
High-Level Theories?

Jacques Carette and William M. Farmer ??

Department of Computing and Software
McMaster University

Hamilton, Ontario, Canada

29 April 2008

Abstract. We introduce high-level theories in analogy with high-level
programming languages. The basic point is that even though one can
define many theories via simple, low-level axiomatizations, that is neither
an effective nor a comfortable way to work with such theories. We present
an approach which is closer to what users of mathematics employ, while
still being based on formal structures.

1 Introduction

The mission of mechanized mathematics is to develop software systems
that support the process people use to create, explore, connect, and ap-
ply mathematics. There are historically two main kinds of mechanized
mathematics systems (MMSs): theorem proving systems (TPSs) and com-
puter algebra system (CASs). Both kinds of systems encapsulate a body
of mathematical knowledge and a collection of tools for using this knowl-
edge. The tools of TPSs tend to be primarily deductive, while those of
CASs tend to be primarily computational.

MMSs have two kinds of users. End users use the tools of an MMS
to help them do mathematics, whatever that involves. Developers use the
tools of an MMS to produce new mathematical knowledge and new tools
to facilitate the work of end users. Developers need to have a deep un-
derstanding of the logical and mathematical foundation of their MMS of
choice. They are interested in the structure of mathematics, the prob-
lems involved in formalizing mathematics, and the MMS. End users need
much less depth in their understanding of the MMS. They are computer
scientists, engineers, and other scientists who are primarily interested in
an MMS as a (mathematical) tool to solve a problem.

Mathematics is usually done in informal high-level reasoning environ-
ments that include a rich set of concepts and practical tools. The tools

? c© Springer-Verlag. Published in S. Autexier, J. Campbell, J. Rubio, V. Sorge, M.
Suzuki, and F. Wiedijk, eds., Intelligent Computer Mathematics, LNCS, 5144:232–
245, 2008. This research was supported by NSERC.

?? {carette,wmfarmer}@mcmaster.ca.



2

involve a mixture of computation and deduction and are highly integrated
with each other. While the setting appears informal, enough rigor is ap-
plied that, in theory, the results could be made formal. MMS end users
want to work in similar high-level environments, and MMS developers
want to build such environments. But contemporary MMSs do not pro-
vide such environments, nor do they provide the tools to build them. We
would like to provide something akin to the ease-of-use of Theorema [4]
with the computational correctness and efficiency provided by Focal [27]
and the soundness of Coq [9].

Contemporary TPSs provide low-level reasoning environments based
on axiomatic theories. An axiomatic theory consists of a set of formulas
(called axioms) in a formal language. An axiomatic theory encodes a
body of mathematical knowledge declaratively; the “truths” of the body
of knowledge are the logical consequences of the axioms. In a TPS, new
concepts are expressed by writing definitions, and the consequences of
the concepts are explored by stating and proving conjectures. Making
definitions and proving theorems is the primary emphasis; performing
computations and introducing derived reasoning rules is secondary. As
a result, doing mathematics in a TPS requires working at a very low
conceptual level—much like programming in an assembly language. TPSs
give developers the access they need to low-level details, but generally
not the capability to build the kind of high-level reasoning tools that end
users want. As a result, TPSs are almost useless for end users who are
interested in “getting work done” and lack the necessary understanding
of mathematics at the level of axiomatic theories.

Contemporary CASs provide high-level computational environments
based on algorithmic theories. An algorithmic theory consists of a set of
algorithms that perform symbolic computations over a formal language.
An algorithmic theory encodes a body of mathematical knowledge proce-
durally; the “truths” of the body of knowledge are the results that can be
obtained by running the algorithms on the range of inputs. In a CAS, new
algorithms can be expressed in the theory by writing programs, usually in
a special, system-supplied programming language. Reasoning is narrowly
focused on computation; there is usually little support for deductive rea-
soning. Moreover, not only is the background theory of the algorithms
largely hidden from the user, these background theories are (unfortu-
nately) inconsistent from algorithm to algorithm, which makes the results
obtained from such computations frequently untrustworthy. As a result,
doing mathematics in a CAS is like programming in a high-level program-
ming language with an inaccessible, untrustworthy compiler. CASs offer



3

end users a high-level reasoning environment, but one that supports only
computation and provides untrustworthy results. By not giving develop-
ers access to their logical foundations, CASs have very limited use for
developers of mechanized mathematics.

