
Intensional Logic for Denotational Semantics

Denotational Semantics of a
Simple Imperative Language

Using Intensional Logic

Marc Bender
bendermm@mcmaster.ca

CAS 706 - Programming Languages
Instructor: Dr. Jacques Carette

Dept. of Computing and Software
McMaster University

1

Intensional Logic for Denotational Semantics

Introduction

The standard approach to references in denotational semantics is to introduce
addresses into the semantic domain. This method is inelegant when dealing with
blocks and procedures with parameters passed by reference.

Intensional logic is used for reasoning about senses (or intensions) of
expressions.

In imperative programming languages, it’s very useful for dealing with the concept
of references (as we will see).

We will devise a system of intensional logic IL and use it to translate a simple
Algol-like language, as in Janssen [1986] and Hung [1990].

2

Intensional Logic for Denotational Semantics

Sense and Denotation

When we use an identifier that corresponds to some object, there is an inherent
ambiguity as to what we mean:

• what the object denotes (its extension), or

• the object itself.

For example, consider the identifier ‘the temperature’ in the following expressions:

• ‘the temperature is 20◦’

• ‘the temperature is rising’

In the first occurence, we’re making a statement about the current temperature. In
the second, we mean the temperature itself (as a function of time).

3

Intensional Logic for Denotational Semantics

To gain a better understanding of this situation, let’s try to assign a “type” to the
term in question. From ‘the temperature is 20◦’ we could infer that ‘the
temperature’ has type degrees.

Say we now take a measurement of the temperature, and discover that it really is
20◦ — i.e. ‘the temperature’ = ‘20◦’. We evaluate the predicate by substitution:

‘20◦ is 20◦’

which is true, as we’d expect. Now let’s try to substitute into ‘the temperature is
rising’:

‘20◦ is rising’

This clearly makes no sense. Somehow we’ve introduced a “type mismatch” by
substituting the same value for the same term.

4

Intensional Logic for Denotational Semantics

Referential Transparency Vs. Referential Opacity

We have the following important principle:

Principle of Substitutivity of Equals :
Substituting one term for another with the same meaning in an expression should
not alter the meaning of that expression. In symbols:

[[x]] = [[y]] ⇒ [[t]] = [[t [x/y]]]

Clearly this principle is very important in logic and mathematics.

We call situations where the principle holds (e.g. ‘the temperature is 20◦’)
referentially transparent ; otherwise (e.g. ‘the temperature is rising’) they are
referentially opaque.

Our goal is to restore the principle of substitutivity in opaque contexts.

5

Intensional Logic for Denotational Semantics

Referential Opacity in Imperative Languages

Suppose we have the program variables x and y which correspond to different
memory locations, but both store the value 2 .

Compare the assignment statements

z := y; z := x;

Clearly they have the same result, that is to set z to 2 . So the principle of
substitutivity holds in this case; the RHS of an assignment statement is
referentially transparent.

Now consider these:

y := 1; x := 1;

Obviously they have different effects. So the LHS of an assignment statement is
referentially opaque.

We will solve this problem by translating statements into intensional logic.

6

Intensional Logic for Denotational Semantics

Our System of Intensional Logic ILILIL

By state we will mean the internal memory configuration of the computer. We
introduce three new operators for dealing with sense and denotation in imperative
programming languages.

• Extension ∨
∨x gives us the value stored in location x in the current state. Intuitively this
corresponds to dereferencing x . For example, if the value currently stored in
x is 2 , then

∨x = 2.

• State switcher 〈·/·〉
〈x/n〉 changes the state by overwriting the value in location x with n . This
of course models assignment.

Combining the two, we intuitively get

〈x/n〉∨x = n

7

Intensional Logic for Denotational Semantics

• Intension ∧

Intension is almost the inverse of extension , i.e. ∨∧t = t for any t , but
∧∨t = t is not true in general.

It can be interpreted (approximately) as a “thunk” or “loaded reference”. This
is far more easily demonstrated than explained — we start with a simple
example.

x = ∧2

means that x is roughly a “virtual location” that holds 2 :

∨x = ∨∧2 = 2.

