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Abstract

The package LargeExpressions has been available in MAPLE for
a number of years, but it is not well known. It provides tools for man-
aging large expressions. In this paper, we describe a new application
of this tool to the LU factoring of matrices. We describe a function
that factors a matrix and expresses the results using a hierarchical
representation. As part of the LU factoring, we introduce several
strategies for pivoting, veiling an expression and zero-recognition in
our function. All these strategies can be chosen based on the appli-
cation. The new function is very flexible and much faster than the
existing LUDecomposition command in Maple. Results of benchmark
calculations are given.



1 Introduction

One of the attractions of MAPLE is that it allows users to tackle large prob-
lems. However, when users undertake large-scale calculations, they often find
that expression swell can limit the size of the problems they can solve [15].
Typically, users might meet two types of expression swell: one type we can
call inherent expression swell, and the other intermediate expression swell.
Intermediate expression swell describes the case in which a calculation tem-
porarily creates large expressions, en route to a small final result. An example
that will be familiar to many readers is the calculation of a factor common
to two polynomials (in other words a GCD calculation). In many cases, the
factor being sought is quite small, but during its calculation, much larger
expressions are generated. When people notice intermediate expression swell
in a mathematical calculation, they often wonder whether they took ‘the
long way around’ and whether a shorter calculation is possible. Sometimes
this is so, and a short cut exists, but in many cases it is just the way the
calculation has to go. In this paper, however, we are more concerned with
inherent expression swell. By this we mean the solution of problems that
result in large expressions, even when the calculations are complete. For
particular problems, finding bounds on expression size can provide estimates
of the amount of memory needed, or of the CPU time required to perform
a given calculation. Bounds on problem size can be determined empirically
(for example by a statistical survey) or theoretically (by worst case and best
case analyzes). If it seems possible to perform a calculation, there remains
the problem of programming it successfully in MAPLE. This last problem is
the one addressed here.

For many problems which lead to large expressions, it is useful to control
the expressions by hiding their values under user-defined labels. This allows
compact representation of the results as a computation sequence, generated
from the natural hierarchy of the problem [6]. The ideas of hierarchical
representation of data are not confined to computer algebra. In recent years,
engineering designs have become so complex that the design process can
only be made feasible with the aid of hierarchical design concepts. As will be
shown below, the expansion of a hierarchical expression or design generally
results in a substantial increase in the size of the data. Thus, investigations
have been made on how to take advantage of a hierarchical structure while
processing it[2]. A recent example is the numerical integration of a DAE
system while keeping it in a hierarchical representation [3].



Related ideas have appeared in the literature and in software systems al-
ready, under a variety of names, such as computation sequences and straight-
line programs. Some of these related works, such as Freeman [10] and
Kaltofen [11], concentrate on the manipulation of computation sequences
or straightline programs to compute (e.g.) greatest common divisors of poly-
nomials defined by such sequences. Zippel [13] shows how to use sparse
interpolation to convert a computation sequence into a more standard rep-
resentation of a polynomial. Other work, such as is embodied in Maple’s
‘optimize’ command [14] or the special purpose programs of Budgell and El
Maraghy [12], shows how to turn very large expressions, once generated, into
more compact and useful computation sequences. Monagan and Monagan [9]
designed a Code Generation Package for manipulating programs, including
automatic differentiation, code optimization, and complexity analysis of a
program; their application was to an optimization problem from computer
vision. Their package is available in Maple as the codegen package. In [14],
there is a discussion of computation sequences and automatic code generation
with signature functions.

In 1997, Corless et al [7] applied large expression management to two
perturbation calculations in fluid mechanics. That paper concentrated on
interactively generating an appropriate computation sequence from a natural
hierarchy of the problem, which is discovered as the computation proceeds.
The approach has the advantage that the sequences are natural to the prob-
lem at hand, and their forms can be controlled by the user. Also because the
simplifications are introduced early in a calculation, their benefits, partic-
ularly with regard to quicker processing and smaller memory requirements,
can be felt throughout the rest of the calculation.

