
Position Paper: A Knowledge-Based Approach to
Scientific Software Development

Dan Szymczak
McMaster University
1280 Main Street W
Hamilton, Ontario

szymczdm@mcmaster.ca

Spencer Smith
McMaster University
1280 Main Street W
Hamilton, Ontario

smiths@mcmaster.ca

Jacques Carette
McMaster University
1280 Main Street W
Hamilton, Ontario

carette@mcmaster.ca

ABSTRACT
As a relatively mature field, scientific computing has the op-
portunity to lead other software fields by leveraging its solid,
existing knowledge base. Our position is that by following
a rational design process, with the right tool support, desir-
able software qualities such as traceability, verifiability, and
reproducibility, can be achieved for scientific software.

We have begun development of a framework, Drasil, to
put this into practice. Our aims are to ensure complete
traceability, to facilitate agility in the face of ever changing
scientific computing projects, and ensure that software ar-
tifacts can be easily and quickly extracted from Drasil. In
particular, we are very interested in certifiable software and
in easy re-certification.

Using an example-based approach to our prototype imple-
mentation, we have already seen many benefits. Drasil keeps
all software artifacts (requirements, design, code, tests, build
scripts, documentation, etc.) synchronized with each other.
This allows for reuse of common concepts across projects,
and aids in the verification of software. It is our hope that
Drasil will lead to the development of higher quality software
at lower cost over the long term.

Keywords
Literate software, knowledge capture, traceability, software
engineering, scientific computing, artifact generation.

1. INTRODUCTION
We believe that, because of the solid scientific knowledge

base built up over the last 6+ decades of work in Scientific
Computing (SC), it is feasible for SC to once again take a
leadership position as regards the development of high qual-
ity software. More precisely, our goal is to use this knowl-
edge to improve the verifiability, reliability, usability, main-
tainability, reusability and reproducibility of SC Software
(SCS).

Some have argued for a rational document-driven design
process [13]. However, many researchers have reported that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SE4Science’16, May 16 2016, Austin, TX, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4167-7/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2897676.2897680

a document driven process is not used by, nor suitable for,
SCS; they argue that scientific developers naturally use ei-
ther an agile philosophy [2, 4, 11], or an amethododical [6]
process, or a knowledge acquisition driven [7] process. The
arguments are that scientists do not view rigid, process-
heavy approaches favourably [2] and that in SC, require-
ments are impossible to determine up-front [2, 12]. Rather
than abandon the benefits of a rational document-driven
process, we argue that the appropriate tools can in fact let
the scientists focus even more of their time on science.

The principal perceived drawbacks of document-driven de-
sign methodologies are:

• information duplication,
• synchronization headaches between artifacts,
• an over-emphasis on non-executable artifacts.

Thus, we argue that successfully achieving our goal of im-
proving various software qualities (verifiability, reliability,
usability, etc.) of SCS, whilst also improving, or at least not
diminishing performance, requires that we find a way to si-
multaneously deal with the above drawbacks. In fact, we are
more ambitious: we want to improve developer productivity
and thus save time and money on SCS development, certi-
fication and re-certification. To accomplish this we need to
remove duplication between software artifacts [15] as well as
provide traceability between all software artifacts. In prac-
tice, this means providing facilities for automatic software
artifact generation from high level “knowledge.” We can ac-
complish this by having a single “source” for each relevant
piece of information which makes up an SC problem and its
solution. From this, we can generate all required documents
and views. That is, we aim to provide methods, tools and
techniques to support a literate process for developing sci-
entific software that generalizes the idea behind Knuth’s [8]
literate programming. Unlike other document generation
tools, like Doxygen, the focus is on all software artifacts,
not just the code and its comments.

In the following section, we focus on SCS quality and liter-
ate programming. Then we introduce our framework, Drasil.
We show a short example of the framework and discuss its
advantages. We then discuss how we want the framework to
evolve. The last section provides concluding remarks.

2. BACKGROUND
In this section we discuss challenges for developing SCS

and we introduce the ideas behind our approach.

2.1 Challenges

Label hc

Dimensions ML0t−3T−1

SI Units kW
m2oC

Equation hc = 2kchb
2kc+τchb

Description hc is the convective heat transfer coefficient
between clad and coolant
kc is the clad conductivity
hb is the initial coolant film conductance
τc is the clad thickness

Figure 1: SRS data definition of hc

As the best numerical approach to solve a given problem
is usually not known a priori, we have to face the technique
selection challenge [16]. Experimentation is inevitably nec-
essary to determine the appropriate order of interpolation,
the degree of implicitness, etc. Nevertheless, the problem to
solve does not change. This implies that we need a sepa-
ration of concerns between the physical model and the nu-
merical algorithms. Ease of experimentation means that we
also need facilities to parameterize algorithmic variabilities.

