
Lempel-Ziv Factorization
Using Less Time & Space

Gang Chen, Simon J. Puglisi and W. F. Smyth

Abstract. For 30 years the Lempel-Ziv factorization LZx of a string x =
x[1..n] has been a fundamental data structure of string processing, especially
valuable for string compression and for computing all the repetitions (runs)
in x. Traditionally the standard method for computing LZx was based on
Θ(n)-time (or, depending on the measure used, O(n log n)-time) processing
of the suffix tree STx of x. Recently Abouelhoda et al. proposed an efficient
Lempel-Ziv factorization algorithm based on an “enhanced” suffix array —
that is, a suffix array SAx together with supporting data structures, princi-
pally an “interval tree”. In this paper we introduce a collection of fast space-
efficient algorithms for LZ factorization, also based on suffix arrays, that in
theory as well as in many practical circumstances are superior to those pre-
viously proposed; one family out of this collection achieves true Θ(n)-time
alphabet-independent processing in the worst case by avoiding tree structures
altogether.

Mathematics Subject Classification (2000). Nonnumerical Algorithms 68W05.

Keywords. Lempel-Ziv Factorization, Suffix Array, Suffix Tree, LZ Factoriza-
tion.

1. Introduction

Let x = x[1..n] be a string of length n on an alphabet A of size α. The LZ
factorization LZx of x [22, 44] is a factorization x = w1w2 · · ·wk such that each
wj , j ∈ 1..k, is

(a) a letter that does not occur in w1w2 · · ·wj−1; or otherwise
(b) the longest substring that occurs at least twice in w1w2 · · ·wj .

The work of the first and third authors was supported in part by grants from the Natural Sciences
& Engineering Research Council of Canada.

2 Gang Chen, Simon J. Puglisi and W. F. Smyth

For the string
1 2 3 4 5 6 7 8

x = a b a a b a b a,

w1 = a, w2 = b, w3 = a, w4 = aba, w5 = ba. Typically, integer pairs (POS, LEN)
specify the factorization, where POS gives a position in x and LEN the corre-
sponding length at that position (by convention zero if the position contains a
“new” letter). The example thus yields

(POS, LEN) = (1, 0), (2, 0), (3, 1), (4, 3), (7, 2).

LZx can be computed from the suffix tree STx of x [44], also from an “enhanced”
suffix array SAx of x [1], both in time linear in string length n. 1

LZ factorization has for many years been of great importance in data com-
pression [33], in particular for the gzip (Unix), winzip and pkzip compression
algorithms. However, our immediate motivation for developing new LZ construc-
tion algorithms is LZ’s central role in computing repetitions in strings, as we now
explain.

Periodicity (repetition) in infinite strings was the first topic of stringology
[40]; counting and computing the maximum-length adjacent repeating substrings
(repetitions) in a finite string was, along with pattern-matching, one of the earliest
computational problems on strings to be studied [23, 25]. Given a nonempty string
u and an integer e ≥ 2, we call u

e a repetition; if u itself is not a repetition, then
u

e is a proper repetition. Given a string x, a repetition in x is a substring

x[i..i+e|u|−1] = u
e,

where u
e is a proper repetition and neither x

[

i+e|u|..i+(e+1)|u|−1)
]

nor x[i−|u|..i−1]
equals u. Following [39], we say the repetition has period |u| and exponent e; it
can be specified by the integer triple (i, |u|, e). It is well known [23, 4] that the
maximum number of repetitions in a string x = x[1..n] is Θ(n logn), and that the
number of repetitions in x can be computed in Θ(n log n) time [4, 2, 26].

A string u is a run iff it is periodic of (minimum) period p ≤ |u|/2. Thus x =
abaabaabaabaab = (aba)4ab is a run of period |aba| = 3. A substring u = x[i..j] of
x is a run in x iff it is a run of period p and neither x[i−1..j] nor x[i..j+1] is a
run of period p (nonextendible). The run u has exponent e = ⌊|u|/p⌋ and possibly
empty tail t = x[i+ep..j] (proper prefix of x[i..i+p−1]). Thus

1 2 3 4 5 6 7 8 9 10 11 12 13 14

x = b a a a b a a b a a b a b a

contains a run x[3..12] of period p = 3 and exponent e = 3 with tail t = a of
length t = |t| = 1. It can also be specified by a triple (i, j, p) = (3, 12, 3), and it
includes the repetitions (aab)3, (aba)3 and (baa)2 of period p = 3. In general, for

1Strictly speaking, for [44] the bound is really O(n log n), since the method requires a top-down
tree traversal that at each of O(n) nodes may consume O(log α) time — while, in the worst case,

α may be of order n. On the other hand, even though the method of [1] uses a tree structure,
the traversal is bottom-up and so avoids the log α factor.

Lempel-Ziv Factorization Using Less Time & Space 3

e = 2 a run encodes t+1 repetitions; for e > 2, p repetitions. Clearly, computing
all the runs in x specifies all the repetitions in x.

Runs were introduced by Main [24], who showed how to compute the leftmost
occurrence of every run in x = x[1..n] by

(1) computing STx, the suffix tree of x [43];
(2) using STx to compute LZx [22, 44];
(3) using LZx to compute leftmost runs.