Intension becomes more interesting when it’s applied to entire expressions:

y = ∧(∨x + ∨x)

When we dereference y , we evaluate ∨x in the present context. For
example:

〈x/1〉∨y = 〈x/1〉(∨x + ∨x) = 1 + 1 = 2

8

Intensional Logic for Denotational Semantics

The Formalized System ILILIL

IL is a higher order typed logic. The types τ, . . . are generated by

τ ::= N | B | (τ1 → τ2) | (S → τ)

where N and B are the types of natural numbers and booleans, S is the type of
states and τ1 → τ2 is the type of functions.

Notice that S is a hidden type — there can be no terms of type S in IL.

For each type τ we have

• a set of variables of type τ

• a set of constants of type τ , and

• the domain of τ , Dτ . e.g. DB = {TTT, FFF} , DN = IN

A valuation ρ is a function that assigns to each variable and constant of type τ a
value in Dτ . Constants are obviously always assigned the same values.

9

Intensional Logic for Denotational Semantics

We define the special constants

• Loc g = {X,Y, . . . : (S → N)} “global” locations

• Array = {A, . . . : (N → (S → N))} arrays

• Loc a = {A(n) | A ∈ Array ∧ n ∈ IN} array elements

• Loc = Loc g ∪ Loc a

The global locations and array elements are disjoint sets, that is they never share
locations.

Now define State to be the set of all states, i.e. functions σ : Loc → IN .

The meaning of an IL expression α : τ is then defined by structural recursion,
relative to a state σ and valuation ρ :

[[α]]σρ.

We won’t deal with the semantics here, for a full development see Hung [1990].

10

Intensional Logic for Denotational Semantics

IL has the usual

• arithmetic operations on N +, −, ×, . . . ,

• relations on N <, =, . . . ,

• propositional connectives on B ∨, ∧, ¬, . . . ,

• quantifiers ∀, ∃ ,

• function application ·(·) ,

• lambda abstraction

plus our modal operators

• ∧α : (S → τ) for α : τ ,

• ∨α : τ for α : (S → τ) , and

• 〈x/e〉α : τ for α : τ , x : (S → N) and e : N .

11

Intensional Logic for Denotational Semantics

Rigidity and β-Conversion

One of the key features of IL is its restricted form of β-conversion. First we define
what it means for a term to be rigid.

Definition (Rigidity) :
A term α is rigid if its value is the same in all states, i.e.

[[α]]σ1 = [[α]]σ2 for all σ1, σ2 ∈ State

Theorem (β-Conversion) :
For any IL term (λx · α)(β) , if either

(1) β is rigid, or

(2) no free occurrence of x in α lies within the scope of ∧ or 〈·/·〉 , then

(λx · α)(β) ∼= α [x/β]

where ∼= denotes semantic equivalence.

12

Intensional Logic for Denotational Semantics

Our Programming Language

In order to demonstrate translation into IL, we’ll use a simple Algol-like language.
It consists of

• v : simple variables x , y , . . . and indexed variables a[e] , . . . ,

• e: arithmetical expressions and b : boolean expressions,

• S: program statements, generated by:

S ::= skip

| v := e

| S1; S2

| if b then S1 else S2 fi

| begin alias x = v; S end

| begin new x := e; S end

13

Intensional Logic for Denotational Semantics

Backward Predicate Transformation

Consider the Hoare triple

{P}S{Q}.
We consider assertions P, Q that extend the boolean expressions of our
programming language by allowing quantifiers.

Above, Q has type B . Consider q = ∧Q , which has type (S → B) .

q is a state predicate. Intuitively, it partitions State into two classes, that is, states
that satisfy Q and states that don’t.

A program statement S is translated as a backward predicate transformer
S′ : ((S → B) → B) . For any assertion Q ,

S′(q)

is the weakest precondition that satisfies Q after the execution of S.

14

Intensional Logic for Denotational Semantics

Translation into Intensional Logic

We now translate the programming language into IL. The translation operator is ′ .

Variables
We associate with each simple variable x an IL variable x ′ : (S → N) Similarly
an array variable a is translated as a′ : (N → (S → N)) .

Expressions
The translations of both arithetical expressions e and boolean expressions b are
defined by structural induction on e and b ; for example,

(e1 + e2)′ = e′1 + e′2.