In an effort to make scientific libraries and software as
widely applicable as possible, most packages provide a generic
interface with a large number of options; this tends to over-
whelm users and cause programmers to not reuse libraries,
since they do not believe the interface needs to be as com-
plicated as it appears [3]. This is the understandability chal-
lenge [16]. An ideal framework would expose an API, as well
as generate applications, which use routines which are only
as complicated as they need to be for the job at hand.

As requirements change, we face the maintainability chal-
lenge [16]. The high frequency of change for SCS causes
accute problems for certification. If the expense and time
required for re-certification is on the same order of magni-
tude as the original certification, changes will not be made.
To be effective in this environment, a framework needs to
provide traceability, so the consequences of change can be
directly evaluated.

2.2 Literate Programming
Literate programming (LP) is a methodology introduced

by Knuth [8]. The main idea is to write programs in a way
that explains (to humans) what we want the computer to
do, as opposed to simply giving the computer instructions.

In a literate program, the documentation and code are to-
gether in one source. While developing a literate program,
the algorithms used are broken down into small, understand-
able parts (known as “sections” [8] or “chunks” [5]) which are
explained, documented, and implemented in an order which
promotes understanding. To get working source code, the
tangle process is run, which extracts the code from the liter-
ate document and reorders it into an appropriate structure
acceptable to one’s compiler. Similarly, the weave process
is run to extract and typeset the documentation. There are
several examples of SC programs being written in LP style,
such as VNODE-LP [9] and “Physically Based Rendering:
From Theory to Implementation” [10] (a literate program
which is also a successful textbook!).

Chunk
(name)

Concept
(description)

Quantity
(symbol)

Unit (unit)

Unital

Figure 2: The chunk design

srsBody = s r s [h g , h c] ”Spencer Smith ” [s1 , s2]

s1 = Sect ion (S ”Table o f Units ”) [int ro , t ab l e]

t ab l e = Table
[S ”Symbol ” , S ”Desc r ip t i on ”] (mkTable

[(\ x −> Sy (x ˆ . un i t)) ,
(\x −> S (x ˆ . desc r))] s i u n i t s)

i n t r o = Paragraph (S ”Throughout t h i s . . . ”)

Figure 3: A portion of the SRS recipe

3. INTRODUCING Drasil
In Drasil, we accomplish our two primary objectives (com-

plete traceability, and eliminating knowledge duplication) by
generalizing the literate approach.

3.1 A Simple Example
We have used a practical, example-driven approach to the

development of Drasil. Our first example involves the sim-
plified Software Requirements Specification (SRS) for a fuel
pin in a nuclear reactor (see [13] for more details). To get
started, let us look specifically at the term hc (defined in
Figure 1). This defines a concept, its units, its defining
equation, and the description of the other concepts upon
which it depends.

We can currently generate the .tex file for much of the
SRS for the fuel pin as well as the source code (in C) for the
required calculations.

3.2 Design
The fundamental task for Drasil is knowledge capture, in

such a way that this knowledge can be viewed in differ-
ent ways (code, specification, etc). Each individual piece
of knowledge is a named chunk ; putting chunks together
is done via a recipe; a generator then interprets recipes to
produce the desired view.

We have different kinds of chunks. The most basic ones are
simply named pieces of information. Most however represent
some concept, which has a description. In the SC context,
many concepts are quantities, which are represented by a
specific symbol. Orthogonally, a unit is also a concept. Most
quantities have units. And so on (as pictured in Fig. 2).

By breaking things down in this way, we can assemble
most concepts from pre-existing chunks – see Fig. 3 for an
SRS recipe that uses (among other things) hc.

Currently, recipes are specified using a collection of DSLs

embedded in Haskell. We have a DSL for expressions, ex-
pression layout, document layout, C code, and LaTeX code.
For example, the expression layout DSL describes how ex-
pressions should appear (subscript and superscripts, con-
catenation of symbols, etc.), whereas the document layout
DSL deals with sections, tables, etc.

We have broken down our example into common knowl-
edge, specific knowledge and a recipe for an SRS (see Fig-
ure 3). Here the fundamental SI units are common knowl-
edge. Each is contained within its own chunk in the SI unit
library – see Figure 4 for a taste.

metre , second , k e l v i n : : FundUnit
metre = fund ”Metre ” ” length (metre) ” ”m”
second = fund ”Second ” ”time (second) ” ”s ”
ke l v i n = fund ”Kelvin ” ”temperature (k e l v i n) ” ”K”

Figure 4: Segment of the SI unit library

The hc chunk (Figure 5) is specific knowledge: it contains
the name, description, symbol, units, and equation for hc.

