What does the partial order "mean"?

- Domain theory developed by Dana Scott and Gordon Plotkin in the late '60s
- use partial order to represent (informally):
- approximates
- carries more information than
- better or more defined
the fixed point is then the limit of a chain of ever better approximations.

Gordon J. Uszkay, 0326714 Presentation for W2004 CS706 27Feb2004

Partially Ordered Sets

A binary relation $\subseteq{ }^{(1)}$ on a set D is a partial order if and only if (iff) it is:

- reflexive: $\forall \mathrm{d} \in \mathrm{D}, \mathrm{d} \subseteq \mathrm{d}$
- transitive: $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{D}, \mathrm{a} \subseteq \mathrm{b}$ and $\mathrm{b} \subseteq \mathrm{c} \Rightarrow \mathrm{a} \subseteq \mathrm{c}$
- anti-symmetric: $a, b \in D, a \subseteq b$ and $b \subseteq a \Rightarrow a=b$

The pair (D, \subseteq) is called a partially ordered set or Poset.

1. This is also denoted \leq in some texts, and can be stated as "less than or equal to". This is perhaps a better symbol, but in both Neilsen(1) and Pitts(1), the subset symbol is used, and this is helpful later when examining the domain of partial functions.

Least Element (\perp)

The element d is a least element of $\mathrm{S} \subseteq \mathrm{D}$ if:

$$
\mathrm{d} \subseteq \mathrm{x} \forall \mathrm{x} \in \mathrm{~S}
$$

anti-symmetric \Rightarrow least element unique

The least element of an entire Poset is also called bottom and is represented by the symbol \perp.

Chains and Least Upper Bounds

A countable, increasing chain is a sequence of elements in set D such that $\mathrm{d}_{0} \subseteq \mathrm{~d}_{1} \subseteq \mathrm{~d}_{2} \subseteq \ldots$
(this will be called a chain, countable and increasing will be implicit)
An upper bound d of a chain satisfies: $\forall \mathrm{n} \in \mathrm{N}, \mathrm{d}_{\mathrm{n}} \subseteq \mathrm{d}$
If it exists, the least upper bound (lub) of a chain satisfies:

$$
\cup_{\mathrm{n} \geq 0} \mathrm{~d}_{\mathrm{n}} \subseteq \mathrm{~d}
$$

for any upper bound d of the chain.

Domains and CPOs

A chain complete poset (cpo) is a poset in which all countable, increasing chains have least upper bounds.

A domain is a cpo with a least element \perp.
Note: any finite poset is a chain complete poset, but not necessarily a domain (may not have a \perp).
example: Boolean $=\{$ true, false $\}$ is not a domain, but
Boolean $_{\perp}=\{$ true, false, $\perp\}$ where
$b \subseteq b^{\prime} \Rightarrow b=\perp$ or $b=b^{\prime}$ is called a flat domain.

Domain of Partial Functions

The set of partial functions $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ and partial order $\mathrm{f} \subseteq \mathrm{g}$

$$
\operatorname{domain}(\mathrm{f}) \subseteq \operatorname{domain}(\mathrm{g}), \mathrm{x} \in \operatorname{domain}(\mathrm{f}) \Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})
$$

form a domain, with \perp the completely undefined function.
All increasing chains $\mathrm{f} 0 \subseteq \mathrm{fl} \subseteq \mathrm{f} 2 \subseteq \ldots$ are bounded by
least upper bound $\cup_{n \geq 0} f$ where

$$
\operatorname{domain}\left(\cup_{n \geq 0} f\right)=\cup_{n \geq 0} \operatorname{domain}\left(f_{n}\right)
$$

$$
f(x)=f_{n}(x) \text { for } x \in \operatorname{domain}\left(f_{n}\right) \text { for some } n
$$

Why is this domain important?

Functions

A function $\mathrm{f}: \mathrm{D} \rightarrow \mathrm{E}$ is monotone if it satisfies:

$$
\forall \mathrm{d}, \mathrm{~d}^{\prime} \in \mathrm{D}, \mathrm{~d} \subseteq \mathrm{~d}^{\prime} \Rightarrow \mathrm{f}(\mathrm{~d}) \subseteq \mathrm{f}\left(\mathrm{~d}^{\prime}\right)
$$

A function $\mathrm{f}: \mathrm{D} \rightarrow \mathrm{E}$ is continuous if it satisfies:

$$
\mathrm{f} \text { is monotone and } \mathrm{f}\left(\cup_{\mathrm{n} \geq 0} \mathrm{~d}_{\mathrm{n}}\right)=\cup_{\mathrm{n} \geq 0} \mathrm{f}\left(\mathrm{~d}_{\mathrm{n}}\right)
$$