Main’s algorithm for step (3) was linear in string length n, and use of Farach’s
linear-time suffix tree construction algorithm (STCA) [7] enables step (1) also to be
performed in linear time. In [17] Kolpakov & Kucherov proved that the maximum
number of runs in any string of length n is O(n), then showed (Algorithm KK)
how to compute all the runs in x from the leftmost ones in linear time. Thus a
Θ(n)-time all-runs algorithm waited only on a truly linear approach to step (2). 2

In [1] Abouelhoda, Kurtz & Ohlebusch show how to compute LZx from a
suffix array SAx, augmented with a linear-space “interval tree”, rather than from
STx. Even though a tree is used, the time required for Algorithm AKO is truly
linear, as remarked in the footnote above. Since there now exist linear-time suffix
array construction algorithms (SACAs) [13, 16] that work for large values of n,
the goal of a practical and truly linear all-runs algorithm was thus achieved.

In this paper we describe three new algorithms for constructing LZx, the first
two (CPS1 & CPS2) based on suffix array construction, the third (CPS3) based
on a kind of inverted file construction (see for example [35]). In particular, CPS1
computes LZx in true Θ(n) time, making use of no tree structures whatever, and
thus enabling linear-time all-runs computation.

We describe three variants of CPS1 that execute generally faster and with
lower space requirements than either of the algorithms AKO [1] or KK-LZ (a suffix
tree-based implementation of Ukkonen’s algorithm [42] by Kolpakov & Kucherov
specifically designed for alphabet size α ≤ 4 [19]). Ukkonen’s algorithm constructs
ST on-line and so permits LZ to be built from subtrees of ST; this gives it an advan-
tage, at least in terms of space, over the fast and compact version of McCreight’s
STCA [32] due to Kurtz [21]. Note also [34] that the linear-time algorithms [13, 16]
for computing SAx are not, in practice, as fast as other algorithms [31, 29] that
have only supralinear worst-case time bounds. Thus in testing AKO and CPS1
we make use of the supralinear SACA [29] that is probably at present overall the
fastest in practice.

The second algorithm, CPS2, takes advantage of the fact, illustrated in the
above example, that not all of the (POS, LEN) pairs need to be computed. This
approach makes use of recent advances [9] in the implementation of range-minimum
queries to compute specified (POS, LEN) pairs in constant time. CPS2 requires
O(n log n) worst-case time, but is fast and space-efficient in practice.

2Though, since Farach’s algorithm is not implementable for large n, this linearity was more
theoretical than practical.

4 Gang Chen, Simon J. Puglisi and W. F. Smyth

Finally we describe CPS3, an algorithm that makes use of inverted files to-
gether with partially-constructed “quasi” suffix arrays to compute LZx.

In Section 2 we describe the new algorithms. Section 3 summarizes the results
of experiments that compare the algorithms with each other and with existing
algorithms. Section 4 outlines future work.

2. Description of the Algorithms

Given a string x = x[1..n] on an alphabet A of size α, we refer to the suffix x[i..n],
i ∈ 1..n, simply as suffix i. Then SAx is an array 1..n in which SAx[j] = i iff suffix

i is the jth in lexicographical order among all the suffixes of x. Let lcpx(i1, i2)
denote the longest common prefix of suffixes i1 and i2 of x. Then LCPx is an
array 1..n+1 in which LCPx[1] = LCPx[n+1] = −1, while for j ∈ 2..n,

LCPx[j] =
∣

∣

∣
lcpx

(

SAx[j−1], SAx[j]
)

∣

∣

∣
.

Given x and SAx, LCPx can be quickly computed in Θ(n) time using either 13n
[15] or 9n [30] bytes of storage. When the context is clear, we write SA for SAx,
LCP for LCPx. For example:

1 2 3 4 5 6 7 8 9

x = a b a a b a b a
SAx = 8 3 6 1 4 7 2 5

LCPx = -1 1 1 3 3 0 2 2 -1

2.1. CPS1

In the course of a left-to-right scan of the SA/LCP arrays, Algorithm CPS1 takes
advantage of two simple observations:

(O1) Every increase in consecutive LCP values marks the beginning of a collection
of two or more repeating substrings in x with the same LCP. More precisely,
if LCP[i1] < LCP[i1+1], then the suffixes j = SA[i1] and j′ = SA[i1+1] have
a longest common prefix of length LCP[i1+1] that is not shared by SA[i1−1]
nor by any preceding position in SA.

(O2) Every decrease in consecutive LCP values marks the end of a collection of two
or more repeating substrings with the same LCP. More precisely, if LCP[i2] >
LCP[i2+1], then the suffixes j = SA[i2−1] and j′ = SA[i2] have a longest
common prefix of length LCP[i2] that is not shared by SA[i2+1] nor by any
subsequent position in SA.

In view of observation (O1), CPS1 pushes (onto a stack S) each position i1 that
marks the beginning in SA of a sequence of suffixes all with lcp of length at
least LCP[i1 +1]. When, sooner or later in the left-to-right traversal of SA, the
corresponding LCP value is found to fall, the position i2 of the fall marks, by
observation (O2), the end of at least one sequence of two or more suffixes sharing
the same lcp — in particular, the sequence beginning at the position most recently
pushed onto S. Depending on the extent of the drop in LCP, longer sequences of

Lempel-Ziv Factorization Using Less Time & Space 5

suffixes (represented by positions previously pushed onto S) may also terminate at
i2; thus the stack is popped until a stacked position i is found for which LCP[i] ≤
LCP[i2+1].