Here, the management of large expressions will be considered in the con-
text of linear algebra. A simple example of the problems we face is obtained

by typing

> with(LinearAlgebra):
> A := Matrix(6,6,symbol=m):
> (P, L, U) := LUDecomposition(A);

which gives results that are very lengthy. Using the MAPLE length function,
we find that the lengths of the matrices L and U are 45029 and 86471. This
is because Maple expands the polynomials in the numerators and denomina-
tors of the LU decomposition, and the determinant of the matrix A, which
appears in the LU decomposition has 6! terms. If you want to compute



an LU decomposition for larger matrices, you will have problems with both
output size and computation time. Similarly, for other linear algebra oper-
ations, such as Gaussian elimination, computing the symbolic determinant
of a matrix, solving a system of linear equations and so on, there are simi-
lar expression swell problems. Thus the hierarchical representation method
presented in this paper can also be helpful and efficient for solving these
problems.

In this paper, we discuss hierarchical representations and the MAPLE
package LargeExpressions. One reason for the neglect of LargeExpressions
has been the fact that it provides only the low-level tools Veil and Unveil.
Here we show how to implement a higher-level function from these basic tools.
In addition, we discuss the implementation of a LU symbolic decomposition
algorithm with different strategies.

2 The package LargeExpressions

This package was added to MAPLE in 2001, and offers two main functions:
Veil and Unveil.

Calling Sequence
Veil [K] ( complicated_expression )
Unveil [K] ( expressions_with_Ks, n )

Parameters
K - unassigned name to use as a label
complicated_expression - expression
expressions_with_Ks - expression that has been veiled
n - positive integer representing the level of unveiling, or
infinity, meaning all levels.

The routine Veil is used to hide information, such as some complicated
expression. Unveil reveals the previously Veiled information. Both com-
mands take an index which specifies the label to use; multiple labels can
be present in an expression and manipulated independently. Here we give a
simple example to illustrate how to use Veil and Unveil to flexibly express
an expression in a hierarchical presentation.

Example 1: Consider an expression such as

Z = log(sin(z? + y?)) + sin(z® + y?) + cos(z? + ?) .
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By using the Veil command, we get its hierarchical representation as follows.

> with(LargeExpressions):
> Veil[K] (x"2+y72);
K[1]
> Veil[K] (sin(K[11));
K[2]
> Z := log(K[2]) + K[2] + cos(K[1]);
Z := 1n(K[2]) + K[2] + cos(K[1])

The full expression tree can always be printed out using the Unveil com-
mand.

> for i to LastUsed[K] do K[i]=Unveil [K] (K[i]) od;
K[1] = x"2 + y~2
K[2] = sin(x"2+y~2)

Remark 1. The LargeEzpresstons package allows users to represent their
expressions in a controlled way. Users can choose the length of expression
which should be veiled and define when to veil the expressions during their
generations. Different strategies can be applied according to the different
tasks.

Remark 2. Commands from LargeEzpresstions can work during expres-
sion generation to avoid intermediate expression swell problems. This is in
contrast to using the optimize command, which only works when we have
the whole expression already computed and in memory. If we cannot compute
the expression, we cannot use optimize. So LargeExpresstons prevents too
large expressions appearing.

Remark 3. Veiled expressions resist unwanted simplification.
For example, if we have an expression like
Z =014z -1

If the expression 1+ z is generated first, the LargeExpressions package can
be used to veil it, which will resist expansion by simplify.

> Veil[K] (x+1);
K[1]
> Z := simplify(K[1]"31-1);
Z :=K[1]°31 - 1



If we apply the simplify command first to Z, hoping for a shorter expression,
we usually cannot return to the original compact representation. Therefore
it is important to veil expressions during their generation.

Remark 4. With the Unveil command, we can verify the correctness of a
compact expression at any time. We can isolate any global variable K[i|, and
Unvetl it independently. This facility can be very useful for users to evaluate
any expression in which they are interested.

3 LU Factoring with Large Expression Man-
agement

Solving systems of linear equations Ax = b is central in scientific computa-
tion, where A is a coefficient matrix, b is a vector which specifies the right-
hand side of the system of equations, and z is a vector of unknown values [1].
A common procedure of solving these systems is to factor the matrix A into
the product of a lower-triangular matrix L and an upper-triangular matrix
U such that A = LU, the solution is then found by forward and backward
substitution. LU decomposition is used to solve dense systems of linear equa-
tions, which are found in applications [5] such as airplane wing designs, radar
cross-section studies, supercomputer bench marking, etc. [4].

