
A canonical form for some piecewise defined functions

Jacques Carette
∗

McMaster University
1280 Main Street West

Hamilton, Ontario, Canada
carette@mcmaster.ca

ABSTRACT
We define a canonical form for piecewise defined functions.
We show that this has a wider range of application as well
as better complexity properties than previous work.

1. INTRODUCTION
Piecewise defined functions are ubiquitous in mathemat-

ics, starting from the Kronecker Delta function, through
characteristic functions for sets, on to functions such as
signum and floor. Although all of these are certainly inter-
esting, this paper will concentrate on those functions defined
over a linearly ordered domain (like R or R) and with a finite
number of pieces (unlike floor say).

There has been previous work in this area, most notably
that of von Mohresnchildt [7]. There, a normal form was de-
fined for a large class of piecewise-defined expressions through
the use of a very simple set of primitive elements; as well,
clear steps were given to modify this normal form to give a
canonical form. In our approach, the primitive elements are
much more complex; however this allows all the algorithms
to be greatly simplified. Furthermore, we obtain substantial
arithmetic complexity improvements. We can also handle
a wider domain of definition. This form has been indepen-
dently rediscovered by several authors, see for example [1]
and [2]. However both of those papers are about applica-
tions of these extended piecewise functions to optimisation,
to Fenchel coordinates in particular. To our knowledge, the
underlying theory of piecewise functions over linearly or-
dered spaces has never been published.

It is important to note that, outside of [7] (and the refer-
ences therein), there seems to be no reference to a formaliza-
tion of the concept of a piecewise function. This is probably
because the usual notation is so suggestive that no one ever
thought to question if the concept was ever properly defined.

The results we obtain in this work are deceptively simple,
but this is largely because a considerable amount of effort
has been put into ensuring that all the definitions are “just

∗Supported in part by NSERC Grant Discovery Grant
RPG262084-03

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

right”.
This paper benefited from some discussions of the con-

tents with Alexander Potapchik of Maplesoft Inc. He also
implemented, in Maple 7, many of the ideas contained in
this paper, and this is what Maple now uses for simplifica-
tion and normalization of piecewise functions.

2. PIECEWISE

2.1 Observations
Although the most common piecewise defined functions

are of the type

f(x) =

(

−1 x < 0

1 otherwise.
(1)

where x is (implicitly) understood to be real, we also en-
counter functions of the kind

f(x) =

(

x2 y < 0

x3 otherwise
(2)

where x and y are also (implicitly) understood to be real.
The notation in the second case above is poor, as the de-
pendence on y is not well indicated, but in frequent use
nevertheless. This leads us to observe that, in both cases,
there really are two different kinds of variables at play: those
that need to satisfy a boolean condition, and those that oc-
cur in an arithmetic context (y and x respectively). This
“separation of concerns” leads to an important conceptual
simplification of the requirements for a piecewise defined
function.

Another observation is that, at least in computer algebra
systems, it is common to take the derivative of objects like

f(x) =

(

−1 x < 0

1 otherwise.

Accordingly, the resulting object

f
′(x) =

(

0 x 6= 0

⊥ otherwise

should really be within the realm of objects that can be
talked about. Furthermore it should be possible to correctly
compute with such partial functions, as well as with func-
tions on extended domains. The normal form of [7] explicitly
requires a ring for the range.

A third and final observation is that, for linearly ordered
domains like R, adding and even multiplying two functions

that are each defined by formulas valid on some finite union
of intervals is very easy and can be done in linear arithmetic
cost (with respect to the total number of intervals). From
these three observations, the author believes that a keen
reader should be able to derive the rest of the paper!

2.2 Definition of piecewise
We will start with a relatively simple case of piecewise-

defined function, one which is defined on a unique linearly
ordered domain.

Definition 1. A set S is said to be linearly ordered if
there exists a relation < on S such that for all a, b ∈ S,
a 6= b either a < b or b < a holds.

From now on, let Λ be a linearly ordered set. We will also
need the concept of range partition of such a set. This is
one of the crucial ingredients.

Definition 2. A range partition R of a linearly ordered
set Λ is a finite set B of points λ1 < λ2 < . . . < λn, along
with the natural decomposition of Λ into disjoint subsets sub-
sets Λ1, . . . ,Λn+1 where

Λ1 := {x ∈ Λ | x < λ1}

Λi := {x ∈ Λ | λi−1 < x < λi}, i = 2, . . . , n

Λn+1 := {x ∈ Λ | λn < x}.

Note that the λi themselves are outside these subsets, that

Λ =

n+1
[

i=1

Λi

!

∪ {λ1, . . . , λn} =
[

R,

and that it is the ordered version of this complete decom-
position of Λ which is the range partition. For a given Λ,
we will often just give the set of points λi that generate a
range partition. It is sometimes useful to consider Λ itself to
be a degenerate range partition with the empty set ∅ as the
generating set. We will sometimes refer to the generating
set B of a range partition as a set of breakpoints.

Perhaps surprisingly, it is expressions like (2) that are
simplest to deal with.

Definition 3. A piecewise expression is a function from
a range partition to a set S.

