
Control-Flow Semantics for

Assembly-Level Data-Flow Graphs

Wolfram Kahl⋆, Christopher K. Anand, and Jacques Carette

SQRL, McMaster University, Hamilton, Ontario, Canada

Abstract. As part of a larger project, we have built a declarative assem-
bly language that enables us to specify multiple code paths to compute
particular quantities, giving the instruction scheduler more flexibility in
balancing execution resources for superscalar execution.
Since the key design points for this language are to only describe data
flow, have built-in facilities for redundancies, and still have code that
looks like assembler, by virtue of consisting mainly of assembly instruc-
tions, we are basing the theoretical foundations on data-flow graph the-
ory, and have to accommodate also relational aspects.
Using functorial semantics into a Kleene category of “hyper-paths”, we
formally capture the data-flow-with-choice aspects of this language and
its implementation, providing also the framework for the necessary cor-
rectness proofs.

1 Introduction

Magnetic resonance imaging (MRI) relies on highly efficient signal processing
software — for example in medical applications, higher efficiency can make quite
an important qualitative difference. The state of the art in the development of
such software is that a scientist starts from a mathematical model and produces
an appropriate signal processing algorithm; as first step towards an implementa-
tion this algorithm is directly translated into a prototype program, with reason-
able confidence in its correctness. This is then turned over to a “digital signal
processing guru” who will apply — manually! — different kinds of code trans-
formations and optimisations, up to manual rearrangement of assembly code.

It is obvious that it is not easy to be fully confident in the correctness of
software coming out of such a process. However, particularly in medical applica-
tions, correctness can be crucial, and defects in MRI signal processing software
could manifest themselves as visible artifacts in the generated images that could
introduce problems in the medical uses of these images.

The Coconut project prepares to produce a system that provides a coherent
and consistent path from a mathematical specification of signal processing prob-
lems to verified and highly optimised machine code [2]. As part of this project,
we encountered a need for a language of a quite peculiar nature: we needed
to specify choices amongst different “equivalent” computation paths made up

⋆ This research has been supported by an NSERC Discovery Grant



of low-level assembler. An intelligent instruction scheduler will choose the best
path, using built-in knowledge of the intricacies of a modern, vectorised and
pipelined CPU architecture. Our collective experience told us that we should be
specifying our problem in a declarative manner, to give maximal freedom to the
scheduler. We decided to see if we could get these rather different paradigms
(declarative and assembly) to coexist, and serve as the main language for our
compiler’s back end.

The central idea is that this approach should allow us a separation of concerns
in the code generation part of our special-purpose compiler:

– The (assembly) code generator will use knowledge of the mathematical se-
mantics of assembly instructions to generate correct assembly code, but it
will leave control flow decisions open as far as possible.

– The scheduler (or assembler) uses knowledge about the resource consump-
tion of assembly instructions to generate fast machine code; correctness is
guaranteed by the fact that the scheduler essentially performs only a selec-
tion of one path among those proposed by the code generator.

Our intermediate declarative assembly language therefore represents the seman-
tics of its programs mostly as data flow; it allows to express some control flow
constraints, but essentially leaves all efficiency-related instruction selection and
scheduling decisions open.

Our targets are vectorised and pipelined CPUs, currently PowerPC 745X
and 970, that are commonly used in signal processing applications. We design
the scheduler (with appropriate support from the code generation component)
to be able to automate a number of “tricks” used in manual optimisation. For
example, it will be able to take advantage of limited precision requirements, and
more generally, choose between “equivalent” machine code computations, which
includes choosing instructions that produce the same results with different re-
source consumption, and choosing between computations that produce different
intermediate values which can be used interchangeably. Other tricks avoid reg-
ister spill for example via recomputation of previously available values, or via
the use of renaming registers (used internally by some PowerPC versions) as
non-addressable intermediate storage.

These requirements motivated our decision to base our declarative assembly
language essentially on data flow graphs, and to add choices of computation
paths as a new feature.