— Using SAx and LCPx, compute POS[1..n] and LEN[1..n].
i1 ← 1; i2 ← 2; i3 ← 3
while i3 ≤ n+1 do
— Identify the next position i2 < i3 with LCP[i2] > LCP[i3].

while LCP[i2] ≤ LCP[i3] do
push(S, i1); i1 ← i2; i2 ← i3; i3 ← i3+1

— Backtrack using the stack S to locate the first i1 < i2 such that
— LCP[i1] < LCP[i2], at each step setting the larger position in POS
— corresponding to equal LCP to point leftwards to the smaller one,
— if it exists; if not, then POS[i]← i.

q ← SA[i2]; ℓ2 ← LCP[i2]
assign(POS, LEN, p, q)
while LCP[i1] = ℓ2 do

i1 ← pop(S)
assign(POS, LEN, p, q)

SA[i1]← q
— Reset pointers for the next stage.

if i1 > 1 then
i2 ← i1; i1 ← pop(S)

else
i2 ← i3; i3 ← i3+1

procedure assign(POS, LEN, p, q)
p← SA[i1]
if p < q then

POS[q]← p; LEN[q]← ℓ2; q ← p
else

POS[p]← q; LEN[p]← ℓ2

Figure 1. Algorithm CPS1: computing LZx

Each sequence i1, i1+1, . . . , i2 identified by this process (which for convenience
we relabel s1, s2, . . . , sk for some k ≥ 2) specifies corresponding positions (suffixes)

p1 = SA[s1], p2 = SA[s2], . . . , pk = SA[sk]

in x. In order to compute values in POS, it suffices to process these positions in
pairs ph−1, ph, h = k, k−1, . . . , 2. in descending order, assigning POS[p] ← q,
where p is the greater of ph−1, ph and q the lesser. At the same time, to ensure
that a leftmost position in x is always available, we must effectively at each step
implement the replacement SA[sh−1] ← q. For each position p in POS assigned,
the corresponding value of LEN[p] will just be LCP[i2].

6 Gang Chen, Simon J. Puglisi and W. F. Smyth

After each sequence of repeating substrings is processed. corresponding to
the current lcp, the pointer values are reset (generally by i2 ← i1 and popping
S into i1) to determine whether another sequence of POS/LEN pairs should be
processed at this position.

This processing does not guarantee that, for equal LCP (LEN), each cor-
responding position in POS necessarily points to the leftmost occurrence in x,
as normally required for LZ factorization; however, the Main and KK algorithms
do not require this property for their correct functioning, they require only that
each position in POS should point left. Similarly, the leftmost occurrence is not
required for most data compression applications. In other terminology, what is in
fact computed by CPS1 is a quasi suffix array (QSA) [10].

In order to implement the processing described above, CPS1 uses three point-
ers i1, i2, i3 to positions in SA that at each step of the algorithm satisfy the invari-
ant i1 < i2 < i3. For the example string

1 2 3 4 5 6 7 8

x = a b a a b a b a,

Figure 2 shows how these pointers are manipulated as x is scanned. Note that it
may not be true that i2 = i1+1, nor that i3 = i2+1. Note also that the shaded
areas in the SA and LCP arrays, once made use of in a POS/LEN calculation, are
never thereafter used again, a fact that can be exploited, as described below, to
reduce CPS1’s space requirement.

The basic CPS1 algorithm, that we call CPS1a, is shown in Figure 1.

We have observed that none of the position pointers i1, i2, i3 in CPS1 will
ever point to any position i in SA such that POS

[

SA[i]
]

has been previously set. It
follows that the storage for SA and LCP can be dynamically reused to specify the
location and contents of the array POS, thus saving 4n bytes of storage — neither
the Main nor the KK algorithm mentioned above requires SA/LCP; moreover,
these data structures are not generally required in string compression applications.
Reuse of SA/LCP is easily accomplished by inserting the instruction i2 ← i1 at
the beginning of the second inner while loop of Figure 1, then replacing

POS[q]← p by SA[i2]← q; LCP[i2]← p

POS[p]← q by SA[i2]← p; LCP[i2]← q

POS can then be computed by a straightforward in-place compactification of SA
and LCP into SA (now redefined as POS). We call this second algorithm CPS1b.

But more storage can be saved. Remove all reference to LEN from CPS1b,
so that it computes only POS and in particular allocates no storage for LEN.
Then, after POS is computed, the space previously required for LCP becomes
free and can be reallocated to LEN. Observe that only those positions in LEN
that are required for the LZ factorization need to be computed, so that the total
computation time for LEN is Θ(n). In fact, without loss of efficiency, we can avoid
computing LEN as an array and compute it only when required; given a sentinel

Lempel-Ziv Factorization Using Less Time & Space 7

Figure 2. Execution of CPS1 on x = abaababa

8 Gang Chen, Simon J. Puglisi and W. F. Smyth

value POS[n+1] = $, the simple function of Figure 3 computes LEN corresponding
to POS[i]. We call the third version CPS1c.

function LEN(x, POS, i)
j ← POS[i]
if j = i then

LEN← 0
else

ℓ← 1
while x[i+ℓ] = x[j+ℓ] do

ℓ← ℓ+1
LEN← ℓ

Figure 3. Computing LEN corresponding to POS[i]

Since at least one position in POS is set at each stage of the main while
loop, it follows that the execution time of CPS1 is linear in n. For CPS1a space
requirements total 17n bytes (for x, SA, LCP, POS & LEN) plus 4s bytes for a
stack of maximum size s. For x = an, s = n, and as we discover in Section 3, s
can be n/2 or more for artificially run-rich strings; however, in practical cases s
will be close to the maximum height of SAx and so s ∈ O(logα n) [14].