We argue in this paper that, in order for mechanized mathematics
to achieve its potential, MMSs must provide end users with high-level
environments for reasoning and computation, similar to the informal en-
vironments they are used to, in which they can work in a sound and
convenient fashion. MMSs must also provide developers with the capabil-
ities to build high-level environments for end users that are derived from
a solid logical foundation. Toward this goal, we introduce the notion of a
high-level theory, a semi-formal high-level environment for reasoning and
computation that is analogous to a high-level programming language.

The paper is organized as follows. Section 2 discusses what a high-level
reasoning environment is. Section 3 introduces the notion of a high-level
theory and explores the analogy between high-level theories and high-
level programming languages. How mathematics is performed within a
high-level theory is the subject of section 4. How high-level theories are
created and connected is covered in section 5. Two examples of high-level
theories are briefly discussed in section 6. We comment in section 7 on
some related issues and conclude in section 8 with some remarks and a
recommendation that MMS builders design and implement systems that
offer high-level theories instead of just axiomatic or algorithmic theories.

2 High-Level Reasoning Environments

As we have mentioned above, mathematics practitioners work in high-
level reasoning environments that offer integrated sets of concepts and
deductive, computational, visual, and other kinds of tools. Working in
them is more convenient and practical than working in an axiomatic the-
ory or even in a network of axiomatic theories.

For example, consider the informal reasoning environment of natural
number arithmetic (which is also called number theory). Even though an
axiomatization of natural number arithmetic is relatively simple, the in-
formal environment that people actually work in is quite sophisticated.
For instance, it includes a set of algebraic operators, a linear order, sev-
eral lattice structures, a collection of induction principles, a collection of
algorithms for adding, multiplying, dividing (with remainder), etc., and
various connections to set theory, analysis, and abstract algebra. An ax-
iomatization of natural number arithmetic—even one augmented with



4

Theory Nat:

concepts 0,1 : Nat.

transformers +, * : Nat -> Nat -> Nat. total, commutative, associative.

transformers <, = : Nat -> Nat -> Bool.

theorem: Nat is an ordered semi-ring.

language AE(Nat) = {0,1,+,*} // Arithmetic Expressions over Nat

derive transformer: eval : AE -> Nat // Evaluation, derived

theorem: total(eval).

derive transformer induction : Prop(AE) -> InductiveProof

... // Structural induction principle

Fig. 1. Nat as a sample high-level theory

many definitions and theorems—is an enfeebled reasoning environment
in comparison to this standard informal high-level environment. Figure 1
gives a taste of what we mean. It is important to notice that the “signa-
ture” of Nat does not export the implementation details of the represen-
tation of Nat. We are thus free to provide “implementations” via Peano’s
axioms or via some other (more efficient) means.

Another good example of an informal high-level environment is what
is often called group theory. It includes the basic definitions of the al-
gebraic structure called a group, machinery connecting groups via ho-
momorphisms, tools such as the Sylow theorems and the orbit-stabilizer
theorem for analyzing the structure of groups, and standard applications
of groups to various symmetric structures and problems in mathematics.
Group theory cannot be naturally derived from an axiomatization of a
group. It is based on a set of axiomatic theories that includes a theory of
a single group, several copies of this theory for homomorphisms, a theory
of a group action, a theory of natural number arithmetic, and a theory
of sets and functions. In common use, group theory is more about its
connections to other theories than about groups themselves.1

Reasoning in one of these high-level environments is analogous to
programming in a high-level programming language like Java or ML. The
reasoning can be reduced to the level of axiomatic theories, but this is
rarely necessary or even desirable.

3 High-Level Theories

So what exactly are high-level theories? Informally, they should be to
mechanized mathematics what high-level programming languages are to

1 There are exceptions, naturally.



5

1. Convenient, human-oriented, sound, and precise.
2. Supports deduction, computation, and mixtures of the two.
3. Allows the end user to work at a high conceptual level.
4. Includes a well-constructed, highly integrated set of tools.
5. Constructed modularly.
6. Efficiently implemented with respect to resources.
7. Enables multiple modes of interaction (e.g., graphical).