A function $\mathrm{f}: \mathrm{D} \rightarrow \mathrm{E}$ is strict if $\mathrm{f}(\perp)=\perp$
Lemma: a monotone function f is continuous if and only if

$$
f\left(\cup_{n \geq 0} d_{n}\right) \subseteq \cup_{n \geq 0} f\left(d_{n}\right)
$$

because monotonicity $\Rightarrow \cup_{n \geq 0} \mathrm{f}\left(\mathrm{d}_{\mathrm{n}}\right) \subseteq \mathrm{f}\left(\cup_{\mathrm{n} \geq 0} \mathrm{~d}_{\mathrm{n}}\right)$ and anti-symmetry of $\subseteq \Rightarrow f\left(\cup_{n \geq 0} d_{n}\right)=\cup_{n \geq 0} f\left(d_{n}\right)$

Pre-fixed Points

An element $\mathrm{d} \in \mathrm{D}$ is pre-fix point of $\mathrm{f}: \mathrm{D} \rightarrow \mathrm{D}$ if $\mathrm{f}(\mathrm{d}) \subseteq \mathrm{d}$.
If a least pre-fix point written fix(f), exists, it satisfies:

$$
\begin{gathered}
\text { 1) } \mathrm{f}(f i x(f)) \subseteq f i x(f) \\
\text { 2) } \forall \mathrm{d} \in \mathrm{D}, \mathrm{f}(\mathrm{~d}) \subseteq \mathrm{d} \Rightarrow f i x(f) \subseteq \mathrm{d} \\
f i x(f) \text { is unique }
\end{gathered}
$$

Proposition(Kleene's): For a monotone $\mathrm{f}: \mathrm{D} \rightarrow \mathrm{D}$ with a least pre-fixed point, $f i x(f)$ is a least fixed point of f .

Proof: by monotonicity of f and $(1), \mathrm{f}(\mathrm{f}(f i x(f))) \subseteq \mathrm{f}(f i x(f))$.
Let $\mathrm{d}=\mathrm{f}(f i x(f)$), then by (2) and above $f i x(f) \subseteq \mathrm{f}(f i x(f))$. (3)
So, by (1), (3) and anti-symmetry, $f i x(f)=\mathrm{f}(f i x(f))$.

Tarski's Fixed Point Theorem

Let $\mathrm{f}: \mathrm{D} \rightarrow \mathrm{D}$ be continuous for domain D . Then:
$>\mathrm{f}$ has a least pre-fixed point $f i x(f)=\cup_{\mathrm{n} \geq 0} \mathrm{f}^{\mathrm{n}}(\perp)$
$>f i x(f)$ is a fixed point of f , e.g. $\mathrm{f}(f i x(f))=f i x(f)$, and is therefore the least fixed point of f.
Proof:
By def'n of domain, there is a $\perp \in \mathrm{D}$. By monotonicity of f,

$$
\mathrm{f}^{\mathrm{n}}(\perp) \subseteq \mathrm{f}^{\mathrm{n}+1}(\perp) \Rightarrow \mathrm{f}^{\mathrm{n}+1}(\perp) \subseteq \mathrm{f}^{\mathrm{n}+2}(\perp)
$$

so f^{n} is a chain. Since a domain is a cpo, it has an upper bound,

$$
f i x(f)=\cup_{n \geq 0} f^{n}(\perp)
$$

and $\mathrm{f}(f i x(f))=\mathrm{f}\left(\cup_{\mathrm{n} \geq 0} \mathrm{f}^{\mathrm{n}}(\perp)\right)=\cup_{\mathrm{n} \geq 0} \mathrm{f}\left(\mathrm{f}^{\mathrm{n}}(\perp)\right)$ (by continuity)

$$
=\cup_{n \geq 0} f^{n+1}(\perp)=\cup_{\tilde{n} \geq 0} f^{\tilde{n}}(\perp)=f i x(f)
$$

because you can drop any finite number of terms from the beginning of the chain without affecting the upper bound.