Therefore, branches are eliminated from our declarative assembly language,
and we express all control flow which cannot be eliminated by use of permutation
and selection in special-purpose ‘combinators’ (not considered in this paper).
Only the non-branching instructions (of the PowerPC 745X and PowerPC 970)
can be used as labels in our code graphs, which we understand to be the abstract
syntax of our assembly language.



2 Code Graphs

Term graphs are usually represented by graphs where nodes are labelled with
function symbols and edges connect function calls with their arguments [12]. An
alternative representation was introduced with the name of jungle by Hoffmann
and Plump [7] for the purpose of efficient implementation of term rewriting
systems (it is called “term graph” in [11]).

A jungle is a directed hypergraph where nodes are only labelled with type
information (if applicable), function names are hyperedge labels, each hyperedge
has a sequence of input tentacles and exactly one output tentacle, and for each
node, there is at most one hyperedge that has its output tentacle incident with
that node.

For representing our declarative assembly code fragments, we use a general-
isation of the jungle concept, corresponding to Ştefănescu’s “flow graphs” [14]:

Definition 2.1 A code graph G = (N , E , In,Out, src, trg, eLab) over an edge
label set ELab consists of
– a set N of nodes and a set E of hyperedges (or edges),
– two node sequences In,Out : N ∗ containing the input nodes and output nodes

of the code graph,
– two functions src, trg : E → N ∗ assigning each hyperedge the sequence of its

source nodes and target nodes respectively, and
– a function eLab : E → ELab assigning each hyperedge its edge label, where

the label has to be compatible with the numbers of source and target nodes
of the edge.

In Coconut, nodes are actually labelled with types, but this is not relevant
for the current paper. Edge labels are either opcodes or constants, as can be
seen in the example code graph above, where output tentacles are arrows from
hyper-edges to nodes, and input tentacles are arrows from nodes to hyperedges
— the ordering relation between in- resp. output tentacles incident with the
same hyperedge is not made explicit in the drawing, but is part of the graph
structure.

Acyclic code graphs where all edges have exactly one target node and no
node is the target of several edges correspond to the jungles of [7] (called “term
graphs” in [11]), which are essentially a hypergraph version of conventional term
graphs. Since some operations produce more than one result, our hyperedges
can have multiple output tentacles just as the primitives of Ştefănescu’s flow
graphs [14]; this also corresponds to the use of “hypersignatures” in [3]. In the
application to PowerPC, the second result is always a condition code, i.e. carry
or overflow, but we think it will be better to treat all results uniformly.

The more radical departure from conventional term-graph formalisms is that
we allow several output tentacles to be incident with any one node — such
joining tentacles are used for results that can be obtained in different ways, and
also for situations where different intermediate values could be used interchange-
ably. In Ştefănescu’s flownomials there are joins, too — Ştefănescu proposes two



interpretations for the “branch/join” pair of operations in data flow networks,
one as “copy/equality test” and one as “split/merge” [13]. Our use is closer to
a control-flow interpretation of join; the following list of typical applications of
joins shows how this single feature opens up a large bag of “tricks” for code
generation from code graphs:

– Multiple entry points: Many common mathematical functions are imple-
mented (for the sake of efficiency) via algorithms with extra preconditions,
and initial code ensures that those preconditions are satisfied. For example,

• trigonometric functions are only calculated on a fundamental domain,
and modulo calculations are first performed to put arguments into the
fundamental domain;

• some functions have a standard interface (e.g. choice of units), but an
alternative interface is much more efficient, so the initial statements per-
form the necessary conversions.

In both cases, we can eliminate the respective initial instructions if we can
verify the stricter preconditions, or if we can rewrite the upstream calculation
to produce results matched to the more efficient interface.

– Instruction selection: For example merging disjoint bit-fields by either
logical or or arithmetic add instructions uses different functional units on
some processors. In such cases, conventional optimising compilers switch
instructions to get better schedules; in our approach, we emit a join in the
assembly code and let the code graph scheduler select the better branch in
each case.