Example 4. Taking Λ = R, B = {0}, and S = {x2, x3}
then f : R → S defined by

f(z) =

8

>

<

>

:

x2 z = Λ1

x3 z = 0

x3 z = Λ2,

is a piecewise expression.

Of course this is a rather pedantic definition as this clearly
does not represent an object of common mathematical inter-
est. Nevertheless it is a very useful definition as it encodes
the core computational concept necessary for the sequel suc-
cinctly and unambiguously. With just a little more work,
we will soon be able to define an object which will be much
closer to the usual piecewise functions encountered in text-
books.

Proposition 5. Let Λ be a linearly ordered set and R a
range partition. Then there exists a function X : Λ → R
which associates to each λ ∈ Λ the unique element r of R
such that λ ∈ r.

Corolary 6. Assuming that = and < are decidable and take
O(1) time, then for λ ∈ Λ, X (λ) can be computed using at
most O(log2(n)) operations, where n = |B|.

Proof. Since Λ is linearly ordered, we can store R in a
contiguous sorted array and use an adapted binary search
on its 2n+ 1 elements to find X (λ).

The assumption that = and < are decidable over all of Λ
can be weakened to merely assuming that they are decidable
for the evaluation point λ relative to be set of breakpoints
B. This is why in practice these functions can be effectively
evaluated even though the zero equivalence problem is un-
decidable.

From now on we will assume that all range partitions are
stored in a contiguous sorted 1-dimensional array; we will
sometimes simply say use the term ’list’ to refer to this data-
structure.

Using X , and a little bit of abusive notation, we get a
much more familiar expression for fB = f ◦ X : Λ → S
where we explicitly indicate the range partition generator
B. For the previous example, this unravels to:

f{0}(z) =

8

>

<

>

:

x2 z < 0

x3 z = 0

x3 z > 0.

There is clearly a bijection between the set of fB and the set
of piecewise expression defined previously. Next, we really
want to be able to treat expressions like

f(x) =

8

>

<

>

:

−x x < 0

0 x = 0

x x > 0.

(3)

where want the evaluation bindings to be such that f(−5) =
5 and not −x. Our definition of piecewise expressions, using
terms from a set S as above, would indeed give −x because
there is no relationship between the elements of Λ and those
of S. This is definitely not what is wanted. If we used ex-
pressions with strict evaluation rules, this particular prob-
lem would be solved. However, that is not quite enough
because we would still have problems with singular expres-
sions in “other” branches. To fix both of these problems at
once, what we really need to do is to treat S as a set of
functions instead of a set of (first order) values. To avoid
spurious evaluations, we are going to steal a standard trick1

from functional programming2 and use currying to solve our
problems. This leads us to define a somewhat more general
concept than a piecewise function, but the extra generality
is exactly what allows us to solve the problem mentionned

1also known to logicians as lambda-lifting
2we could have also used some fancy version of lazy evalu-
ation, but that would have introduced new problems whose
solution would have distracted greatly from the main points
of this paper. A very specialized version of lazy evaluation
is what was later implemented in Maple 8 for this purpose
but, in this author’s opinion, the downsides of integrating
this in an eager language outweigh the apparent benefits of
being able to use a simpler representation.

above. Furthermore, it specializes easily and correctly to
the intuitive notions of piecewise functions, as we will prove
in the next section.

Definition 7. Let S be a set of functions, then a piecewise

operator is a piecewise expression f : R → S.

We can thus rewrite example 3, using S̃ = {y 7→ −y, y 7→
0, y 7→ y}, the curried, relabelled version of S to get

f̃(x) =

8

>

<

>

:

y 7→ −y x < 0

y 7→ 0 x = 0

y 7→ y x > 0.

(4)

Then we have that f̃(−5)(
√

2) = −
√

2. This is actually

progress! What we really want is f̃(−5)(−5) = 5. This
last ingredient is exactly what we need to define piecewise
functions that behave as expected mathematically as well as
when implemented.

Definition 8. Given a piecewise operator f : R → S where
S is a set of functions s : Λ → V call f : Λ → V defined by

f(λ) := f(X (λ))(λ) = fB(λ)(λ)

a piecewise function.

Note that the notation f is sufficient since all of R,X and
B can be recovered from a representation of f . Also note
that there are no restrictions on V at all. When multiple
piecewise functions defined on different range partitions (but
the same Λ) are being discussed, we will denote them pB ,
making the generating set of the range partition explicit. A
strict notation for piecewise functions would be given by

f(x) :=

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

g1(x) x ∈ Λ1

g2(x) x = λ1

g3(x) x ∈ Λ2

g4(x) x = λ2

...
...

g2n(x) x = λn

g2n+1(x) x ∈ Λn+1

with gi ∈ S. It is worthwhile noting that giving Λ, B and
g1, . . . , g2n+1 (as ordered sets) are sufficient to fully deter-
mine f .

As Λ is linearly ordered, and the gi’s for i even are actually
only evaluated at one point, this is customarily written as

f(x) :=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

h1(x) x < λ1

β1 x = λ1

...
...

βn x = λn

hn+1(x) λn < x

where that last condition is often written as the word other-

wise, and where hi = g2i−1 and βi = g2i(λi). This notation
can at times be problematic as it mixes ground values (the
βi’s) and functions (the hi) at the same “level”, even though
they have different types. This is why we prefer to lift the
constants up to functions explicitly.