For CPS1b and CPS1c, the maximum space required is 13n and 9n bytes,
respectively, plus stack. Observe that for CPS1a and CPS1b the original (and
somewhat faster) method [15] for computing LCP can be used, since it requires
13n bytes of storage, not greater than the total space requirements of these two
variants. For CPS1c, however, to achieve 9n bytes of storage, the Manzini variant
[30] for computing LCP must be used. In fact, as described below, we test two
versions of CPS1c, one that uses the original LCP calculation (therefore requiring
13n bytes, but no additional space for the stack), the other using the Manzini
variant (hence requiring 9n bytes plus stack).

We remark that all versions of Algorithm CPS1 can easily be modified (with
the introduction of another stack) to compute the LZ factorization in its usual
form.

2.2. CPS2

An undesirable aspect of the CPS1 family of algorithms described above for LZ
factorization is that they output an item for each position in the string, regardless
of whether a factor actually begins there or not. Ideally we would like the output
to contain only information about the positions where factors start; the difficulty
is that it is hard to tell in advance where the factors will begin. The pseudocode in
Figure 4 specifies a function that computes LZ factor information for an arbitrary
position in the string x. It makes use only of SA and a data structure RMQSA for
answering range minimum queries (RMQs) on SA [12, 3]. RMQSA(i, j) provides
the index of the minimum value among SA[i], SA[i + 1], . . . , SA[j] (or the leftmost

Lempel-Ziv Factorization Using Less Time & Space 9

such index should more than one occurrence of the minimum be present in the
range). It has recently been shown [9] that RMQs can be implemented using less
than n bytes, while with appropriate preprocessing any RMQ can be answered in
constant time.

— Using SAx and RMQSA compute the position
— and length of the LZ factor beginning at i in x.

function lzfactor(x, SA, i)
match← i
lb← 1; rb← n; j ← i
repeat

(lb, rb)← refine(lb, rb, j−i, x[j])
min← SA

[

RMQSA(lb, rb)
]

if min < i then
match← min; j ← j+1

until min ≥ i or j > n
return (match, j−i)

Figure 4. Algorithm to find the length and previous occurrence
of an LZ factor at a given position i in string x

CPS2 maintains the invariant that interval SA[lb..rb] contains all the suffixes
prefixed with x[i..j−1] and that at least one of the suffixes in that range begins
at some position p < i in x. This condition is enforced by the refine function in
concert with the range minimum query using RMQSA. Given a match of x[i..j−1]
of length j−i with

x
[

SA[ℓ]..SA[ℓ]+j−1
]

over a maximum-length range of positions ℓ ∈ lb..rb of SA, refine computes
a maximum-length subinterval of lb..rb that matches x[i..j]. Narrowing of the
interval only occurs if at least one of the suffixes in that range begins at some
position p < i, which is determined from RMQSA(lb, rb). Note that refine will
never return an empty interval because we are searching using a suffix of the string
itself as a pattern, so a suffix prefixed with x[i..j] is guaranteed to be found.

One way to implement refine is via a linear scan of SA[lb..rb] to determine
the maximum subarray SA[nlb..nrb] such that

x[SA[nlb]] = x[SA[nlb + 1]] = . . . = x[SA[nrb]] = x[j].

This requires O(rb− lb) time per call. A more efficient method is to use two binary
searches to determine the upper and lower bounds. We can use binary search

because the jth letter of each suffix in SA[lb..rb] is in lexorder. This is really the
SA search algorithm of Manber and Myers [27] being used incrementally. Each call
to refine now takes O(log n) time.

Alternatively we could search using the O(|Σ|) algorithm of [1], but doing
so requires the LCP array, which is precisely what we are trying to avoid. The

10 Gang Chen, Simon J. Puglisi and W. F. Smyth

so-called “backward search” algorithm [8, 38] for suffix arrays is seemingly of no
use either, as it searches the pattern right to left, and the pattern in our case is a
suffix of the string. However, backward search can be used in CPS2 to produce the
LZ factorization of the reverse string, which may be acceptable for some applica-
tions, such as computing runs [17] and repeats [20, 18]. This way refine could be
implemented in O(log |Σ|) time.

Every line of the function lzfactor executes in constant time except the
call to refine. To produce the entire LZ factorization we make a total of at most
n−1 calls to refine. This gives a total running time of O(n log n) (if the O(log n)
version of refine is used). Observe that because RMQ gives us the minimum value
each time, CPS2 associates the leftmost occurrence with the starting position of
each factor.

output (1, 1)
i← 2
while i ≤ n do

(POS, LEN)← lzfactor(x, SA, i)
output (POS, LEN)
i← i+LEN

Figure 5. Algorithm CPS2 for computing the LZ-factorization

2.3. CPS3

This algorithm combines the idea of a QSA [10], mentioned above, with that of
a q-gram [41] — that is, a substring of length q. A preprocessing stage of CPS3
(Figure 6) builds a QSA, called QSA(q), in which matches between positions i
and QSA[i] in x are restricted to at most some specified length q. The extra space
required for preprocessing is 4|Σ|q bytes, as we keep track of the last position of
occurrence of every substring of length q. The resulting QSA can be thought of as
an inverted file for x based on t-grams, t ∈ 1..q.