– Multiple code paths (beyond single-instruction alternatives): It is possi-
ble to do some computations in different units, e.g., evaluating polynomials
in the scalar floating point unit or the vector floating point unit. Such alter-
native code paths can be used in two ways:

• map f, where f is a simple function, can be unrolled and performed
simultaneously on different data in different execution units;

• the code can be in-lined in different contexts where relative demand on
execution units, register pressure, etc., vary enough to make one code
path more efficient than another.

As an example, the following code graph arises in an implementation of a non-
uniform Fourier transform — we always show code graphs with the sequences
of input and output nodes indicated by arrows from, respectively to, numbered
triangles; here, there is only one input and one output. Rectangles are instruction
hyperedges, and ellipses are (zero-input) constant hyperedges. The light grey
instructions require the vector integer unit; the dark grey instructions require
the vector permutation unit, and all other instructions the vector floating point
unit. The small solid circles are nodes; arrows are drawn from source nodes to
hyperedges and from hyperedges to target nodes. In this example, the three
nodes that serve as inputs for more than one source tentacle are enlarged; the
central grey node is in addition a join node since it is the target of more than
one hyperedge.



vctuxs 2vslw

vperm vperm

vmaddfp

vperm

vand

vaddubm

vmaddfp

vrfim xsvctuxs 0 vctuxs 2

vspltw

1

1

slopespoints

c4048fours

2 3

0to3

partialsplat

This particular join can be used by the scheduler to take some pressure off the
floating point unit. If in a larger context, sharing of one of the constants used by
the integer instructions becomes possible, the affected branch becomes preferable
over the other branch since this reduces register pressure.

The flavour of this kind of joins is very similar to the instruction sequence
alternatives produced by superoptimisers [10, 6], but we also use joins for alter-
natives that produce different results that still meet, for example, appropriate
precision requirements. This approach is justified by the relational semantics we
present in Sect. 5.

Further discussion of examples and the speed-ups we achieved using our
approach can be found in [2].

Reachability in code graphs is defined via the node successor relation, where
n ′ is a successor of n if there is an edge for which n is a source node and n ′ a
target node. We use this to define two basic node and edge properties:

Definition 2.2 A node in a code graph is called used iff an output node is
reachable from it, and supported iff it is either an input node or a target node
of a supported edge.

An edge in a code graph is called used iff at least one of its target nodes is
used, and supported iff all its source nodes are supported.

The following code graphs provide some illustration of these concepts.
In the left graph, the A edge and its output node are unused, and the C edge

and its input node are unsupported. In the middle graph, the left output node



of the Q edge is unused, but the Q edge itself is still used, since its right output
node is an output node of the graph. In the right graph (which has one output
and zero inputs), nothing is supported:

1

1

A CB Q

1

1

1

RS

Building on top of these node and edge properties, we define a number of im-
portant graph properties:

Definition 2.3 A code graph is called:
– acyclic iff the node successor relation is acyclic,
– join-free iff each node occurs at most once in the concatenation of the target

node lists of all edges with the input node list of the graph,
– forward-garbage-free iff all edges and non-output nodes are supported (no

computations that cannot be performed because of lack of input),
– backward-garbage-free iff all edges are used (no computations for which no

result is used),
– garbage-free iff it is both forward- and backward-garbage-free,
– lean iff it is garbage-free and join-free (and therefore acyclic),
– coherent iff all output nodes are supported,
– solid iff it is garbage-free and coherent,
– executable iff it is solid and lean.

For example, the A edge above is backward-garbage (it will be collected in a
backward direction) and the C edge is forward-garbage; the middle graph above
is garbage-free, and furthermore lean and solid, and therefore executable, and
the right graph has only forward-garbage edges and is not coherent.

The (forward-, resp. backward-) garbage-collected version of a code graph is
obtained by iteratively deleting all nodes and edges that violate the respective
condition — it is easy to see that the result is uniquely determined, always
defined, and has the same input and output nodes as the original graph.