We modified the standard code for LU decomposition to include veiling
and to use a probabilistic zero test. We also generalized the options for
selecting pivots and added an option to specify a veiling strategy. One can
see [19] for even more design points, and a general design strategy, for this
class of algorithms. The algorithm in high-level pseudo-code is:

Get maximum_column, maximum_row for matrix A For current_column
from 1 to maximum_column
for current_row from current_column to maximum_row
Check element for zero.
Test element for being "best" pivot
Veil pivot [invoke Veiling strategy]
move pivot to diagonal, recording interchanges.
row-reduce matrix A with veiling strategy
store multipliers in L
end do:



end do:
return permutation_matrix, L, reduced matrix A

The function has been programmed with the following calling sequence.

LULEM(A, K, p, Pivoting, Veiling, Zerotesting)

Parameters
A - square matrix
K - unassigned name to use as a label
) - prime
Pivoting - decide a pivot for a column
Veiling - decide to veil an expression or not
Zerotesting - decide if the expression is zero.

3.1 Pivoting Strategy

The current MAPLE LUDecomposition function selects one of two pivoting
strategies on behalf of the user, based on data type. Thus, at present,
> LUDecomposition(<<12345,1>[<1,1>>);

10 1 0 12345 1
0 1| 7] 1/12345 1 |’ 0 12344/12345

even though it is more attractive to write

01 1 0 1 1
1 0] 7112345 1| | 0 —12344

If the matrix contains floating-point entries, partial pivoting is used.
> LUDecomposition(<<1,12345.>|<1,1>>);

0 1 1. 0. 12345. 1
10| | @®DW0® 1| 0 099992

Since we wished to experiment with different pivoting strategies, we made
it an option. Rather than make up names, such as ‘partial pivoting’ or ‘non-
zero pivoting’, to describe strategies, we allow the user to supply a function
which takes 2 arguments. The function returns true if the second argument
is a preferred pivot to the first argument. For example, the preferred pivoting
strategy for the example above (choose the smallest pivot) can be specified by
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the function (p1,p2)->evalb(abs(p2)<abs(pl)). In a symbolic and veiling
context there are a number of conceivable strategies which one might wish to
try. These can be based on operation count, size of expression or number of
indeterminants. However, the definition of LU factors only allows pivoting
on one column, so no form of full pivoting is offered.

3.2 Veiling Strategy

In the same spirit of experimentation, we have used a function to specify a
veiling strategy. This function takes one argument and returns true if the
expression should be veiled. The current LargeExpressions package, for
example, follows a strategy of ignoring integers. Thus an integer, however
large, cannot be veiled at present. Similarly, integer content is extracted from
expressions before veiling. Rather than make these decisions in advance, we
leave them to the declaration of a veiling-strategy function.

Of particular interest is the ‘granularity’ of the HR, namely whether one
veils every pairwise operation, or whether one waits until an expression of
a pre-determined size is allowed to accumulate. Another possibility is to
veil sums of two or more terms because it is expansion of products of sums
of terms that generally causes expression swell of formulae. In the former
case, the HR would look similar to a straight-line program as defined in [18].
For our experiments, we have based our strategies on the MAPLE length
command, as being a convenient measure of expression complexity.

3.3 Zero Test Strategy

We need to test for zero when finding pivots. This can also help us to simplify
our expressions, if needed. During the LU factoring, we use signatures to
perform this test quickly (more precisely, in random polynomial time). The
basic idea of signatures [16, 14] is to evaluate a formula f modulo a large
prime p, replacing each symbol (variable) appearing in the formula by a
randomly chosen value from [0, p). The numerical value ¢ that one obtains
is called the signature of f. In this way, if the (possibly large) formula f
simplifies to 0, then o will be 0. If f does not simplify to 0, then o is
“probably” not 0.

It is important to note that for LU factoring, we only need to find a
provably non-zero pivot, so that a false positive (o is 0 but f does not simplify
to 0) rarely leads to a problem.