As shown in Figure 7, CPS3 uses QSA(q) to compute the (POS, LEN) pairs
required for the LZ factorization. For negative QSA[i] values, the position POS is
known, and less than q letter comparisons are required in the function match to
determine LEN. When QSA[i] is positive, however, the length LEN of the longest
match could exceed q, and so the QSA chain needs to be traversed left-to-right to
locate the longest match. With the value of q, CPS3 offers a space/time tradeoff:
the bigger the value of q, the less time spent traversing chains in the QSA (as
the chains are shorter), but the greater the size of array rightmost in Figure 6.
Note that if no factor is longer than q, CPS3 computes the LZ factorization in its
traditional form: POS is necessarily the leftmost position in x that achieves the
match of maximum length LEN with the current position i.

Lempel-Ziv Factorization Using Less Time & Space 11

— For every nonempty string z on Σ of length at most q,
— initialize its rightmost position in x to zero.

for i← 1 to q do
∀ string z of length i do

rightmost[z]← 0
— Compute QSA(q).

for i← 1 to n do
j ← 0
while j < q and i+j ≤ n do

ℓ← rightmost
[

x[i..i+j]
]

— The new position i is now rightmost.
rightmost

[

x[i..i+j]
]

← i
— Positions for which the maximum match is less
— than q letters are “easy”: mark them negative.

if j < q−1 then
QSA[i]← −ℓ

else
QSA[i]← ℓ

j ← j+1

Figure 6. CPS3 preprocessing — computing QSA(q)

3. Experimental Results

We implemented the three versions of CPS1 described above, with two variants of
CPS1c; we call them cps1a, cps1b, cps1c (13n-byte LCP calculation) and cps1c′

(9n-byte LCP calculation). We also implemented cps2 with the O(log n) refine

function described previously, and cps3. We had cps3 choose the value of q for
each file, so that the extra space used in preprocessing was around n bytes.

Finally, we implemented the other SA-based LZ-factorization algorithm, ako
of [1]. The implementation kk-lz of Kolpakov and Kucherov’s algorithm was ob-
tained from [19]. All programs were written in C or C++. We are confident that
all implementations tested are of high quality.

As indicated in Table 1, experiments were conducted on four main classes of
input strings:

• strings that do not occur in practice, but that nevertheless are of interest:
those with many runs (Fibonacci strings, binary strings constructed in [11])
and those with very few (random strings on small and large alphabets);
• DNA strings on alphabet {a, c, g, t} that Algorithm KK-LZ was specifically

tailored to;
• protein sequences on an alphabet of 20 letters;
• strings on large alphabets (English-language, ASCII characters).

All experiments were conducted on a 2.6GHz AMD Opteron processor with
2Gb main memory. The operating system was RedHat Linux Fedora Core 1 (Yarrow)

12 Gang Chen, Simon J. Puglisi and W. F. Smyth

output (1, 1)
i← 2
while i ≤ n do

if QSA[i] < 0 then
— Left maximum match is at |QSA[i]| of length < q.

POS← −QSA[i]; LEN← match
(

x[QSA[i]..n], x[i, n]
)

else
— Left maximum match may exceed q.

LEN← 0; i′ ← i
repeat

i′ ← QSA[i′]; ℓ← match
(

x[i′..n], x[i, n]
)

if ℓ ≥ LEN then POS← i′; LEN← ℓ
until QSA[i′] ≤ 0

output (POS, LEN)
— Locate next i.

if LEN = 0 then
i← i+1

else
i← i+LEN

Figure 7. CPS3 computes (POS, LEN) pairs from QSA(q)

running kernel 2.4.23. The compiler was g++ (gcc version 3.3.2) executed with the
-O3 option. The running times shown in Table 3 are the average of four runs and do
not include time spent reading input files. Times were recorded with the standard
C getrusage function. Table 2 isolates the time spent just on SA/LCP construc-
tion; comparison with Table 3 shows that a very high proportion of the time spent
by the CPS1 family of algorithms is devoted to these preprocessing activities.

Table 4 shows memory usage over the experiments performed as measured
by the memusage command available with most Linux distributions.

In Table 3 times given for the cps1 implementations and ako include that
required for SA and LCP array construction; cps2 times include times for SA and
RMQ construction. The implementation of kk-lz is only suitable for strings on
small alphabets (|Σ| ≤ 4) so times are only given for some files. Results are not
given for ako on some files because the memory required exceeded the capacity
of the test machine. Results are not given for cps3 on some large alphabet files
because the runtime exceeded 1000 seconds, at which point we abandoned the
experiment. Files chr22 and chr1819were originally on an alphabet of five symbols
A,C,G,T,N which we reduced by replacing occurrences of N with random selection
of the other four symbols. The N’s represent ambiguities in the sequencing process.

We conclude:

(1) The tailored KK algorithm remains the algorithm of choice for DNA strings
of moderate size.

Lempel-Ziv Factorization Using Less Time & Space 13

(2) For other strings encountered in practice, CPS1b is consistently faster than
AKO except for very large alphabets (perhaps an atypical result); it also uses
substantially less space, especially on run-rich strings.

(3) Overall, and especially for strings on alphabets of size greater than 4, CPS1c′

is probably preferable since it will be more robust for main-memory use on
very large strings: its storage requirement is consistently low (about 50%
greater than that of CPS2, just over half that of CPS1a, generally less than
half that of AKO) and it is only 25–30% slower than CPS1b, generally much
faster than CPS2.