A first, simplified understanding of the use of code graphs in Coconut is
the following:

– The code generator produces a coherent code graph G from a library of code
graph fragments.

– G is garbage collected into a solid code graph S .
– The scheduler selects an executable subgraph E of S (or, more precisely, an

executable “hyper-path” through S , see Sect. 5).
– The scheduler (already during selection) sequentialises the instructions in E

in a way that maximises instruction-level parallelism in the target CPU.



Joins enable cycles, and since this may be particularly surprising in a data flow
context, we discuss an (artificial) example here:

1 2

1 2

A

B

C

D

E

F

1 2

1 2

A

B

C

D

1 2

1 2

B

C

D
F

The graph on the left should be understood as describing a computation where
the operations B and D require (at the hollow nodes) intermediate results that

– can be obtained from inputs (via A and C), and alternatively
– can be obtained from each other (via E resp. F).

The two graphs drawn beside it are both executable subgraphs that could be
selected by the scheduler when processing the cyclic graph as input, and which
of these will be more efficient may well depend on the context in which they are
used.

3 Data-Flow Categories of Code Graphs

We now summarise the theory of our code graphs, which is essentially a refor-
mulation of Ştefănescu’s data-flow network algebra, in the language of category
theory. In particular, we use the gs-monoidal categories proposed by Corradini
and Gadducci for modelling acyclic term graphs [4].

The following definition serves mainly to introduce our notation:

Definition 3.1 A category C is a tuple (Obj,Mor, src, trg, I, ;) with the following
constituents:
– Obj is a collection of objects.
– Mor is a collection of arrows or morphisms.
– src (resp. trg) maps each morphism to its source (resp. target) object.

We write “f : A → B” for “f ∈ Mor ∧ src(f ) = A ∧ trg(f ) = B”. The
collection of all morphisms f of category C with f : A → B is denoted as
MorC[A,B] and also called a homset.

– “;” is the binary composition operator, and composition of two morphisms
f : A → B and g : B′ → C is defined iff B = B′, and then (f ;g) : A → C;
composition is associative.

– I associates with every object A a morphism IA which is both a right and
left unit for composition.



The objects of the untyped code graph category over a set of edge labels
ELab are natural numbers; in the typed case we would have sequences of types.
A morphism from m to n is a code graph with m input nodes and n output
nodes (more precisely, it is an isomorphism class of code graphs, since node and
edge identities do not matter). Composition F ;G “glues” together the output
nodes of F with the respective input nodes of G . The identity on n consists only
of n input nodes which are also, in the same sequence, output nodes, and no
edges.

A primitive code graph is a code graph that corresponds to a single operation,
i.e., a code graph with a single edge where each node is the target of exactly
one tentacle, and the target node sequence of the edge coincides with the output
node sequence of the graph, and the source sequence with the input sequence.

Definition 3.2 A symmetric strict monoidal category C = (C0,⊗,1, X) con-
sists of a category C0, a strictly associative monoidal bifunctor ⊗ with 1 as its
strict unit, and a transformation X that associates with every two objects A and
B an arrow XA,B : A⊗ B → B ⊗A with:

(F ⊗ G);XC,D = XA,B
;(G ⊗ F ) , XA,B

;XB,A = IA ⊗ IB ,

XA⊗B,C = (IA ⊗ XB,C);(XA,C ⊗ IB) , X1,1 = I1 .

For code graphs, 1 is the number 0 and ⊗ on objects is addition. On morphisms,
⊗ forms the disjoint union of code graphs, concatenating the input and output
node sequences. Xm,n differs from Im+n only in the fact that the two parts of
the output node sequence are swapped.

Definition 3.3 C = (C0,⊗,1, X, !) is a strict g-monoidal category iff

– (C0,⊗,1, X) is a symmetric strict monoidal category, and
– ! associates with every object A of C0 an arrow !A : A → 1,

such that I1 =!1, and monoidality of termination holds: !A⊗B =!A⊗!B

For code graphs, !n differs from In only in the fact that the output node sequence
is empty. The “g” of “g-monoidal” stands for “garbage”: all edges of code graph
G : m → n are backward-garbage in G ;!n .