It is important to notice that a piecewise function is a
function that uses its argument twice, for very different pur-
poses. It is the separation of these two concerns that make

many of the subsequent algorithms simple yet general. In
the next sections it will be important to keep track of which
properties hold in the general case of piecewise operators
and which need to be specialized for piecewise functions.

2.3 Definition of domains
In order to be able to define a canonical form, we will

require somewhat more structure on the range S of functions
of a piecewise operator.

Definition 9. An effective domain D is a pair (F,∼),
where

1. F : On → V is a set of functions (of varied arity n)
from a set O to a set V

2. ∼ is a binary function on F that decides extensional
equivalence.

Definition 10. Two (n-ary) functions f, g ∈ F are said to
be extensionally equivalent if for all x ∈ On, either f and
g are both defined and f(x) = g(x), or neither f nor g are
defined. Denote this by f ≃ g.

It is very important to note that

1. the functions in F can be partial,

2. ≃ denotes equivalence, not equality,

3. ∼ is defined for F , not O nor V ,

4. ∼ decides equivalence, where ≃ denotes equivalence.

In most practical cases, ∼ will necessarily be compatible
with a (possibly partial) equivalence of elements of V since
there is a canonical identification between the functions g2i

of the breakpoints of a piecewise operator and the constants
they represent. Of course, since ∼ is a decision procedure,
this implies that the constant functions present in F must
in fact come from a subset of constants of V over which a
similar decision procedure exists. But the point is that we
should be able to tell that (x + 1)2 and x2 + 2x + 1 (over
R say) are equivalent. What is crucial here is that we can
tell this completely independently from any representation
issue of the underlying domain. In other words, this works
just as well over the usual uncountable R as it does with
constructive R.

Given an effective domain D and a computable total func-
tion C : F → F such that C(s) ∼ s, C(s) = 0 ⇐⇒ s ≃ 0,
and ∀s, t ∈ F, C(s) = C(t) ⇐⇒ s ∼ t, we will call the triple
{F,∼, C} a strong effective domain. It is worthwhile
noting that given {F, C} one can always obtain a strong ef-
fective domain by defining ∼ to be (a, b) 7→ C(a) = C(b)
whenever equality is decidable on F .

Proposition 11. Let {F,∼, C} be a strong effective do-
main. Then C ◦ C = C. In other words, C is a canonical
form for F .

Proof. Let s ∈ F , and t = C(s). Since t = C(s) ∼ s,
then C(t) = C(C(s)) ∼ C(s) ∼ s. But t = C(s) ∼ s, so
C(C(s)) = C(t) = C(s).

One cannot under-estimate the power of such a C: it gives
a canonical form for functions in F . It is important to notice
that it is defined globally, in other words, it treats (partial)
functions of the whole domain. It is outside of the scope
of the current work, but roughly speaking such canonical
forms only (seem to?) exist for very rigid objects, like mero-
morphic functions or, more generally for functions for an
o-minimal structure.

Example 12. The polynomial functions over Z, coded as
D = {Z[x̄], =, expand}, is a strong effective domain.

In fact, we can replace Z with RA, the real algebraic
numbers, and still get a strong effective domain, see [6] for
the details. This example also shows why it is important
to deal with equivalence rather than equality, as well as the
fact that a canonical form induces a (computable) equiva-
lence test. Perhaps more important still, at least to symbolic
computation, is the next example.

Example 13. Let P be a term algebra (of rational func-
tions) containing the rationals Q, the symbol x, the binary
operations +,×, and composition. Let T be the term alge-
bra defined by the grammar P | sin(P)| cos(P)|T + T |T ∗ T .
Let T ′ = {f : R → R where f : x 7→ t , t ∈ T} be the cor-
responding set of functions. Then {T, normal} with normal

the expanded normal form defined in [8], is a strong effective
domain.

While it is possible to further generalize the above ex-
ample, the term algebra T is already very close to the one
used in the undecidability results of [3, 9], and thus we can-
not expect to be able to continue with pure decision pro-
cedures much further, although it would be interesting to
see in which ways holonomic functions can be mixed with
piecewise functions and retain decidability. Semi-decision
procedures and even heuristics can however be quite useful
in practice.

A weakly effective domain is a pair {F,∼} where ∼
only decides equivalence to a distinguished element of F
(typically x 7→ 0). This is often the case when associated
to F we have a normal form operator N for elements of F
instead of a canonical form.

2.4 Spaces of piecewise operators

Definition 14. Let S be a set, then denote by Fin(S) the
set {p ∈ P(S) | ♯p < ∞} of finite subsets of S, where we
denote the power set of S by P(S).

Definition 15. Let P(Fin(Λ), F) denote the set of all piece-
wise operators defined on the range partitions of Λ generated
by all its (finite) subsets with values in F .

Of particular interest will be the case where {F,∼} is (at
least) a weakly effective domain. As we will often discuss
multiple piecewise functions at once, it is convenient to de-
fine B : P(Fin(Λ), F) → Fin(Λ) as the function which given
a (representation of a) piecewise operator will return its set
of breakpoints.