(4) If memory is especially tight, CPS2 offers predictable runtimes on all types
of data and uses only 6n bytes. It is usually around 30% slower than CPS1c
but is faster on strings having very few factors. For a similar memory cost
CPS2 gives much more stable runtimes than CPS3.

(5) On files with very small numbers of factors, CPS2 and CPS3 perform best.
This is expected as they, in some sense, only do work proportional to the
number of factors.

(6) The |Σ|q term in the space required for preprocessing makes CPS3 very sen-
sitive to |Σ| and n. Generally, large |Σ| forces q to be small, which in turn
means chains in QSA are larger and more chain traversals and letter com-
parisons are required per factor. If q is able to be picked close to the average
factor length, CPS3 performs well – unfortunately even a moderate size |Σ|
will preclude this if memory usage is to remain within acceptable limits.

4. Discussion

The algorithms presented here make use of full-size suffix arrays, but there have
been many “succinct” or “compressed” suffix structures proposed in the literature
[28], that make use of as little as n bytes of storage. We would like to explore the
use of such structures in this context, as well as the use of compressed inverted
files.

More generally, we remark that all known algorithms that compute runs
or repetitions need to compute all the information required to compute repeats
— that is, not necessarily adjacent repeating substrings. All these algorithms
compute some form of suffix structure that implicitly specifies all the repeats;
runs/repetitions are then computed by some sort of refinement of the repeats.
Since runs generally occur sparsely in strings [17], much less frequently than re-
peats, it seems that they should somehow be computable directly with less heavy
machinery. Recent results [11, 37, 6] may suggest more economical methods.

This study also exposes the relatively high cost of computing the LCP array
for some strings. For applications where the LCP array is required, suffix arrays can
only be a convincing substitute for suffix trees if LCP computation can be speeded
up. One perhaps fruitful line of investigation might be to determine which of the
fast SACAs [34] could be adapted to output LCP information also, or in lieu of

14 Gang Chen, Simon J. Puglisi and W. F. Smyth

Table 1. Description of the data set used in experiments.

String Size (bytes) Σ # factors max Description
fibo35 9227465 2 34 3524578 35th Fibonacci string (see [39])
fibo36 14930352 2 35 5702887 36th Fibonacci string
fss9 2851443 2 40 1217712 9th run rich string of [11]
fss10 12078908 2 44 5158310 10th run rich string of [11]
random2 8388608 2 385232 42 Random string, small alphabet
random21 8388608 21 1835235 9 Random string, larger alphabet
ecoli 4638690 4 432791 2805 E.Coli Genome
chr22 34553758 4 2554184 1768 Human Chromosome 22
chr19 63811651 4 4411679 3397 Human Chromosome 19
chr1819 139928804 4 9560771 3397 Human Chromosomes 18 & 19
prot-a 16777216 23 2751022 6699 Small Protein dataset
prot-b 33554432 24 5040051 16190 Medium Protein dataset
prot-c 67108864 24 8391184 16190 Large Protein dataset
bible 4047392 62 337558 549 King James Bible
howto 39422105 197 3063929 70718 Linux Howto files
mozilla 51220480 256 3823511 41323 Mozilla binaries
rfc 116421901 120 5656068 3317 IETF Request for comments

Table 2. Runtime in milliseconds for suffix array construction
and LCP computation.

String saca lcp13n lcp9n

fibo35 5530 2130 3090
fibo36 10440 3510 5000
fss9 1490 660 960
fss10 8180 2810 4070
rand2 2960 2360 3030
rand21 2840 2620 3250
ecoli 1570 1340 1700
chr22 14330 12450 16190
chr19 28400 25730 31840
chr1819 74210 70110 77470
prot-a 6170 5230 6660
prot-b 13580 12460 14720
prot-c 29680 27650 31460
bible 1140 1020 1270
howto 12080 11750 14490
mozilla 12850 13790 17320
rfc 40680 39540 49590

Lempel-Ziv Factorization Using Less Time & Space 15

Table 3. Runtime in milliseconds for various LZ factorization algorithms.

String cps1a cps1b cps1c cps1c′ cps2 cps3 ako kk-lz

fibo35 9360 8560 9240 10200 9190 2960 12870 10060
fibo36 16730 15420 16240 17730 16050 4820 23160 18680
fss9 2680 2430 2690 2990 2570 910 3740 1270
fss10 13240 12170 13390 14650 12730 4030 17890 7850
rand2 6950 6130 7010 7680 15340 6830 9920 9820
rand21 7100 6270 7130 7760 11320 7090 7810 −
ecoli 3800 3350 3830 4190 4280 2270 4740 1610
chr22 35240 30320 36480 40220 46580 41790 65360 18240
chr19 70030 61230 71910 78020 93480 128130 − 40420
chr1819 188410 162760 187290 194650 248710 304400 − 105640
prot-a 14780 12990 14920 16350 26180 72190 17070 −
prot-b 33530 29470 34150 36410 57880 212410 38810 −
prot-c 73460 64640 75980 79790 129410 102270 − −
bible 2930 2540 2970 3220 6950 162020 3670 −
howto 32150 27750 33760 36500 79850 − 23830 −
mozilla 36630 31330 39860 43390 96730 − − −
rfc 107280 92910 119630 129680 255700 − − −

Table 4. Peak memory usage in bytes per input symbol for the
LZ factorization algorithms.