Note that !n itself is garbage free, coherent, and lean, and therefore solid and
even executable.

Definition 3.4 C = (C0,⊗,1, X,∇) is a strict s-monoidal category C iff

– (C0,⊗,1, X) is a symmetric strict monoidal category, and
– ∇ associates with every object A of C0 an arrow ∇A : A → A⊗A,

such that I1 = ∇1, and the coherence axioms

– associativity of duplication: ∇A
;(IA ⊗∇A) = ∇A

;(∇A ⊗ IA),
– commutativity of duplication: ∇A

;XA,A = ∇A

and the monoidality axiom

– monoidality of duplication: ∇A⊗B
;(IA ⊗ XB,A ⊗ IB) = ∇A ⊗∇B

are satisfied.



For code graphs, ∇n differs from In only in the fact that the output node
sequence is the concatenation of the input node sequence with itself. The “s”
of “s-monoidal” stands for “sharing: every input of ∇k

;(F ⊗ G) is shared by
F : k → m and G : k → n.

Definition 3.5 C = (C0,⊗,1, X,∇, !) is a strict gs-monoidal category iff

– (C0,⊗,1, X, !) is a strict g-monoidal category, and
– (C0,⊗,1, X,∇) is a strict s-monoidal category,

such that the coherence axiom

– right-inverse of duplication holds: ∇A
;(IA⊗!A) = IA

Code graphs (and term graphs) over a fixed edge label set form a gs-monoidal cat-
egory, but not a cartesian category, where in addition ! and ∇ are natural trans-
formations, i.e., for all F : A → B we have F ;!B =!A and F ;∇B = ∇A

;(F ⊗ F ).
To see how these naturality conditions are violated, the first five code graphs in
the following drawing can be obtained as, in this sequence, F : 1 → 1, !1, F ;!1,
F ;∇1, and ∇1

;(F ⊗ F ):

F

1

1 1

F

1

F

1 2

1

F F

1 2

1

Q

1 2

1

Q

1

1

It is easy to see that we obtain naturality of termination if we consider equiv-
alence classes of code graphs up to backward-garbage collection. Therefore, we
introduce a special “garbage-collecting” variant:

Definition 3.6 A gc-s-monoidal category is a gs-monoidal category with natu-
ral termination, i.e., with G ;!B =!B for all G : A → B.

From the last two code graphs drawn above, namely Q : 1 → 2 and Q ;(!1⊗I1),
we can also see why backward-garbage collection had to be defined so carefully:
In the last graph, the Q edge is not backward-garbage since one of its results is
still needed as output.

The code graph definition itself is completely symmetric with respect to
inputs and outputs, so the duals of the termination and duplication are defined,
too, and also satisfy all the corresponding laws, thus turning the category of code
graphs over a set of primitives (with arities) into the free bi-gs-monoidal category
over these primitives, or, equivalently, the free data-flow network algebra [14].

The dual to duplication is join ∆A : A ⊗ A → A, which, as a code graph,
differs from IA only in the fact that the input node sequence is the concatenation
of the output node sequence with itself.



The dual to termination is co-termination

!

A : 1 → A, which introduces
forward-garbage and differs from IA only in the fact that the input node sequence
is empty, so the corresponding code graph is not coherent.

Using primitives F ,H : 1 → 1 and A : 2 → 2, we show in the following
drawing the code graphs obtained as A alone, then (

!

1⊗I1);A, and finally (

!

1
;F )⊗

H , which could also be obtained as (

!

1 ⊗ I1);(F ⊗H ) because of functoriality of
⊗.

A

1 2

21

A

1 2

1
F

1

2

H

1

In the category of “code graphs up to forward garbage collection”, co-termination
is also a left-zero for composition, i.e.,

!

A
;F =

!