2.5 Redundancies and refinement
It is important to notice that F is canonically embedded in

P(Fin(Λ), F) since ∅ ∈ Fin(Λ) generates piecewise operators
extensionally equivalent to those in F . However, this space
also contains a lot of redundancies. If we let Λ = R and F
the space of all continuous functions C(R,R), then

p(λ) :=

8

>

<

>

:

1 λ < 0

1 λ = 0

1 λ > 0

is clearly an element of P(Fin(R), C(R,R)) which is exten-
sionally equivalent to x 7→ 1 ∈ F . We will deal with this
redundancy later. This redundancy is in fact very useful,

and is the key to efficient arithmetic in P! As increasing the
redundancy of the representation of a piecewise operator can
be quite useful, we will encode this in a definition.

Definition 16. A refinement of a piecewise operator p is
another operator q such that p(λ) = q(λ) for all λ ∈ Λ, and
the set of breakpoints of p is a subset of that of q. We will
call a refinement strict if the set of breakpoints of p is a
strict subset of that of q.

Note that we used p = q and not p ∼ q in this definition. It is
in fact possible to do this either way, but since we will always
be using explicit refinements, this would be an unnecessary
complication. Most often, we will actually want to specify
the (new) set of breakpoints of a refinement:

Definition 17. For any ordered finite set A ⊂ Λ, a A-
refinement of a piecewise operator p is another operator q
such that q is a refinement of p, and A ⊂ B(q). We will say
a A-refinement q is exact if B(q) = A ∪B(p).

Given a finite ordered set A and a piecewise operator p
as above, one can use the usual linear merge algorithm to
generate q in time O(|A ∪B(p)|).

We have glossed over one very important point: we can
perform a linear merge of two ordered finite lists of break-
points if and only if we can effectively decide < and = for
each of the breakpoints. In other words, for all of our algo-
rithms we need to make the assumption that whenever we
need to compute a common refinement q of two piecewise
functions p1, p2, then the union B of their respective sets of
breakpoints B1, B2 must be such that B ⊂ O ⊂Λ where <
and = are decidable on O. For this purpose, we introduce
following variation on Fin.

Definition 18. Let D be a linearly ordered domain, O a
subset of D over which < and = are decidable, then denote
by Fin(S) the set {p ∈ P(O) | ♯p < ∞} of finite subsets of
O.

All definitions of piecewise functions, piecewise operators
and operations on them should be understood to use Fin

in place of Fin whenever computability and decidability are
needed. We will not systematically do so since the math-
ematical definitions of many of the concepts work equally
well without this restriction.

Another aspect to notice is that since we are dealing with
piecewise operators (and not functions) even at breakpoints,
so that the underlying functions in the representation of p
are not evaluated to give q. For example, the {1}-refinement
of the trivial piecewise operator p(R) := (x 7→ 0) is

q(λ) =

8

>

<

>

:

x 7→ 0 λ < 1

x 7→ 0 λ = 1

x 7→ 0 λ > 1.

2.6 Denesting
There are two different ways in which “nesting” of piece-

wise expressions can arise: functional composition and defi-
nitional nesting. This is easiest to understand via examples:
consider the piecewise operators

t(λ) =

8

>

<

>

:

x 7→ x2 − 3 λ < 1

x 7→ −5 λ = 1

x 7→ x3 − 7x2 + 16x − 12 λ > 1.

(5)

and the absolute value function as the piecewise operator f
of example 4, along with the corresponding piecewise func-
tions f, t . Then f(t(λ)) = |t(λ)| is an example of functional
composition. Expanding the definitions gives

f(t(λ)) =

8

>

<

>

:

−t(λ) t(λ) < 0

0 t(λ) = 0

t(λ) t(λ) > 0

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

−t(λ)

0

B

@

8

>

<

>

:

λ2 − 3 λ < 1

−5 λ = 1

λ3 − 7λ2 + 16λ − 12 λ > 1

1

C

A
< 0

0

0

B

@

8

>

<

>

:

λ2 − 3 λ < 1

−5 λ = 1

λ3 − 7λ2 + 16λ − 12 λ > 1

1

C

A
= 0

t(λ)

0

B

@

8

>

<

>

:

λ2 − 3 λ < 1

−5 λ = 1

λ3 − 7λ2 + 16λ − 12 λ > 1

1

C

A
> 0

which, after quite a number of non-trivial computations (see
[7] for the details) gives

f(t(λ)) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

λ2 − 3 λ < −
√

3

0 λ = −
√

3

−λ2 + 3 λ < 1

5 λ = 1

−λ3 + 7λ2 − 16λ+ 12 λ < 3

λ3 − 7λ2 + 16λ − 12 3 ≤ λ

were we would have to expand the first and last cases further
if we wanted to write this more formally. The most difficult
parts of this computation involve extracting a range parti-
tion from conditions like

0

B

@

8

>

<

>

:

λ2 − 3 λ < 1

−5 λ = 1

λ3 − 7λ2 + 16λ − 12 λ > 1

1

C

A
< 0

The case of definitional nesting is considerably simpler.
8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

0

B

@

8

>

<

>

:

λ2 − 3 λ < 1

−5 λ = 1

λ3 − 7λ2 + 16λ − 12 λ > 1.