The internal expression language Expr allows for the straigh-
forward generation of source code. We utilize methods simi-
lar to those found in [1, 14] wherein the expression language
is converted to an abstract representation of the code and
then passed to a pretty-printer to create the final source.

We currently generate C code, however it would be pos-
sible to generate any language provided we have an appro-
priate representation for that language.

3.3 Advantages
We can already see some advantages over traditional SC

development. How Drasil addresses the specific challenges
of Section 2.1 will be explored below.

3.3.1 Knowledge Capture
At the appropriate abstraction level, many SC problems

have significant commonality, since a large class of physical
models are instances of a relatively small number of conser-
vation equations (conservation of energy, mass and momen-
tum). For instance, the theoretical model for conservation
of thermal energy for a fuel pin in [13] is written generally,
without reference to a specific coordinate system. The exact
same theoretical model can be reused in any thermal model.
The variation in the final instanced model will come from
the refinement of the theory using assumptions appropriate
to the problem.

Our approach aims to build libraries of knowledge that
can be reused anywhere. Each library should contain com-
mon chunks relevant to a specific application domain (ex.

h c eq : : Expr
h c eq = 2∗(C k c)∗ (C h b) /

(2∗ (C k c) + (C tau c)∗ (C h b))

h c : : EqChunk
h c = fromEqn ”h c ”
”convec t ive heat t r a n s f e r c o e f f i c i e n t between

c lad and coo lant ”
(sub h c) h e a t t r a n s f e r h c eq

Figure 5: The hc chunk

thermal analysis) and each project should aim to reuse as
much as possible during development.

From our example, a common source of reused knowledge
is the Système international d’unités, also known as SI units
(Figure 4). They are commonly used throughout all of SC,
so why should they be redefined for each project? Once
the knowledge has been captured, it can simply be reused.
With Drasil this is possible with minimal effort, allowing
developers and scientists to spend their valuable time on
more important tasks.

3.3.2 Software Certification
Current software certification processes require high-quality

documentation. Depending on the regulatory body and the
certification standards, many types of documents may be
required, such as the requirements specification, verifica-
tion plans, design specification and code. However, creat-
ing these should not impede a scientist’s work. As require-
ments and numerical algorithmic decisions change, docu-
mentation and code must be updated. This creates issues
with traceability and maintainability. Drasil aims to gener-
ate these documents alongside the code, while accounting for
any changes. When properly used, singular knowledge will
be embodied in a single chunk, and the generation process
will take care of baking this information into all appropriate
places in the documentation and code. Thus any change is
guaranteed to propagate throughout all of the artifacts.

Recipes are useful too: if a document standard were to be
changed during the development cycle, it would not necessi-
tate re-writing the entire document. All of the information
in the chunks would remain intact, only the recipe would
need to be changed to accommodate the new view. Trace-
ability has the advantage of also improving reproducibility.

3.3.3 "Everything should be made as simple as pos-
sible, but not simpler." — Einstein

Take finite element methods as one example: while there
exist many powerful, general commercial programs for this,
they are not often used to develop new “widgets” because
they are hard to understand. Thus engineers often resort
to building and testing prototypes, instead of performing
simulations, due to a lack of clearly relevant tools.

By using recipes that generate versions of general algo-
rithms specific to a particular problem, we can generate ap-
plications suited to the needs of the engineers. Changes in
specifications can be reflected in the code in (essentially)
real-time at trivial cost. For example, if an engineer were
designing parts for strength, they could start from a gen-
eral stress analysis knowledge base. This could then be spe-
cialized to (say) plane stress/strain, depending on which as-
sumption would be most appropriate at the time. The gener-
ated program could even be customized to the parameterized
shape of the part the engineer is interested in. Importantly,
the simulation process is made simpler because an engineer
is not required to interact with the source code; they simply
modify those degrees of freedom (ex. material properties or
specific dimensions of the part), that are exposed to them
by the generator.

3.3.4 Verification
When it comes to verification, requirements documents

typically include so-called “sanity” checks (see 2nd column of
Table 1) that can be reused throughout subsequent phases

Table 1: Constraints on quantities
Var Constraints Typical Value Uncertainty
L L > 0 1.5 m 10%
D D > 0 0.412 m 10%

VP VP > 0 0.05 m3 10%

AP AP > 0 1.2 m2 10%

ρP ρP > 0 1007 kg/m3 10%

of development. For instance, a requirement could assume
conservation of mass or constrain lengths to be always pos-
itive. The former would be used to test the output and the
latter to guard against invalid inputs.

With Drasil, these sanity checks can also be captured and
re-used. Each chunk can maintain its own sanity checks (as
constraints) and recipes can incorporate them into generated
systems, either for testing or for in-field use, to ensure all
inputs and outputs (including intermediaries) are valid.