B for every F : A → B, and also
satisfies for each primitive P : A → B and each decomposition A = A1⊗A2⊗A3

the following equation which corresponds in more detail to forward garbage
collection:

(IA1
⊗

!

A2
⊗ IA3

);P =

!

B

However, not even there we have F ⊗

!

C =

!

B⊗C in general for F : A → B.
All important kinds of code graphs as morphisms form at least gs-monoidal

categories (co-s-monoidal categories also have joins and the corresponding laws,
and co-g-monoidal categories correspondingly have co-termination):

Definition 3.7 With operations as defined above, natural numbers as objects,
and given primitives (i.e., edge labels with input and output arities) we define
the following categories:
– CG with code graphs as morphisms,
– CCG with coherent code graphs as morphisms.

Replacing direct code graph composition with composition that “performs au-
tomatic garbage collection”, we further define:
– LCG with lean code graphs as morphisms,
– SCG with solid code graphs as morphisms,
– ECG with executable code graphs as morphisms.

Proposition 3.8 The categories in Def. 3.7 are well defined, and, with primitive
code graphs as generators, we have:
– CG is the free bi-gs-monoidal category;
– CCG is the free gs-monoidal and co-s-monoidal category;
– LCG is the free gc-s-monoidal and co-g-monoidal category;
– SCG is the free gc-s-monoidal and co-s-monoidal category;
– ECG is the free gc-s-monoidal category.



4 Control Flow Aspects of Code Graphs

As already mentioned in Sect. 2, the task of the scheduler is to find (efficient)
executable “hyper-paths” through a solid code graph.

If both graphs and edges were restricted to be one-input and one-output,
then branching could occur only for the purpose of later joins, and a code graph
would become a finite automaton, where the input node is the start state, the
output node is the (only) accepting state, and edges are labelled with machine
instructions. For such an automaton, we obtain its operational semantics in the
free Kleene algebra of sets of instruction execution sequences.

Since each machine instruction induces a state transition relation, and this in
turn induces another state transition relation for each set of instruction execution
sequences, we obtain the denotational semantics of such an automaton in the
Kleene algebra of relations.

To prepare the generalisation to arbitrary code graphs, we note that a more
graph-theoretic view of the operational semantics is to consider it as the set
of all paths from input to output, or, equivalently (and easier to generalise),
as the set of all line graphs for which there is an input- and output-preserving
homomorphism into the original code graph.

In comparison with finite automata, the additional code graph features are
term graph features, namely

– n-ary operations enabled by parallel composition ⊗,
– multiple use of results, enabled by duplication ∇, and
– unused (additional) results, enabled by termination ! .

Therefore, we need to enrich the Kleene algebra semantics with gs-monoidal
features; we only need the technically simple complete variant of Kleene cate-
gories (see also [8]):

Definition 4.1 A locally ordered category is a category C such that
– for each two objects A and B, the relation ⊑A,B is a partial order on the

homset MorC[A,B] (the indices will usually be omitted), and
– composition is monotonic with respect to ⊑ in both arguments.

A complete Kleene category is a locally ordered category where each homset is
a complete upper semilattice and composition distributes over arbitrary joins
from both sides.

This implies the existence of zero morphisms ⊥⊥, binary union, and Kleene
star, all obeying the usual laws for typed Kleene algebras [9].

Now the denotational semantics of code graphs can use the gs-monoidal
Kleene category of relations. For the operational semantics, we use the stan-
dard construction of set-based Kleene categories:

It is well-known that for any category C = (ObjC,MorC, src, trg, IC, ;
C), a

complete Kleene category CP can be obtained by defining its components as
follows:



– The objects are the same: ObjCP = ObjC
– Morphisms are subsets of the corresponding C-homsets:

MorCP [A,B] = P MorC[A,B]

– Identities are singletons: ICP,A = {IC,A}
– Composition is set composition: F ;

CP G = {f ;
C g | f ∈ F ∧ g ∈ G}

– The ordering is set inclusion: F ⊑ G ⇔ F ⊆ G . This ordering is complete,
and composition distributes over arbitrary joins, so we have:

• Least elements: ⊥⊥A,B = {}
• Binary joins: F ⊔ G = F ∪ G
• If F : A → A, then Kleene star: F ∗ = ∪{Fn | n ∈ N}, with the

understanding that N = {0, 1, 2, . . .}, and F 0 = IA and Fn+1 = F ;Fn .