1

C

A
λ < 3

3 λ = 3
0

B

@

8

>

<

>

:

−λ λ < 0

0 λ = 0

λ λ > 0

1

C

A
λ > 1

only involves simple set-theoretic intersections to obtain the
equivalent

8

>

>

>

>

>

<

>

>

>

>

>

:

λ2 − 3 λ < 1

−5 λ = 1

λ3 − 7λ2 + 16λ − 12 λ < 3

3 λ = 3

λ λ > 3

3. ARITHMETIC
We first show how to do arithmetic with piecewise func-

tions. Very few assumptions are needed to just perform

arithmetic. For this section, let Λ be a fixed linearly or-
dered set, and F a set of functions from Λ to some set M .
Let P = P(Fin(Λ), F) be the corresponding space of piece-
wise operators. Furthermore suppose we have a function
ψ : F → F , we want to lift this to a function on P.

Definition 19. Let ψ : F → F be a unary function on F .
For p ∈ P determined by a breakpoint set B and functions
gi, 1 ≤ i ≤ 2|B| + 1, define ψ(p) by the same breakpoint set
B and ψ(gi), 1 ≤ i ≤ 2|B| + 1.

We should prove that this properly lifts the unary func-
tions from those of F onto P:

Theorem 20. ψ(p) and λ 7→ ψ(p(λ)) are extensionally
equivalent.

Proof. Let λ ∈ Λi. Then

ψ(p)(λ) = ψ(g2i+1) (by definition)

= ψ(p(λ)) (by definition)

as required. Similarly, let λ = λj , then ψ(p)(λ) = ψ(g2i) =
ψ(p(λ)).

We can lift any n-ary function on O to one on Pn. For the
case of ψ : F × F → F and p1, p2 with common breakpoint
set B and associated functions gl

i for l = 1, 2, 1 ≤ i ≤
2|B|+1, ψ(p1, p2) is defined by the same breakpoint set and
ψ(g1

i , g
2
i). The details for this and the n-ary case are left to

the reader - they are not difficult, but notationally hideous,
and no new insight is gained from the exercise.

For the case ψ : F × F → F and p1, p2 with different
breakpoint sets B1, B2, we must first transform p1, p2 to B-
refinements q1, q2 (with B = B1 ∪ B2), and then we can
apply the previous construction. However we can no longer
work over Fin(Λ) but must work only over Fin(Λ) for the
refinement algorithm to be effective.

Corolary 21. Addition from a linearly ordered ring R can
be lifted to addition of piecewise-defined polynomials. More
generally, any ring R gives rise to well defined operations
on P(Fin(|R|), R[x]) with |R| the underlying set of elements
of the ring R.

Proof. The lifting of the addition from any ring R to
addition on R[x] is classical. Treating R[x] as a set of func-
tions, one can use the previous construction to lift addition
(from + to +) up to P(Fin(|R|), R[x]).

Clearly the same can be done for negation and multiplica-
tion, and so on.

Corolary 22. Let R be a linearly ordered ring, and denote
Hom(R,R) the space of homomorphisms from R to R. Then
we can make P(Fin(R), Hom(R,R)) into a ring.

Proof. Lifting the ring operations from R to Hom(R,R)
is classical: (f + g)(x) is defined to be f(x) + g(x), etc.
The functions 0 = x 7→ 0 and 1x = x 7→ x are the additive
and multiplicative unit respectively. Letting F = Hom(R,R),
simple verification shows that (P(Fin(|R|), F),0, 1x,+, ∗) is
a ring.

The previous corollary hints at an even more general result:
that our construction is actually functorial. We will not go
into the details since this is not needed. Before we move on,
it is useful to explicitly turn these theoretical results in to
algorithms. For example, using binary operators, we get

Proposition 23. Let R = P(Fin(|O|, F) be a ring a piece-
wise functions. Let f1, f2 ∈ R be given explicitly. Then
f+ = f1 + f2 can be computed explicitly by

1. Forming the B-refinements of f1 and f2, with B =
B(f1) ∪B(f2).

2. Letting the component functions g+

i of f+ be g1
i + g2

i ,

where the gj
i come from the B-refinements above.

Clearly we can replace + by any other binary operation. The
reader will recognize the above as being the linear merge
algorithm.

4. CANONICAL FORM
Simply defining arithmetic is not the end of the story. For

example, consider |x|2−x2 over R. Translating the absolute
value function to its piecewise equivalent (see 3), the results
of carrying out the arithmetic as above gives

8

>

<

>

:

x 7→ 0 λ < 0

x 7→ 0 λ = 0

x 7→ 0 λ > 0.

which is extensionally equivalent to 0, but not intensionally
equal to 0. Thus we need a further normalization step which
would combine the above redundancies.

Definition 24. Let D = (F,∼, C) be a strong effective do-
main of functions, where F : O → V and O is a linearly
ordered domain. We call PD(Fin(|O|), F) an effective piece-
wise domain.