Tarski's Theorem

- allows denotational semantics for recursive features
- you must still:
- define the underlying set and show it has a bottom
- define a partial ordering
- prove the least upper bound exists for all chains
- remember all chains on a finite domain are bounded
- define the function for a class of statement
- prove it is continuous

The While Statement

Define f so

$$
[[\text { while } \mathrm{B} \text { do } \mathrm{C}]]=\mathrm{f}_{[\mathrm{BI}[\mathrm{C}]}([[\text { while B do C }]])
$$

where for b :State \rightarrow Boolean and $\mathrm{w}, \mathrm{c}:$ State \rightarrow State

$$
\left.\mathrm{f}_{\mathrm{b}, \mathrm{c}}(\mathrm{w})=\lambda \mathrm{s} \in \text { State. if(} \mathrm{b}(\mathrm{~s}), \mathrm{w}(\mathrm{c}(\mathrm{~s})), \mathrm{s}\right)
$$

Solve for w as a fixed point of f, e.g. $w=f_{b, c}(w)$; define

$$
[[\text { while } \mathrm{B} \text { do } \mathrm{C}]]=f i x\left(f_{[B][C}\right)
$$

But first we need to verify the conditions for Tarski's theorem....

While cont...

Domain: partial functions f:State \rightarrow State (see prev. slide)

- verify partial order and that $f_{0} \subseteq f_{1} \subseteq \ldots$ is a chain

Function: $\mathrm{f}_{\mathrm{b}, \mathrm{c}}(\mathrm{w})=\lambda \mathrm{s} \in$ State. $\mathrm{if}(\mathrm{b}(\mathrm{s}), \mathrm{w}(\mathrm{c}(\mathrm{s})), \mathrm{s})$
Must show f is continuous, but if so
$>f i x\left(f_{b, c}\right)=\cup_{n \geq 0} \mathrm{f}^{\mathrm{n}}(\perp)$ and is a least fixed point of f

- first define chain $\mathrm{w}_{0}=\perp ; \mathrm{w}_{\mathrm{n}+1}=\mathrm{f}\left(\mathrm{w}_{\mathrm{n}}\right)$
- chain must have a limit $\cup_{n \geq 0} W_{n}$ as this is a domain

While cont...

$$
f\left(w_{i}\right) s=w_{i}(c(s)) \text { for } b(s) \text { true; } s \text { for } b(s) \text { false }
$$

Obvious for $\mathrm{b}(\mathrm{s})$ false, so only consider true..
$\mathrm{w}_{\mathrm{i}} \subseteq \mathrm{w}_{\mathrm{j}} \Rightarrow \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=\mathrm{w}_{\mathrm{i}}(\mathrm{c}(\mathrm{s})) \subseteq \mathrm{w}_{\mathrm{j}}(\mathrm{c}(\mathrm{s}))=\mathrm{f}\left(\mathrm{w}_{\mathrm{j}}\right) \Rightarrow \mathrm{f}$ monotone
f monotone $+\mathrm{f}\left(\cup_{\mathrm{n} \geq 0} \mathrm{~W}_{\mathrm{n}}\right) \subseteq \cup_{\mathrm{n} \geq 0} \mathrm{f}\left(\mathrm{w}_{\mathrm{n}}\right) \Rightarrow \mathrm{f}$ continuous $\left(^{*}\right)$
$f\left(\cup_{n \geq 0} W_{n}\right) s=\cup_{n \geq 0} W_{n}(c(s)) \subseteq \cup_{n \geq 0} W_{n+1}(c(s))$ by def'n of lub $=\cup_{n \geq 0}\left(f\left(w_{n}\right)\right)(c(s))$ by def'n of w
so f is continuous, and therefore $f i x(f)=\mathrm{f}\left(\cup_{\mathrm{n} \geq 0} \mathrm{w}_{\mathrm{n}}\right)$ exists and is the least fixed point of f by Tarski's Theorem.

Where does this lead?

- establish a set of useful domains to represent the virtual environment of a programming language
- e.g. Boolean ${ }_{\perp}$, Naturals $_{\perp}$
- learn some additional definitions and theorems to support the construction of these domains and continuous functions on them
- e.g. composition preserves continuity, functions of multiple arguments are continuous if continuous in their arguments, etc.

Bibliography

- Dr Andrew M. Pitts, "Lecture on Denotational Semantics",Cambridge University Computer Laboratory available at http://www.cl.cam.ac.uk/Teaching/Lectures/dens/
- Hanne Riis Nielson, Flemming Nielson: Semantics with Applications: A Formal Introduction. Wiley Professional Computing, (240 pages, ISBN 047192980 8), Wiley, 1992. available on-line at http://www.imm.dtu.dk/~riis/Wiley_book/wiley.html
- Davey, BA and Priestly,HA, "Introduction to Lattices and Order" by Cambridge University Press, (1990).