This construction preserves gs-monoidality:

Theorem 4.2 If C = (C0,⊗,1, X,∇, !) is a gs-monoidal category, then we ob-
tain a gs-monoidal category, again, by extending CP with the following constants:

– ⊗ and 1 on objects are the same as in C.
– monoidal composition is defined as monoidal set composition:

F ⊗CP G = {f⊗g | f ∈ F ∧ g ∈ G}

– the constants are singleton sets:
• XCP,A,B = {XA,B}
• !CP,A = {!A}
• ∇CP,A = {∇A}

Proof: This gs-monoidal category is well defined since all constants are defined
as singleton sets, and in each axiom of gs-monoidal categories, all variables occur
exactly once on both sides of the equality in such a way that the resulting sets
are always isomorphic via axiom instances on the elements.

5 Code Graph Semantics and Scheduling

We now are in a position to provide the details of the semantical aspects of the
use of code graphs in Coconut as sketched in Sect. 2.

The principle we use is that of functorial semantics [5]: Since all our gs-
monoidal code graph categories are, according to Proposition 3.8, freely gen-
erated from the primitives modulo some additional constants and/or laws, any
gs-monoidal category C providing these constants and laws immediately pro-
vides a semantics [[G ]]C for each code graph G from the respective code graph
category via the unique gs-monoidal functor from the free (i.e., initial) category
into the chosen semantical category.

– We start with a (total) relational specification R.



– The code generator produces a coherent code graph G from a library of code
graph fragments — G is a morphism of CCG. The denotational semantics
of CCG is considered in the gs-monoidal and co-s-monoidal category of total
relations, where all primitives are interpreted as total functions (we do not
consider halting or interrupting machine instructions).
The task of the code generator therefore is to ensure that [[G ]]TotRel ⊑ R.

– G is garbage collected into a solid code graph S , a morphism of SCG, still
interpreted as the same total relation [[S ]]TotRel = [[G ]]TotRel.

– The scheduler selects an executable code graph E , i.e., a morphism of ECG,
from the set of executable code graphs that form the functorial semantics

[[S ]]ECG
P

of S in the gs-monoidal Kleene category ECGP.
This selection is of course not arbitrary, but attempts to select a code graph
that is minimal to some resource consumption metric, normally execution
time, or, more precisely, total throughput through the resulting program, oc-
casionally influenced by register consumption. On a pipelined architecture,
these metrics are not fully compositional, so the gs-monoidal Kleene cate-
gory structure is only of limited use for designing appropriate optimisation
strategies for the scheduler.

Executable code graphs are interpreted in the cartesian category of to-

tal functions. Since {E} ⊑ [[S ]]ECG
P

in ECGP, we also have [[E ]]TotRel ⊑
[[S ]]TotRel in the category of total relations, which establishes that E with
its functional semantics [[E ]]Set = [[E ]]TotRel satisfies its relational specifi-
cation [[S ]]TotRel and therefore R.

– By construction, there is a code graph homomorphism from the executable
(and therefore join-free) code graph E to S , so E can also be considered as
a generalised path (“hyper-path”) through S — the scheduler is therefore
implemented as a kind of shortest path search.

6 Conclusion and Outlook

The code graphs introduced in Sect. 2 serve as concrete syntax for computation
fragments at the assembly level in the special-purpose compiler suite of the Co-

conut project. We have shown that through the device of functorial semantics,
these code graphs, essentially considered as data-flow graphs, can be equipped
with a relational denotational semantics, which is used for reasoning about their
correctness.

