Computer Algebra vs Computer Analysis

Jacques Carette
McMaster University

July 8, 2004
Overview

- What is Computer Analysis?
Overview

- What is Computer Analysis?

- The problems
 - some well-known
 - some hopefully new!
Overview

- What is Computer Analysis?

- The problems
 - some well-known
 - some hopefully new!

- Only a glimpse of solutions, when known, will be given
Overview

• What is Computer Analysis?

• The problems
 – some well-known
 – some hopefully new!

• Only a glimpse of solutions, when known, will be given

• Systems and UI issues will also be ignored
Definition: Computer Algebra

Abstract domains: rings, fields, semi groups, categories, etc but also $M_{n \times n} [\mathbb{Z}_p [\alpha_1, \ldots, \alpha_m]][[x]]$
Definition: Computer Algebra

Abstract domains: rings, fields, semi groups, categories, etc but also $M_{n \times n} [\mathbb{Z}_p [\alpha_1, \ldots, \alpha_m]] [[x]]$

Concrete objects: polynomials, algebraic numbers, formal series, integer matrix, and compositions of those.
Definition: Computer Algebra

Abstract domains: rings, fields, semi groups, categories, etc but also $M_{n \times n} \mathbb{[Z}_p [\alpha_1, \ldots, \alpha_m]][[x]]$

Concrete objects: polynomials, algebraic numbers, formal series, integer matrix, and compositions of those.

Algebraic algorithms: arithmetic for all the above objects, term-rewriting, etc

• Gröbner bases
• Matrix factorizations
• Elimination in non-commutative Ore algebras
• Differential Algebra
Definition: Computer Analysis

Computational Exact Classical Analysis

- The study of functions
Definition: Computer Analysis

Computational Exact Classical Analysis

- The study of functions

Key idea 1: finite representations of functions.
Definition: Computer Analysis

Computational Exact Classical Analysis

- The study of functions

Key idea 1: finite representations of functions.

Key idea 2: functions are not necessarily computable!
Current situation

• Every single computation done by CA systems is done as algebra.
Current situation

- Every single computation done by CA systems is done as algebra.
- Few, if any, side-conditions are used
Current situation

• Every single computation done by CA systems is done as algebra.

• Few, if any, side-conditions are used

• Accurateness of the translation not questioned
Current situation

- Every single computation done by CA systems is done as algebra.
- Few, if any, side-conditions are used
- Accurateness of the translation not questioned
- Parametric problems are always assumed “generic”
Current situation

- Every single computation done by CA systems is done as algebra.
- Few, if any, side-conditions are used
- Accurateness of the translation not questioned
- Parametric problems are always assumed “generic”
- These are not bugs! They are non-trivial theoretical issues.
Hands-on!

Specific examples of problems, using Maple.

But these are common to all Computer Algebra systems.