Hashing - Introduction

- **Dictionary** = a dynamic set that supports the operations INSERT, DELETE, SEARCH
- **Examples**:
 - a symbol table created by a compiler
 - a phone book
 - an actual dictionary
- **Hash table** = a data structure good at implementing dictionaries
Why not just use an array with **direct addressing** (where each array cell corresponds to a key)?

- Direct-addressing guarantees **$O(1)$ worst-case time** for Insert/Delete/Search.
- **BUT** sometimes, the number K of keys actually stored is very small compared to the number N of possible keys. Using an array of size N would waste space.

- We’d like to use a structure that takes up $\Theta(K)$ space and $O(1)$ average-case time for Insert/Delete/Search.
Hashing

- Hashing =
 - use a table (array/vector) of size m to store elements from a set of much larger size
 - given a key k, use a function h to compute the slot $h(k)$ for that key.

- Terminology:
 - h is a hash function
 - k hashes to slot $h(k)$
 - the hash value of k is $h(k)$
 - collision: when two keys have the same hash value
Hashing

- What makes a good hash function?
 - It is easy to compute
 - It satisfies uniform hashing

- hash = to chop into small pieces (Merriam-Webster)
 = to chop any patterns in the keys so that the results are uniformly distributed (cs311)
Hashing

- What if the key is not a natural number?
- We must find a way to represent it as a natural number.
- Examples:
 - key \(i \) → Use its ascii decimal value, 105
 - key \(inx \) → Combine the individual ascii values in some way, for example,
 \[
 105 \times 128^2 + 110 \times 128 + 120 = 1734520
 \]
Hashing - hash functions

Truncation

- Ignore part of the key and use the remaining part directly as the index.

- Example: if the keys are 8-digit numbers and the hash table has 1000 entries, then the first, fourth and eighth digit could make the hash function.

- Not a very good method: does not distribute keys uniformly
Hashing

Folding

- **Break up the key in parts and combine them in some way.**

- **Example**: if the keys are 8 digit numbers and the hash table has 1000 entries, break up a key into three, three and two digits, add them up and, if necessary, truncate them.

- Better than truncation.
Hashing

Division

- If the hash table has m slots, define
 \[h(k) = k \mod m \]
- Fast
- Not all values of m are suitable for this. For example powers of 2 should be avoided.
- Good values for m are prime numbers that are not very close to powers of 2.
Hashing

Multiplication

- \(h(k) = \lfloor m \times (k \times c - \lfloor k \times c \rfloor) \rfloor \), \(0 < c < 1 \)

- In English:
 - Multiply the key \(k \) by a constant \(c \), \(0 < c < 1 \)
 - Take the fractional part of \(k \times c \)
 - Multiply that by \(m \)
 - Take the floor of the result

- The value of \(m \) does not make a difference
- Some values of \(c \) work better than others
- A good value is \(\sqrt{5} - 1 \)/2
Hashing

Multiplication

Example:

Suppose the size of the table, m, is 1301.

For $k=1234$, $h(k)=850$

For $k=1235$, $h(k)=353$

For $k=1236$, $h(k)=115$

For $k=1237$, $h(k)=660$

For $k=1238$, $h(k)=164$

For $k=1239$, $h(k)=968$

For $k=1240$, $h(k)=471$
Hashing

Universal Hashing

- Worst-case scenario: The chosen keys all hash to the same slot. This can be avoided if the hash function is not fixed:
 - Start with a collection of hash functions
 - Select one in random and use that.
- Good performance on average: the probability that the randomly chosen hash function exhibits the worst-case behavior is very low.
Hashing

Universal Hashing

- Let H be a collection of hash functions that map a given universe U of keys into the range $\{0, 1, ..., m-1\}$.

- If for each pair of distinct keys $k, l \in U$ the number of hash functions $h \in H$ for which $h(k) = h(l)$ is $|H| / m$, then H is called universal.
Given a hash table with m slots and n elements stored in it, we define the **load factor** of the table as $\lambda = \frac{n}{m}$.

The load factor gives us an *indication of how full* the table is.

The possible values of the load factor depend on the method we use for resolving collisions.
Chaining a.k.a. closed addressing

- **Idea**: put all elements that hash to the same slot in a linked list (chain). The slot contains a pointer to the head of the list.

- The load factor indicates the average number of elements stored in a chain. It could be less than, equal to, or larger than 1.
Hashing - resolving collisions

Chaining

- **Insert**: $O(1)$
 - worst case
- **Delete**: $O(1)$
 - worst case
 - assuming doubly-linked list
 - it’s $O(1)$ after the element has been found
- **Search**: ?
 - depends on length of chain.
Hashing - resolving collisions

Chaining

- **Assumption**: simple uniform hashing
 - any given key is equally likely to hash into any of the m slots

- **Unsuccessful search**:
 - average time to search unsuccessfully for key k = the average time to search to the end of a chain.
 - The average length of a chain is λ.
 - Total (average) time required : $\Theta(1+\lambda)$
Hashing - resolving collisions

Chaining

- **Successful search:**
 - expected number e of elements examined during a successful search for key k
 - $e = 1$ more than the expected number of elements examined when k was inserted.
 - it makes no difference whether we insert at the beginning or the end of the list.
 - Take the average, over the n items in the table, of 1 plus the expected length of the chain to which the ith element was added:
Hashing - resolving collisions

Chaining

\[e = \frac{1}{n} \sum_{i=1}^{n} \left(1 + \frac{i-1}{m} \right) = ... = 1 + \frac{\lambda}{2} - \frac{1}{2m} \]

- Total time: \(\Theta(1 + \lambda) \)
Hashing - resolving collisions

Chaining

- Both types of search take $\Theta(1 + \lambda)$ time on average.
- If $n = O(m)$, then $\lambda = O(1)$ and the total time for Search is $O(1)$ on average
- Insert : $O(1)$ on the worst case
- Delete : $O(1)$ on the worst case

- Another idea: Link all unused slots into a free list
Hashing - resolving collisions

Open addressing

- Idea:
 - Store all elements in the hash table itself.
 - If a collision occurs, find another slot. (How?)
 - When searching for an element examine slots until the element is found or it is clear that it is not in the table.
 - The sequence of slots to be examined (probed) is computed in a systematic way.
- It is possible to fill up the table so that you can’t insert any more elements.
 - idea: extendible hash tables?
Hashing - resolving collisions

Open addressing

- Probing must be done in a systematic way (why?)
- There are several ways to determine a probe sequence:
 - linear probing
 - quadratic probing
 - double hashing
 - random probing