The joins in these data-flow graphs have been assigned a novel interpretation
which amounts to giving control-flow semantics to this aspect of data-flow graphs
— this is realised by defining a functorial operational semantics in a Kleene
category of “hyper-paths”.

While joins give us obviously the opportunity to integrate a superoptimiser
into the code generator similar to [6], the fact that we use a relational semantics
also allows us to be more flexible and make use of the fact that, for example,
many results in image processing only need to be correct up to a relatively low
precision, so mathematically radically different algorithms can be explored.



The coherent semantical treatment of code graphs as presented in Sect. 5 has
already proven beneficial in guiding the design of the scheduler for computation
fragments without branches and loops.

The most important next step is to integrate this with proper control flow
structure, in particular for wrapping loop structures around computation frag-
ments serving as loop bodies, and for the separation of loop bodies into several
stages for the purpose of modulo scheduling [1] which is another useful optimi-
sation trick in the context of heavily pipelined architecture.

We would like to thank the anonymous referees for their useful comments.

References

[1] V. H. Allan, R. B. Jones, R. M. Lee, S. J. Allan. Software pipelining. ACM
Comput. Surv. 27(3) 367–432, 1995.

[2] C. K. Anand, J. Carette, W. Kahl, C. Gibbard, R. Lortie. Declarative

Assembler. SQRL Report 20, Software Quality Research Laboratory, McMaster
University, 2004. available from http://sqrl.mcmaster.ca/sqrl reports.html.

[3] M. Coccia, F. Gadducci, A. Corradini. GS-Λ Theories: A Syntax for Higher-

Order Graphs. Electronic Notes in Computer Science 69 18, 2002.
[4] A. Corradini, F. Gadducci. An Algebraic Presentation of Term Graphs, via

GS-Monoidal Categories. Applied Categorical Structures 7(4) 299–331, 1999.
[5] A. Corradini, F. Gadducci. Functorial Semantics for Multi-Algebras and Partial

Algebras, with Applications to Syntax. Theoretical Computer Science 286(2) 293–
322, 2002.

[6] T. Granlund, R. Kenner. Eliminating Branches Using a Superoptimizer and the

GNU C Compiler. In: Programming Language Design and Implementation, PLDI
’92, pp. 341–352. acm, 1992.

[7] B. Hoffmann, D. Plump. Jungle Evaluation for Efficient Term Rewriting. In
J. Gabrowski, P. Lescanne, W. Wechler, eds., Algebraic and Logic Program-
ming, ALP ’88, Mathematical Research 49, pp. 191–203. Akademie-Verlag, 1988.

[8] W. Kahl. Refactoring Heterogeneous Relation Algebras around Ordered Categories

and Converse. J. Relational Methods in Comp. Sci. 1 277–313, 2004.
[9] D. Kozen. Typed Kleene Algebra. Technical Report 98-1669, Computer Science

Department, Cornell University, 1998.
[10] H. Massalin. Superoptimizer: A Look at the Smallest Program. In: ASPLOS-II:

Proceedings of the Second International Conference on Architectual Support for
Programming Languages and Operating Systems, pp. 122–126, Los Alamitos, CA,
USA, 1987. IEEE Computer Society Press.

[11] D. Plump. Term Graph Rewriting. In H. Ehrig, G. Engels, H.-J. Kreowski,
G. Rozenberg, eds., Handbook of Graph Grammars and Computing by Graph
Transformation, Vol. 2: Applications, Languages and Tools, Chapt. 1, pp. 3–61.
World Scientific, Singapore, 1999.

[12] M. Sleep, M. Plasmeijer, M. van Eekelen, eds. Term Graph Rewriting: The-

ory and Practice. Wiley, 1993.
[13] Gheorghe Ştefănescu. Algebra of Flownomials — Part 1: Binary Flownomials;

Basic Theory. Technical Report TUM-I9437, Technische Universität München,
Institut für Informatik, 1994.

[14] Gheorghe Ştefănescu. Network Algebra. Springer, London, 2000.