Note that we are not assuming that all the functions in F
are total - only that we have an effective method (∼) for de-
ciding equivalence. The first simplification algorithm is then
very simple to describe: apply C to each part of a piecewise
function p giving a new function q with the same breakpoint
set, and then merge (in increasing order) adjoining triples
(g2i−1, g2i, g2i+1) if they are all equal. More precisely, Fig-
ure 25 gives Ocaml code to implement this. normal is the
normalizing function C of D. Note that we have used a
record structure to statically enforce the fact that any piece-
wise function with n breakpoints must consist of 2n + 1
functions, with adjoining regions alternating between con-
nected open sets and a point upper bound, and ending with
a single (upward) unbounded piece. It is possible to use a
simpler data-structure for this and simplify the code, but we
would lose the ability to statically enforce some important
invariants.

Proposition 26. Let f ∈ P = PD(Fin(|O|), F), where P is
an effective piecewise domain, then pseudonormalform(N, f)
and f are extensionally equal, where N is any function N :
F 7→ F which preserves ≃. Additionally, if N is idempotent,
then so if pseudonormalform.

A complete proof can be found in Appendix A. Unfortu-
nately, this simple algorithm does not actually give a normal
form, never mind a canonical form, even if we restrict our
input functions to polynomials over Z. Consider for example

8

>

<

>

:

x 7→ 0 λ < 0

x 7→ x2 λ = 0

x 7→ 0 λ > 0.

Algorithm 25. Pseudo normal form

type (’a,’b) condpair =
{left_fn : (’a -> ’b);
pt_fn : (’a -> ’b); right_pt : ’a}

and (’a,’b) endpiece = {fn : (’a -> ’b)}
and (’a,’b) piecewise =

((’a,’b) condpair) array * (’a,’b) endpiece ;;

let pseudonormalform (normal:(’a->’b) -> (’a->’b))
((a,e):(’a,’b) piecewise) : (’a,’b) piecewise =
let pnormal y = {y with left_fn = normal y.left_fn;

pt_fn = normal y.pt_fn}
and canmerge a b =
a.left_fn == a.pt_fn && a.pt_fn == b.left_fn

and merge a b = {left_fn = a.left_fn;
pt_fn = b.pt_fn; right_pt = b.right_pt}

in
let (b,newe) = (Array.map pnormal a, {fn = normal e.fn})
and j = ref 0
and n = Array.length a in

if n=0 then (b,newe)
else begin
for i=1 to n-1 do

if canmerge b.(!j) b.(i) then
b.(!j) <- merge b.(!j) b.(i)

else
j := !j + 1;

done;
if b.(!j).left_fn==b.(!j).pt_fn &&

b.(!j).pt_fn==newe.fn then
(Array.sub b 0 !j, newe)

else
(Array.sub b 0 (!j+1), newe)

end;;

which “simplifies” to itself. Of course, the above function is
extensionally equal to 0, so we do not in fact have a com-
plete normal form. However, for some restricted classes of
functions, this does give a normal form.

Proposition 27. Let f ∈ PD(Fin(|O|), F) be such that for
all g2i components of f defined on the points of the range
partition associated with f , then either g2i ≃ g2i−1 or g2i ≃
g2i+1. For such f , the pseudonormalform algorithm gives a
normal form.

The proof is straightforward. The proposition can be under-
stood to say that if the function we are dealing with has a
representation into pieces that are somehow compatible with
each other (i.e. applying C is enough to recognize this), then
we have a normal form. To get a complete normal form, we
have to figure out if, at the breakpoint, the function is “com-
patible” with its neighbours. To understand why this is not
so simple, consider

8

>

<

>

:

x 7→ 0 λ < 0

x 7→ δ0(x) λ = 0

x 7→ 0 λ > 0,

where δa(x) is the usual characteristic function of the point
a. To be able to properly handle such cases, de-nesting of
piecewise-defined functions is necessary.

Consider our first algorithm 25, but with the canmerge

function defined as

let canmerge’ a b = ((a.left_fn = b.left_fn) &&

(a.pt_fn a.right_pt == b.left_fn a.right_pt))

In other words, we merge 2 consecutive pieces if and only if
the normal forms for the functions on the two open intervals

are the same and if the point function and left hand function
evaluate to the same value. More precisely,

Algorithm 28. Let
canonform p = pseudonormalform’ (denest p)

where pseudonormalform’ is obtained from pseudonormalform

by replacing canmerge with canmerge’.

The denest function is a simple linear traversal (specified
by example in subsection 2.6) which brings (definitionally)
nested piecewise functions to the surface. This does not
increase the total number of breakpoints, although it usually
increases the number of outer breakpoints.

Theorem 29. Let f ∈ P = PD(Fin(|O|), F), where P is
an effective piecewise domain, and f is such that for all
breakpoints b ∈ Fin(|O|), there exists a decision oracle =V

for equality of values. In other words, for all g1, g2 ∈ F and
all b ∈ Fin(|O|), it is possible to decide if g1(b) = g2(b) with
=V . Then algorithm 28 is a canonical form algorithm.

The full proof is in Appendix A. While the above may
appear to give a qualified normal form, it nevertheless turns
out to be extremely useful in practice, as very wide classes
of examples are covered. Instead of using a function =V

on values, one instead uses a semi-decision procedure for
6=V , and only structural equivalence for =V . While this no
longer gives a normal (or canonical) form, for many practical
examples this appears to be sufficient.