Through recipes, complete traceability is achievable: as
knowledge must be drawn together explicitly, one can auto-
matically list all chunks that were used by a recipe.

Finally, because all knowledge has a unique source, any
mistakes that occur in the generated software artifacts will
occur everywhere. Errors propagate through artifacts, and
the artifacts will always be in sync with each other (and the
source). As a consequence, errors will be much easier to see,
and thus easier to find and fix.

4. FUTURE WORK
Our prototype is still in its early stages, producing only

one document type (the SRS) and only one type of code (C
code for calculations), but has already been a great source
of inspiration to us. We plan to expand Drasil in several
ways, including at least:

1. Generate more artifact types.
2. Generate different document views.
3. More types of information in chunks (see Table 1).
4. Use these constraints to generate test cases.
5. Implement much larger examples.

For the generation of test cases, physical constraints will
be seen as hard limits on values (ex. length must always be
positive and a negative value would throw an error). Typical
values, on the other hand, are “reasonable” values (ex. the
length of a beam should be on the order of several metres,
but theoretically it could be kilometres, thus the code will
raise a warning instead of an error).

5. CONCLUDING REMARKS
The development of high-quality SCS, especially those

which can be (re-)certified, leave much to be desired. The
burden of keeping documentation and code synchronized,
due to hand-duplicated information, leads to many prob-
lems. The end result tends to involve either extremely high
development costs (and bored developers), or software of
dubious quality which is difficult to maintain.

Our position is that desirable software qualities such as
traceability, verifiability, and reproducibility can be achieved
for SCS and in the future we hope to show this using Drasil.
We hope that this will lead to higher quality software, at a
lower long term cost.

6. REFERENCES
[1] L. Beyak and J. Carette. SAGA: A DSL for story

management. In O. Danvy and C. chieh Shan, editors,
DSL, volume 66 of EPTCS, pages 48–67, 2011.

[2] J. C. Carver, R. P. Kendall, S. E. Squires, and D. E.
Post. Software development environments for scientific
and engineering software: A series of case studies. In
ICSE ’07: Proceedings of the 29th international
conference on Software Engineering, pages 550–559,
Washington, DC, USA, 2007. IEEE Computer Society.

[3] P. F. Dubois. Designing scientific components.
Computing in Science and Engineering, 4(5):84–90,
September 2002.

[4] S. M. Easterbrook and T. C. Johns. Engineering the
software for understanding climate change. Comuting
in Science & Engineering, 11(6):65–74,
November/December 2009.

[5] A. Johnson and B. Johnson. Literate programming
using noweb. Linux Journal, 42:64–69, October 1997.

[6] D. Kelly. Industrial scientific software: A set of
interviews on software development. In Proceedings of
the 2013 Conference of the Center for Advanced
Studies on Collaborative Research, CASCON ’13,
pages 299–310, Riverton, NJ, USA, 2013. IBM Corp.

[7] D. Kelly. Scientific software development viewed as
knowledge acquisition: Towards understanding the
development of risk-averse scientific software. Journal
of Systems and Software, 109:50–61, 2015.

[8] D. E. Knuth. Literate programming. The Computer
Journal, 27(2):97–111, 1984.

[9] N. S. Nedialkov. VNODE-LP — a validated solver for
initial value problems in ordinary differential
equations. Technical Report CAS-06-06-NN,
Department of Computing and Software, McMaster
University, 1280 Main Street West, Hamilton, Ontario,
L8S 4K1, 2006.

[10] M. Pharr and G. Humphreys. Physically Based
Rendering: From Theory to Implementation. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA,
2004.

[11] J. Segal. When software engineers met research
scientists: A case study. Empirical Software
Engineering, 10(4):517–536, October 2005.

[12] J. Segal and C. Morris. Developing scientific software.
IEEE Software, 25(4):18–20, July/August 2008.

[13] S. Smith and N. Koothoor. A document driven
method for certifying scientific computing software
used in nuclear safety analysis. Nuclear Engineering
and Technology, Accepted, 2016. 42 pp.

[14] D. Szymczak. Generating Learning Algorithms:
Hidden Markov Models as a Case Study. Master’s
thesis, McMaster University, Hamilton, ON, Canada,
2014.

[15] G. Wilson, D. Aruliah, C. T. Brown, N. P. C. Hong,
M. Davis, R. T. Guy, S. H. Haddock, K. D. Huff, I. M.
Mitchell, M. D. Plumblet, B. Waugh, E. P. White, and
P. Wilson. Best practices for scientific computing.
CoRR, abs/1210.0530, 2013.

[16] W. Yu. FASCS: A Family Approach for Developing
Scientific Computing Software. PhD thesis, McMaster
University, Hamilton, ON, Canada, 2011.