String cps1a cps1b cps1c cps1c′ cps2 cps3 ako kk-lz

fibo35 19.5 15.5 13.0 11.5 6.0 5.9 26.9 19.9
fibo36 19.5 15.5 13.0 11.5 6.0 5.6 26.9 20.8
fss9 19.1 15.1 13.0 11.1 6.0 6.5 25.4 21.3
fss10 19.1 15.1 13.0 11.1 6.0 5.7 25.4 22.5
rand2 17.0 13.0 13.0 9.0 6.0 6.0 17.0 11.8
rand21 17.0 13.0 13.0 9.0 6.0 5.5 17.0 −
ecoli 17.0 13.0 13.0 9.0 6.0 6.2 17.0 11.0
chr22 17.0 13.0 13.0 9.0 6.0 5.7 17.0 11.1
chr19 17.0 13.0 13.0 9.0 6.0 6.4 − 11.1
chr1819 17.0 13.0 13.0 9.0 6.0 5.6 − 10.7
prot-a 17.2 13.2 13.0 9.2 6.0 5.3 39.0 −
prot-b 17.1 13.1 13.0 9.1 6.0 5.1 40.0 −
prot-c 17.0 13.0 13.0 9.0 6.0 7.1 − −
bible 17.0 13.0 13.0 9.0 6.0 5.3 17.0 −
howto 17.0 13.0 13.0 9.0 6.0 − 17.0 −
mozilla 17.7 13.7 13.0 9.7 6.0 − − −
rfc 17.0 13.0 13.0 9.0 6.0 − − −

16 Gang Chen, Simon J. Puglisi and W. F. Smyth

this, information that can be used later to expedite LCP array computation. This
line of research was essentially discontinued with the publication of [15].

Acknowledgment

We thank Johannes Fischer for making his RMQ code available to us.

References

[1] Mohamed Ibrahim Abouelhoda, Stefan Kurtz & Enno Ohlebusch, Replacing suffix
trees with enhanced suffix arrays, J. Discrete Algs. 2 (2004) 53–86.

[2] Alberto Apostolico & Franco P. Preparata, Optimal off-line detection of repetitions
in a string, Theoret. Comput. Sci. 22 (1983) 297–315.

[3] Michael A. Bender & Martin Farach-Colton, The LCA problem revisited, Latin

American Theoretical Informatics (2000) 88–94.

[4] Maxime Crochemore, An optimal algorithm for computing the repetitions in a word,
Inform. Process. Lett. 12–5 (1981) 244–250.

[5] Jean-Pierre Duval, Roman Kolpakov, Gregory Kucherov, Thierry Lecroq & Arnaud
Lefebvre, Linear-time computation of local periods, Theoret. Comput. Sci. 326–1-3

(2004) 229–240.

[6] Kangmin Fan, Simon J. Puglisi, W. F. Smyth & Andrew Turpin, A new periodicity
lemma, SIAM J. Discrete Math. 20–3 (2006) 656–668.

[7] Martin Farach, Optimal suffix tree construction with large alphabets, Proc. 38th

IEEE Symp. Found. Computer Science (1997) 137–143.

[8] Paolo Ferragina & Giovanni Manzini, Opportunistic data structures with applications,

Proc. 41st IEEE Symp. Found. Computer Science (2000) 390–398.

[9] Johannes Fischer & Volker Heun, Theoretical and practical improvements on the

RMQ-problem, with applications to LCA and LCE, Proc. 17th Annual Symp. Com-

binatorial Pattern Matching, M. Lewenstein & G. Valiente (eds.) (2006) 36–48.

[10] Frantisek Franek, Jan Holub, W. F. Smyth & Xiangdong Xiao, Computing quasi
suffix arrays, J. Automata, Languages & Combinatorics 8–4 (2003) 593–606.

[11] Frantisek Franek, R. J. Simpson & W. F. Smyth, The maximum number of runs in

a string, Proc. 14th Australasian Workshop on Combinatorial Algs., M. Miller & K.
Park (eds.) (2003) 26–35.

[12] Dov Harel & Robert E. Tarjan, Fast algorithms for finding nearest common ancestors,
SIAM J. Computing 13–2 (1984) 338–355.

[13] Juha Kärkkäinen & Peter Sanders, Simple linear work suffix array construction, Proc.

30th Internat. Colloq. Automata, Languages & Programming (2003) 943–955.

[14] S. Karlin, G. Ghandour, F. Ost, S. Tavare & L. J. Korn, New approaches for computer
analysis of nucleic acid sequences, Proc. Natl. Acad. Sci. USA 80 (1983) 5660–5664.

[15] T. Kasai, G. Lee, H. Arimura, S. Arikawa & K. Park, Linear-time longest-common-

prefix computation in suffix arrays and its applications, Proc. 12th Annual Symp.

Combinatorial Pattern Matching, LNCS 2089, Springer-Verlag (2001) 181–192.

Lempel-Ziv Factorization Using Less Time & Space 17

[16] Pang Ko & Srinivas Aluru, Space efficient linear time construction of suffix ar-

rays, Proc. 14th Annual Symp. Combinatorial Pattern Matching, R. Baeza-Yates,
E. Chávez & M. Crochemore (eds.), LNCS 2676, Springer-Verlag (2003) 200–210.

[17] Roman Kolpakov & Gregory Kucherov, On maximal repetitions in words, J. Discrete

Algs. 1 (2000) 159–186.

[18] Roman Kolpakov & Gregory Kucherov, Finding repeats with fixed gap, Proc. Seventh

Symposium on String Processing & Information Retrieval, (2000) 162–168.