4 Empirical results

We present some timing results. For the benchmarks, we use strategies based
on MAPLE’s length command. As these strategies are heuristics, any rea-
sonable measure of the complexity of an entry is sufficient. The pivoting
strategy searches for the element with the largest length. The veiling
strategy depends on the type of matrix. For integer matrices, we veil all
integers whose length is greater than 1000, while for polynomial matrices,
the threshold is length 30. These constants reflect the underlying constants
involved in the arithmetic for such objects. For all benchmarks, three varia-
tions are compared:

e our own LU factoring algorithm with veiling and signatures,
e MAPLE’s default LinearAlgebra:-LUDecomposition,

e a version of LinearAlgebra:-LUDecomposition where Normalizer
has been set to be the identity function and Testzero has been set to a
version of testeq. We had to “patch” MAPLE’s LUDecomposition to
use Testzero instead of an explicit call to Normalizer, and then had
to further “patch” testeq to avoid a silly coding mistake that made
the code extremely inefficient for large expressions!.

All tests were first run with a time limit of 300 seconds. Then the first test
that timed out at 300 seconds was re-run with a time limit of 1000 seconds,
to see if that was sufficient for completion. Further tests in that column
were attempted. Furthermore, the sizes of matrices used varies according to
the results, to try and focus attention to the sizes where we could gather
some meaningful results in (parts of) the three columns. All results are
obtained using the TTY version of MAPLE10, running on an 1.8Ghz Intel
P4 with 512Megs of memory running Windows XP SP2, and with garbage
collection “frequency” set to 20 million bytes used, all results are for dense
matrices. In each table, we report the times in seconds, and for the LEM
column, the number in parentheses indicates how many? distinct labels (ie
total number of veiled expressions) were needed by the computation, as an
indication of memory requirements. The reason for including the MapleFix

'Both of these deficiencies were reported to MAPLESOFT and will hopefully be fixed in
later versions of MAPLE
2and we use a postfix K or M to mean 103 and 10° as appropriate



Size n LEM MapleFix | Maple

10 03 (0) 07 04
20 2 (0) 2 2
30 8 (0) 7 7
40 2.3 (0) 2.2 2.2
50 6.1 (148) 5.2 5.2
60 | 12.5 (902) 10.7 10.5

70 | 17.8 (2788) 19.4 19.2
80 | 27.6 (5948) | 338 32.6
00 | 42.4 (12779) |  54.0 52.8
100 | 56.4 (22396) |  83.8 85.8
110 | 75.4 (36739) | 124.7 123

Table 1: Random integer matrices generated using
RandomMatrix(n,n,generator=—10'2..10'2)

column is to really separate out the effect of arithmetic and signature-based
zero-testing from the effects of Large Expression Management; MapleFix
measures the effect of not doing polynomial arithmetic and using signatures
for zero-recognition, and is thus expected to be a middle ground between the
other two extremes.

Table 1 shows the result for random matrices over the integers. Only
for fairly large matrices (between 90x90 and 100x100) does the cost of arith-
metic, due to coefficient growth, become so large that the overhead of veiling
becomes worthwhile, as the LEM column shows. Since integer arithmetic is
automatic in MAPLE, it is not surprising that the MapleFix column shows
times that are the same as the Maple column. Here the veiling strategy really
matters: for integers of length 500, veiling introduces so much overhead that
for 110x110 matrices, this overhead is still larger than pure arithmetic. For
length 2000, no veiling at all occurs.

Table 2 shows the result for random univariate matrices, where the initial
polynomials have degree 5 and small integer coefficients. The effect of LEM
here is immediately apparent. What is not shown is that MapleFix uses very
little memory (both allocated and “used”), while the Maple column involves
a huge amount of memory “used”, at all sizes, so that computation time was
swamped by garbage collection time. Another item to notice is that while the
times in the Maple column grow steadily, the ones in the MapleFix column
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Size n LEM MapleFix | Maple
5 12 (26) .06 .53
10 .06 (237) .07 1.5
15 18 (872) .16 9.3
20 4 (2182) .30 39.2
25 7 (4417) .56 110.4
30 9 (7827) 1.87 269.8
35 0 (12K) 332 431
40 5 (19K) >1000 845
45 (28K) >1000
50 1 (39K) -

Table 2: Random matrices with univariate entries of degree 5, generated by
RandomMatrix(n,n,generator=(() -> randpoly(x)))

Table 3:

=8)))