An important point is that variables are dereferenced when viewed as a part of an
expression, e.g. if e ≡ x then

e′ = ∨x ′

15

Intensional Logic for Denotational Semantics

Translation of Statements

In what follows, q is always assumed to be of type (S → B) .

To illustrate the approach, we start by translating the trivial case:

(skip)′ = λq · ∨q.

If we apply this to some assertion Q , we get

(skip)′(∧Q) = (λq · ∨q)∧Q = Q

as we expect. Assignment isn’t much more complicated:

(x := e)′ = λq · 〈x ′/e′〉∨q

This justifies the intuitive connection of the state-switcher with the assignment
statement.

16

Intensional Logic for Denotational Semantics

Our translation of statement concatenation is

(S1; S2)′ = λq · S′1
(∧(S′2(q))

)
.

Compare this with the backward predicate transformer S′(q) .

The conditional is translated as follows:

(if b then S1 else S2 fi)′

= λq · (b′ ∧ S′1(q)) ∨ (¬b′ ∧ S′2(q)).

Now to the alias -block. Its function is to make x refer to the same location as
v in S. This is where IL shines; the translation really couldn’t be simpler:

(begin alias x = v; S end)′ = (λx ′ · S′)(v ′)
The magic behind this lies in our restrictive β-conversion rule. v ′ can’t be
substituted into any intensional contexts unless it’s rigid.

17

Intensional Logic for Denotational Semantics

Memory Allocation and the new-block

Translation of the new-block requires some sort of mechanism to provide new
memory locations “on demand”. An IL array is well suited to the task.

We will use two special IL variables j : (S → N) and ` : (N → (S → N)) ,
where j is a counter used to index the allocator array ` .

`(∨j) provides us with the current “empty location”, and incrementing j
allocates a new cell. By adhering to the policy of always incrementing j
immediately after making use of `(∨j) , we ensure that cells are never
reallocated (to avoid unnecessary complication).

We will use artificial program variables l and j for illustrative purposes — they
are completely invisible to the programmer. Naturally we set l ′ = ` and
j ′ = j .

18

Intensional Logic for Denotational Semantics

The intuition behind the translation of the new-block is that we can model
begin new x := e; S end as follows:

begin alias x = l[j]; (j := j + 1; x := e; S) end

We proceed by

(1) “getting” the location of l[j] by aliasing x to it,

(2) incrementing j (as per our policy), then

(3) setting x to e .

The translation is:
(begin new x := e; S end)′

= (λx ′ · 〈j/∨j + 1〉〈x ′/e′〉S′)(`(∨j)′)

This last is my own contribution to the theory. The translation of the new-block in
Hung [1990] is

λq · ∃n[〈`(n)/e′〉(((λx ′ · S′)(`(n)))(∧[n = ∨j ∧ 〈j/∨j + 1〉∨q]))
]
.

19

Intensional Logic for Denotational Semantics

Final Notes

Many aspects of the theory were either skimmed or omitted altogether from this
presentation, for time and complexity reasons.

One interesting result that deserves mention is the state-switcher free
precondition. By using a number of state-switcher reductions, Hung [1990] proves
that the precondition can always be expressed in the assertion language alone,
without using state switchers.

Also interesting is the application of the theory to constructs involving “double
intensionality”, such as pointers and pass-by-name parameters.

20

Intensional Logic for Denotational Semantics

References

J.W. de Bakker [1980], Mathematical Theory of Program Correctness, Prentice-Hall

D.R. Dowty, R.E. Wall and S. Peters [1981], Introduction to Montague Semantics, D.

Reidel

H.K. Hung [1990], Compositional Semantics and Program Correctness for Procedures with

Parameters, Ph.D Thesis, Computer Science Dept., SUNY-Buffalo, Technical Report 90-18

T.M.V. Janssen [1986], Foundations and Applications of Montague Grammar, Part 1:

Philosophy, Framework, Computer Science, CWI Tract #19, Centre for Mathematics and

Computer Science, Amsterdam

J.I. Zucker and H.K. Hung [1991], Program Semantics, Intensional Logic and

Compositionality, in Proceedings of the First Montreal Workshop on Programming

Language Theory, April 1991.

21