[19] Roman Kolpakov & Gregory Kucherov, http://bioinfo.lifl.fr/mreps/.

[20] Roman Kolpakov & Gregory Kucherov, Finding approximate repetitions under Ham-
ming distance, Theoret. Comput. Sci. 303–1 (2003) 135–156.

[21] Stefan Kurtz, Reducing the space requirement of suffix trees, Software, Practice &

Experience 29–13 (1999) 1149–1171.

[22] Abraham Lempel & Jacob Ziv, On the complexity of finite sequences, IEEE Trans.

Information Theory 22 (1976) 75–81.

[23] André Lentin & Marcel P. Schützenberger, A combinatorial problem in the theory
of free monoids, Combinatorial Mathematics & Its Applications, R. C. Bose & T. A.
Dowling (eds.), University of North Carolina Press (1969) 128–144.

[24] Michael G. Main, Detecting leftmost maximal periodicities, Discrete Applied Maths.

25 (1989) 145–153.

[25] Michael G. Main & Richard J. Lorentz, An O(n log n) Algorithm for Recognizing

Repetition, Tech. Rep. CS-79–056, Computer Science Department, Washington State
University (1979).

[26] Michael G. Main & Richard J. Lorentz, An O(n log n) algorithm for finding all rep-
etitions in a string, J. Algs. 5 (1984) 422–432.

[27] Udi Manber & Gene Myers, Suffix arrays: a new method for on-line string searches,
SIAM J. Computing 22–5 (1993) 935–948.

[28] Veli Mäkinen & Gonzalo Navarro, Compressed full-text indices, ACM Computing

Surveys (2006) to appear.

[29] Michael Maniscalco & Simon J. Puglisi, Faster lightweight suffix array construction,

Proc. 17th Australasian Workshop on Combinatorial Algs., J. Ryan & Dafik (eds.)
(2006) 16–29.

[30] Giovanni Manzini, Two space-saving tricks for linear time LCP computation, Proc. 9th

Scandinavian Workshop on Alg. Theory, LNCS 3111, T. Hagerup & J. Katajainen
(eds.), Springer-Verlag (2004) 372–383.

[31] Giovanni Manzini & Paolo Ferragina, Engineering a lightweight suffix array construc-
tion algorithm, Algorithmica 40 (2004) 33–50.

[32] Edward M. McCreight, A space-economical suffix tree construction algorithm, J. As-

soc. Comput. Mach. 32–2 (1976) 262–272.

[33] Mark Nelson & Jean-loup Gailly, The Data Compression Book, M&T Books (1995)
541 pp.

[34] Simon J. Puglisi, W. F. Smyth & Andrew Turpin, A taxonomy of suffix array con-
struction algorithms, ACM Computing Surveys (2007) to appear.

18 Gang Chen, Simon J. Puglisi and W. F. Smyth

[35] Simon J. Puglisi, W. F. Smyth & Andrew Turpin, Inverted files versus suffix ar-

rays for in-memory pattern matching, Proc. 13th Symposium on String Processing &

Information Retrieval (2006) 122–133.

[36] Wojciech Rytter, Grammar compression, LZ-encodings, and string algorithms with

implicit input, Proc. 31st Internat. Colloq. Automata, Languages & Programming

(2004) 15–27.

[37] Wojciech Rytter, The number of runs in a string: improved analysis of the linear upper
bound, Proc. 23rd Symp. Theoretical Aspects of Computer Science, B. Durand & W.
Thomas (eds.), LNCS 2884, Springer-Verlag (2006) 184–195.

[38] J.S. Sim, D.K. Kim, H. Park & K. Park, Linear-time search in suffix arrays, Proc.

14th Australasian Workshop on Combinatorial Algs. (2003) 139–146.

[39] Bill Smyth, Computing Patterns in Strings, Pearson Addison-Wesley (2003) 423 pp.

[40] Axel Thue, Über unendliche zeichenreihen, Norske Vid. Selsk. Skr. I. Mat. Nat. Kl.

Christiana 7 (1906) 1–22.

[41] Esko Ukkonen, Approximate string-matching with q-grams and maximal matches,
Theoret. Comput. Sci. 92 (1992) 191–211.

[42] Esko Ukkonen, On-line construction of suffix trees, Algorithmica 14 (1995) 249–260.

[43] Peter Weiner, Linear pattern matching algorithms, Proc. 14th Annual IEEE Symp.

Switching & Automata Theory (1973) 1–11.

[44] Jacob Ziv & Abraham Lempel, A universal algorithm for sequential data compression,
IEEE Trans. Information Theory 23 (1977) 337–343.

Gang Chen
Department of Computing & Software
McMaster University
Hamilton, Ontario, Canada L8S 4K1

e-mail: cheng4@mcmaster.ca

Simon J. Puglisi
School of Computer Science & Information Technology
RMIT University
GPO Box 2476V
Melbourne, Victoria 3001, Australia

e-mail: sjp@cs.rmit.edu.au

W. F. Smyth
Department of Computing
and Digital Ecosystems & Business Intelligence Institute
Curtin University of Technology
GPO Box U1987
Perth, Western Australia 6845

e-mail: smyth@computing.edu.au

Lempel-Ziv Factorization Using Less Time & Space 19

Algorithms Research Group
Department of Computing & Software
McMaster University
Hamilton, Ontario, Canada L8S 4K1
e-mail: smyth@mcmaster.ca