Size LEM MapleFix | Maple
5 .05 (26) .06 35.3
10 | .09 (237) .09 > 1000
15 | .23 (872) .20
20 9 (2182) .39 -
25 9 (4417) 75 -
30 7 (7827) 3.2 -
35 8 (12K) 949 -
40 2 (19K) >1000 -
45 0 (28K) - —
50 8 (39K) - -

Random matrices with trivariate entries,
terms RandomMatrix(n,n,generator=(() -> randpoly([x,y,z],

11

low degree,
terms
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Size LEM MapleFix | Maple
5 047 (22) .03 1.56
10 | .078 (218) .08 >1000
15 20 (858) 14 -
20 | .51 (2163) .30 -
25 | .88 (4393) 58 -
30 7 (7798) 3.8 -
35 2 95 (12K) | >1000 =

Table 4: Fully symbolic matrix: Matrix(n,n,symbol=m)

Size LEM MapleFix | Maple

5 .031 (26) XX 0.99
10 | .094 (237) XX 117
15 22 (872) XX > 1000
20 0 (2182 XX

(2182) -
25 | .99 (4417) |  xx -
30 | 1.7 (7827) XX -
35 8 (12K) XX -

Table  5: Random  matrix — with  entries over  Zx,3"]:
RandomMatrix(n,n,generator=(()->eval (randpoly([x,y],terms=8),y=38)))
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are at first consistent with the LEM column, and then experience a massive
explosion. Very careful profiling® was necessary to unearth the reason for
this, and it seems to be somewhat subtle: for both LEM and MapleFix, very
small DAGs are created, but for LEM we have full control of these, while for
MapleFix, the DAGs are small but the underlying expression tree is enor-
mous. All of Maple’s operations on matrix elements first involve the element
being normalized by the kernel (via the user-inaccessible simpl function),
and then evaluated. While normalization follows the DAG, evaluation in a
side-effecting language must follow the expression tree, and thus is extremely
expensive. Along with the fact that no information is kept between calls to
testeq, causes the time to explode for MapleFix for 35x35 (and larger) ma-
trices. Since the veiling strategy used for the last 4 tables is the same, it is
not very suprising that the number of veilings is essentially the same. The
reason that the all-symbolic is a little lower is because we start with entries
of degree 1 and coefficient size 1, and thus these entries do not get veiled
immediately. However, one can observe a clear cubic growth in the number
of veilings, as expected.

Table 3 shows the result for random trivariate matrices, where the initial
polynomials have 8 terms and small integer coefficients. The results here
clearly show the effect that multi-variate polynomial arithmetic has on the
results. Table 4 shows the results for a matrix with all entries symbolic,
further accentuating the results in the trivariate case. Again, MapleFix takes
moderate amounts of memory (but a lot of CPU time at larger sizes), while
Maple takes huge amounts, causing a lot of swapping and trashing already
for 10x10 matrices.

Table 5 shows results for matrices with entries over Z[z, 3%]. Overall the
behaviour is quite similar to bivariate polynomials, however the xx in the
MapleF'ix entry indicate a weakness in MAPLE’s testeq routine, where valid
inputs (according to the theory in [16]) return FAIL instead. Our signature
implementation can handle such an input domain without difficulty.

While we would have liked to present memory results as well, this was
much more problematic, as MAPLE does not really provide adequate facili-
ties to achieve this. One could look at bytes used, but this merely reflects
the memory asked of the system, the vast majority of which is garbage and
immediately reclaimed. This does measure the amount of overall memory

3Here we used a combination of procedure-level profiling via CodeTools [Profiling]
and global profiling via kernelopts(profile=true)
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churn, but does not give an indication of final memory use nor of the true
live set. bytes alloc on the other hand measure the actual amount of sys-
tem memory allocated. Unfortunately, this number very quickly settles to
something a little larger than gcfreq, in other words the amount of mem-
ory required to trigger another round of garbage collection, for all the tests
reported here. This reflects the huge amount of memory used in these com-
putations, but does not reflect the final amount of memory necessary to store
the end result. Neither can we rely on MAPLE’s length command to give an
accurate representation of the memory needed for a result because, for some
unfathomable reason, length returns the expression tree length rather than
the DAG length! Thus, for matrices whose results are un-normalized poly-
nomials, we have no easy way to measure their actual size. As a proxy, we
can find out the total number of variables introduced by the veiling process.
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