Corolary 30. Let O = R, restrict Fin(|O|) to the real al-
gebraic numbers, and F to be rational functions, then algo-
rithm 28 gives a canonical form algorithm.

5. COMPLEXITY
We are primarily interested in comparing complexity re-

sults between our approach and that of [7], and thus we
will restrict ourselves to a setting where this comparison
can (fairly) be made. Although we would have preferred to
make this paper self-contained, repeating all the necessary
definitions from [7] would take us too far afield, and we will
be forced to assume that the reader has a certain familiarity
with its contents.

Without loss of generality, we can assume that arithmetic
operations on function representations are O(1), and that
the normal form operation C on function representations is
O(M(n)) where n is the size of the representation. It is then
easy to obtain that

Proposition 31. Let f be a piecewise function (as per The-
orem 29) with d breakpoints, with each gi bounded in size by
n. Then Algorithm 28 runs in O(dM(n)).

Naturally for complex expressions, M(n) can still be the
driving factor in the overall cost. The cost above is trivial to
establish as Algorithm 25 only does at most 4 linear traver-
sals of the expression (once for denesting, the Array.map,
the middle loop, and the final Array.sub). Only the middle
loop needs to perform non-trivial computations.

Proposition 32. Under the same assumptions, von Mohren-
schildt’s algorithm [7] runs in O(2dM(n)).

The reason for this is that the algorithm of section 6.1
of [7] expands piecewise expressions into terms which the
normal form algorithm steps (3.4) and (3.6) (section 3) fur-
ther expand.

6. REMARKS
For lack of space, we did not include here the full al-

gorithm for definitional denesting. However this is quite
straightforward. Denesting of composed piecewise functions
is considerably more difficult; however, the key ideas are in
von Mohrenschildt’s work [7], and these can be combined
with our the ones in the present work. The principal diffi-
culty here remains that of “inverting” functions to create a
finite set of breakpoints. This is why [7] restricts the inner
functions to be polynomials.

7. CONCLUSIONS AND FURTHER WORK
In the current work, we make the following contributions:

a simple yet general exposition of piecewise functions that
cleanly separates the decision aspects from the value aspects
of these functions; this allows us to leverage the underlying
linear structure to give faster algorithms (linear instead of
exponential in the number of breakpoints); a clean separa-
tion of concerns between the requirements on the domain
and the range of piecewise functions; and a clearer picture
of the kinds of normal and canonical forms needed from the
base domains to be able to build piecewise functions.

While all our examples are over the R, it is clear that
our work also applies to finite domains (which can be lin-
early ordered). Finite unions of linearly ordered domains
can also be handled - one can just pick an arbitrary order
between the domains, where none of the domains “touch”;
we can combine the decision procedure =V for each of the
sub-domains to a decision procedure for the full domain.

For example, by using a logic which can deal with par-
tial functions and undefinedness [4, 5], the functions we
deal with can be partial. This was our original motivation
for looking into this problem! The issue with von Mohren-
schildt’s work is that it needs a ring in both the value and
range domains. Here, we only require sets with operations
and a normalization procedure in the range, and ordering
properties in the domain.

In the future, we hope to move from linearly ordered do-
mains to domains with finite presentations and algorithmic
combination properties. The main examples, of course, be-
ing algebraic and semi-algebraic sets in Rn, where respec-
tively Gröbner Bases and CAD are the algorithmic tools.
Another source of generalization might be to work with im-
plicit characteristic functions, so as to be able to handle
functions like floor and trunc.

8. REFERENCES
[1] H. H. Bauschke and M. v. Mohrenschildt. Symbolic

computation of fenchel conjugates. ACM Commun.
Comput. Algebra, 40(1):18–28, 2006.

[2] J. M. Borwein and C. H. Hamilton. Symbolic
computation of multidimensional fenchel conjugates. In
ISSAC ’06: Proceedings of the 2006 international
symposium on Symbolic and algebraic computation,
pages 23–30, New York, NY, USA, 2006. ACM Press.

[3] B. Caviness. On canonical forms and simplification.
J. ACM, 17(2):385–396, 1970.

[4] W. M. Farmer. A partial functions version of Church’s
simple theory of types. Journal of Symbolic Logic,
55:1269–91, 1990.

[5] W. M. Farmer. A simple type theory with partial
functions and subtypes. Annals of Pure and Applied

Logic, 64:211–240, 1993.

[6] H. T. Kung. The computational complexity of algebraic
numbers. In ACM, editor, Conference record of Fifth
Annual ACM Symposium on Theory of Computing:
papers presented at the Symposium, Austin, Texas,
April 30–May 2, 1973, pages 152–159, New York, NY,
USA, 1973. ACM Press.

[7] M. V. Mohrenschildt. A normal form for function rings
of piecewise functions. J. Symb. Comput.,
26(5):607–619, 1998.

[8] J. Mulholland and M. Monagan. Algorithms for
trigonometric polynomials. In Proceedings of the 2001
international symposium on Symbolic and algebraic
computation, pages 245–252. ACM Press, 2001.

[9] D. Richardson. Some unsolvable problems involving
elementary functions of a real variable. Journal of
Symbolic Logic, 33:511–520, 1968.

