
What does the partial order "mean"?

● Domain theory developed by Dana Scott and Gordon 
Plotkin in the late '60s
● use partial order to represent (informally):

● approximates
● carries more information than
● better or more defined

 the fixed point is then the limit of a chain of ever better 
approximations.
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Partially Ordered Sets

A binary relation ⊆ (1) on a set D is a partial order if and 
only if (iff) it is:
● reflexive: ∀d∈D, d ⊆ d 
● transitive: a,b,c∈D, a ⊆ b and b ⊆ c ⇒ a ⊆ c
● anti-symmetric: a,b∈D, a⊆b and b⊆a ⇒ a=b

The pair (D, ⊆) is called a partially ordered set 
or Poset.

1.  This is also denoted ≤ in some texts, and can be stated as "less than or equal to".  This is 
perhaps a better symbol, but in both Neilsen(1) and Pitts(1), the subset symbol is used, and this 
is helpful later when examining the domain of partial functions. 



Least Element (⊥)

The element d is a least element of S ⊆ D if:

d ⊆ x ∀ x∈ S

anti-symmetric ⇒ least element unique

The least element of an entire Poset is also called 
bottom and is represented by the symbol ⊥.



Chains and Least Upper Bounds
A countable, increasing chain is a sequence of elements in 

set D such that  d
0
 ⊆ d

1
 ⊆ d

2
 ⊆ ...

(this will be called a chain, countable and increasing will be implicit)

An upper bound d of a chain satisfies: ∀n∈N,  d
n
 ⊆ d

If it exists, the  least upper bound (lub) of a chain satisfies: 
∪

n³0  
d

n
 ⊆ d 

for any upper bound d of the chain.



Domains and CPOs

A chain complete poset (cpo) is a poset in which all countable, 
increasing chains have least upper bounds.

A domain is a cpo with a least element ⊥.

Note:  any finite poset is a chain complete poset, but not 
necessarily a domain (may not have a ⊥).

example: Boolean = {true, false} is not a domain, but
Boolean

⊥ 
= {true, false, ⊥} where 

bÍb' Þ  b=⊥ or b=b' is called a flat domain.



Domain of Partial Functions
The set of partial functions f:X→Y and partial order f ⊆ g  

domain(f) ⊆ domain(g), xÎdomain(f) Þ f(x) = g(x)

form a domain, with ^ the completely undefined function.

All increasing chains f0 ⊆ f1⊆ f2⊆ ... are bounded by 

least upper bound È
n³0

f where

domain(È
n³0

f) =È
n³0

 domain(f
n
)

f(x) = f
n
(x) for xÎdomain(f

n
) for some n

Why is this domain important?



Functions
A function f:D→E is monotone if it satisfies:

∀d,d'∈D, d ⊆ d' ⇒  f(d) ⊆ f(d')

A function f:D→E is continuous if it satisfies:

f is monotone and f(∪
n≥0

d
n
) = ∪

n≥0
f(d

n
)

A function f:D→E is strict if f(⊥) = ⊥
Lemma: a monotone function f is continuous if and only if

f(∪
n≥0

d
n
) ⊆ ∪

n≥0
f(d

n
)

because monotonicity ⇒ ∪
n≥0

f(d
n
) ⊆ f(∪

n≥0
d

n
) and 

anti-symmetry of ⊆ ⇒ f(∪
n≥0

d
n
) = ∪

n≥0
f(d

n
)



Pre-fixed Points
An element d∈D is  pre-fix point of f:D→D if  f(d) ⊆ d.

If a least pre-fix point written fix(f), exists, it satisfies:

1) f( fix(f) ) ⊆ fix(f)

2) ∀d∈D, f(d) ⊆ d ⇒ fix(f) ⊆ d

fix(f) is unique

Proposition(Kleene's): For a monotone f:D→D with a least 
pre-fixed point,  fix(f) is a least fixed point of f.

Proof: by monotonicity of f and (1), f(f(fix(f))) ⊆ f(fix(f)).

Let d = f(fix(f)), then by (2)  and above fix(f)  ⊆ f(fix(f)). (3)

So, by (1), (3) and anti-symmetry,  fix(f) = f(fix(f)).



Tarski's Fixed Point Theorem
Let f:D®D be continuous for domain D.  Then:
➢ f  has a least pre-fixed point  fix(f) = È

n³0
 f n(^)

➢ fix(f) is a fixed point of f, e.g. f(fix(f)) = fix(f), and is therefore 
the least fixed point of f.
Proof: 
By def'n of domain, there is a ^ÎD.  By monotonicity of f,

f n(^) Í f n+1(^) Þ f n+1(^) Í f n+2(^)
so f n is a chain.  Since a domain is a cpo, it has an upper bound,

 fix(f) = È
n³0

 f n(^)
and f( fix(f)) = f(È

n³0
 f n(^)) = È

n³0
 f(f n(^)) (by continuity)

= È
n³0

 f n+1(^) = È
ñ³0

 f ñ(^) = fix(f)
because you can drop any finite number of terms from the 
beginning of the chain without affecting the upper bound.

 Proof by Definition



Tarski's Theorem
● allows denotational semantics for recursive features
● you must still:

– define the underlying set and show it has a bottom
– define a partial ordering
– prove the least upper bound exists for all chains

● remember all chains on a finite domain are bounded
– define the function for a class of statement
– prove it is continuous



The While Statement

Define f so 
[[while B do C]] = f

[B][C]
([[while B do C]])

where for b:State→Boolean and w,c:State→State

f
b,c

(w) = λs∈State. if( b(s), w(c(s)), s)

Solve for w as a fixed point of f, e.g. w = f
b,c

(w); define

[[while B do C]] = fix(f
[B][C]

)

But first we need to verify the conditions for Tarski's 
theorem....



While cont...

Domain: partial functions f:State→State (see prev. slide)

– verify partial order and that f
0
 ⊆ f

1
⊆ ... is a chain

Function: f
b,c

(w) = λs∈State. if( b(s), w(c(s)), s)

Must show f is continuous, but if so

➢ fix(f
b,c

) = ∪
n≥0

f n(⊥) and is a least fixed point of f

• first define chain w
0
 = ⊥; w

n+1
 = f(w

n
)

• chain must have a limit ∪
n≥0

 w
n
 as this is a domain



While cont...

f(w
i
)s = w

i
(c(s)) for b(s) true; s for b(s) false

Obvious for b(s) false, so only consider true..

w
i
 ⊆ w

j
 ⇒ f(w

i
) = w

i
(c(s)) ⊆ w

j
(c(s)) = f(w

j
) ⇒ f monotone

f monotone + f(∪
n≥0

w
n
) ⊆ ∪

n≥0
f(w

n
) ⇒ f continuous (*)

f(∪
n≥0

w
n
)s = ∪

n≥0
w

n
(c(s)) ⊆ ∪

n≥0
w

n+1
(c(s)) by def'n of lub

= ∪
n≥0

(f(w
n
))(c(s)) by def'n of w

 so f is continuous, and therefore fix(f) = f(∪
n≥0

w
n
) exists and 

is the least fixed point of f by Tarski's Theorem.



Where does this lead?
● establish a set of useful domains to represent the 

virtual environment of a programming language
– e.g. Boolean

⊥
, Naturals

⊥

● learn some additional definitions and theorems to support 
the construction of these domains and continuous 
functions on them
– e.g. composition preserves continuity, functions of 

multiple arguments are continuous if continuous in 
their arguments, etc.
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