 1 xo — o] !

2mo109

where we have relied on the explicit formula for the determinant of a 2 x 2 matrixﬂ and the fact
that the inverse of a diagonal matrix is simply found by taking the reciprocal of each diagonal
entry. Continuing, we get

1 1[(z1—m)? | (w2 — p2)?
Y = -
i) = e (-5 | e

! exp <_ (x1 —m)* (22— M2)2>

2mo109 20’% 20’%

1 (21 — p1)? 1 (z2 — p2)?
exp | — 5 exp| ————5— |-
V2moq 201 V2moy 205
The last equation we recognize to simply be the product of two independent Gaussian densities;
one with mean g7 and variance o7, and the other with mean s and variance o3. More generally,

one can show that an d-dimensional Gaussian with mean p € R? and diagonal covariance matrix
¥ = diag(c?,03,... ,03) is the same as a collection of d independent Gaussian random variables

with mean p; and variance o2, respectively.
4 a b o _
Namely, . d‘ = ad — bc.
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5.4 Closure properties

A fancy feature of the multivariate Gaussian distribution is the following set of closure properties:
e The sum of independent Gaussian random variables is Gaussian.
e The marginal of a joint Gaussian distribution is Gaussian.
e The conditional of a joint Gaussian distribution is Gaussian.

The formal statement of these results are as follows.

Theorem 12. Suppose that Y ~ N (u,X) and Z ~ N (i, Y) are independent Gaussian distributed
random variables, where p, i’ € R? and ¥, %' € S‘i_ir. Then, their sum is also Gaussian:

Y+ Z~Np+p, 2+

o~ (] B sae))

Xp uB|’ |¥Ba YBB

where X4 € R Xp € R, and the dimensions of the mean vectors and covariance matrix
subblocks are chosen to match X4 and Xg. Then, the marginal densities,

Theorem 13. Suppose that

plxa) = / p(za,xp;p, X)dep
R9B

p(xB) :/ p(fL‘A,.TB;,LL,Z)dLUA
R4

are Gaussian;
XA~ N(pa,Eaa)

Xp ~N(up,XBB).

FA R (R )

XB uB|’ |XBa ¥BB

where X 4 takes values in R™ and Xp takes values in R™, and the dimensions of the mean vectors
and covariance matriz subblocks are chosen to match X4 and Xg. Then, the conditional densities

Theorem 14. Suppose that

p ($A‘$B) _ p(‘TAu:L‘B;:UﬂZ)
XalXs Joperm P(@a, 255 1, X)dz o

and

Xp|Xa\TBITA fxBeRnP(ﬂﬂAafﬂB;M,E)dfﬂB

are also Gaussian:
XalXp ~N(pa+SapEpp(es — uB), $aa — SapSppEpa)
Xp|Xa ~N(up +S5aX1 (x4 — pa), Sp5 — SpaX 4 EaB)

You don’t need to memorize these theorems. Instead understand the closure properties of
Gaussian distributions given at the top of the page.
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