APPENDIX

A. PROOFS

Proposition (26). Let f ∈ P = PD(Fin(|O|), F), where P

is an effective piecewise domain, then pseudonormalform(N, f)
and f are extensionally equal, where N is any function N :
F 7→ F which preserves ≃. Additionally, if N is idempotent,
then so if pseudonormalform.

Proof. Let f have the following form:
8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

g1(x) x ∈ Λ1

g2(x) x = λ1

...
...

g2n(x) x = λn

g2n+1(x) x ∈ Λn+1

We will work on the abstract mathematical form as above,
since the mapping between it and the data-structure (’a,’b)
piecewise is obvious, but the mathematical notation is clearer.
Remember that the decomposition above satisfies the follow-
ing pre-condition,

∀x ∈ Λi, x ≤ λi ∧ ∀1 ≤ j < n, λj < λj+1

and that the λi’s form a range partition for Λ.
The first step of the algorithm transforms this to a func-

tion f1 (stored in (b, newe) in the code) of the same form but
with gi replaced with g̃i := N(gi); however, by definition,
N preserves ≃, and thus f1 ≃ f .

We then have 3 different cases: n = 0, n = 1, and n > 1.
For n = 0, then our piecewise function is already in one
piece, no reduction can be done, and so the normalized form
can be returned.

For n = 1, the for loop is empty. The if condition is
a specialized version of canmerge for comparing a general
piece to the end piece. The condition amounts to checking
that all 3 functions involved are the same, in which case we
can simply make the range partition null, which is what is
done via Array.sub b 0 j (the sub-array of b starting at
index 0 of length j) as j = 0.

For n > 1, the for loop actually encodes a fold function
in an imperative manner. It is easy to see that, for any i,
j ≤ i and that the function defined by the first i pieces of f
and the one contained in the j pieces of b are extensionally

equivalent (by construction and the properties of canmerge

and merge). This is the invariant maintained by the loop.
On exit of the loop, we perform a last step on the last general
piece and the end piece, as already analyzed above in the
n = 1 case.

To prove idempotency, assuming that N is idempotent,
the same proof skeleton as above works. The only difference
is in the case of n > 1, where we must show that a sec-
ond (linear) pass through the pieces of f1 would not merge
any more segments. But if a second pass were to merge
two pieces, we can show that these pieces would have been
merged already in the first pass.

Theorem (29). Let f ∈ P = PD(Fin(|O|), F), where P

is an effective piecewise domain, and f is such that for all
breakpoints b ∈ Fin(|O|), there exists a decision oracle =V

for equality of values. In other words, for all g1, g2 ∈ F and
all b ∈ Fin(|O|), it is possible to decide if g1(b) = g2(b) with
=V . Then algorithm 28 is a canonical form algorithm.

Proof. First, we can re-use the proof of 26, but with
the modified canmerge’ to show that extensional equiva-
lence is maintained. Since a.pt_fn = b.left_fn implies
a.pt_fn a.right_pt == b.left_fn a.right_pt, the new
algorithm will definitely merge all previously merged pieces,
and may merge more. But, similarly to the previous proof,
extensional equivalence is always maintained. In fact, the
modified canmerge’ checks this quite explicitly for the break-
points. Actually, using the same proof, since C preserves
decidable equivalence, we have the stronger result that ∼ is
preserved.

We have to prove that if f1 and f2 are two functions
in PD(Fin(|O|), F) then canonform(f1) = canonform(f2) if
and only if f1 ∼ f2.

Without loss of generality, we can assume that neither f1
nor f2 are nested.

⇒. Suppose canonform(f1) = canonform(f2) = f̃ . But
we have already shown that canonform(f1) ∼ f1 and canonform(f2) ∼
f2, and as ∼ is symmetric, this implies that f1 ∼ f2.

⇐. Suppose f1 ∼ f2. But canonform(f1) ∼ f1 and
canonform(f2) ∼ f2, and by symmetry, canonform(f1) ∼
canonform(f2). However, we need to prove that these are
in fact equal. Suppose that they are not. They either they
have a different set of breakpoints or (assuming that they
have the same breakpoints), that the underlying functions
differ. Let k1 = canonform(f1) and k2 = canonform(f2).

First, suppose that the set of breakpoints is different.
Without loss of generality, assume that it is k1 and is in
fact the first breakpoint λ1. Let k1 have the same form
as f in the preceding proof (with sub-functions labelled
gi), and use hj for the labels of the sub-functions of k2.
Now the gi’s and the hi’s are breakpoint-free functions for
which we have a canonical form C (by assumption). Since
g1 ∼ h1, C(g1) = C(h1); g2(λ1) =V h1(λ1) (since f1 ∼ f2);
and g3 ∼ h1 implies C(g3) = C(h1) = C(g1). But since
C(g1) = C(g3) and h1 is defined at λ1, so is g1. By exten-
sionality and the fact that h1 is breakpoint free, canmerge’
applied to the first breakpoint of k1 would have merged this
part – contradiction.

Second, suppose that the breakpoints are the same, but
the sub-functions are different. This is not possible either
because C is, by definition, a canonical form for the under-
lying sub-functions.