Fig. 2. The pragmatic properties of a high-level theory

programming. This analogy is quite rich, and deserves to be expanded
upon. But first, we will explicitly list in Figure 2 the pragmatic proper-
ties that we want a high-level theory to have. While these might all sound
quite desirable, each is a nontrivial constraint. Furthermore, if they are
not designed into a system, they are rather unlikely to be emergent prop-
erties of an implementation.

3.1 The high-level programming analogy

Taking a wide, top-down view of high-level programming languages, we
first encounter programming paradigms, namely procedural, functional,
object-oriented, and logical/relational. Mathematicians also have styles.
Some like to prove purely existential theorems, others are engaged in giant
computations, whilst others like to find relations between various theories;
there are entire books and active conferences dedicated to studying these
topics. While our goal is to support as many of these activities as possible,
we will focus on deduction and computation.

If we look at most modern high-level programming languages, we get
a large set of features, even though we know that we could achieve much
the same by directly programming in an assembly language (or a Turing
machine or the λ-calculus). The same reasons that drove programming
languages to include such high-level features should guide our search.
Furthermore we should not look merely at language advances or even
programming systems (languages combined with a standard library). It
is important to realize that some languages thrive because they inhabit a
complete ecosystem, with rich IDEs offering non-ASCII based methods of
interaction, project management features, etc. It is sobering to remember
that N. G. de Bruijn had foreseen some of this 40 years ago [12].

At the simplest level, we want to combine oft-used chains of primitive
deductions into new transformers which are meant to be used as units.



6

For example, loops are so pervasive in programming that all languages
offer high-level constructs for this, with a range of semantics. This varies
from the one-size-fits-all while loop of early imperative languages to the
semantically richer foreach loop, and the even richer fmap and foldl

(from Haskell). In an MMS, once we have theorems that prove the cor-
rectness of algorithms for addition and multiplication over Nat, we should
simply add these algorithms as new “fundamental” tools.

Between the two extremes of programming paradigm and low-level
primitives, programming languages offer further tools, for “programming
in the large”, like classes, modules, or functors. The analogy extends: we
want structuring mechanisms for our MMSs. We favor using theories and
parameterized theories for that purpose. And even though our aim is to
present to users rich high-level theories, we still firmly believe in the little
theories method [19]. These can be assembled in a principled and modular
fashion, and implemented atop a module system like Mei [29, 30].

Perhaps the biggest difference is that a high-level theory needs to
support more than just computation, it also needs to support deduc-
tive reasoning (and vice versa). These activities should not just co-exist:
they should be tightly integrated with each other as they are in mathe-
matical practice. Furthermore, reasoning and computation should not be
restricted to objects of a particular theory: they should be applicable to
theories and their interconnections [7].

3.2 Informal definition

In this subsection, we give a preliminary, informal definition of a high-
level theory, while in the next section we show how to effectively make
this definition precise. In other words, we give an abstract specification
now and then an implementation later. The aims of this subsection is to
convey the intuition behind our ideas.

Definition 1 A high-level theory (HLT) is a tuple (C,T ) of concepts
and transformers that possesses the pragmatic properties given in Fig-
ure 2. Concepts C are the basic objects of discourse and transformers T

are n-ary functions on expressions concerning concepts.

Implicit in the above definition is the notion of a language and a base
theory over which everything is defined, which enters more directly in the
next definition.

A concept is a pair (s, d) of a new symbol s and a definition d for s.
In other words, a concept consists of a name and its meaning—defined in



7

a formal language over a theory. This can be a basic object like 0 or 1,
a particular group G, the definition of the fundamental group π1 of a
surface, the Gaussian elimination algorithm, an algorithm for integer fac-
torization, the set theory nbg, or an abstract 2-category. The definition
d of a concept can be given implicitly as a certain set of properties or
explicitly as an expression that denotes an object.

A transformer is a function that maps expressions to expressions. It
can embody computations or deductions. So a transformer can be as sim-
ple as the modus ponens deduction rule or integer arithmetic, up through
induction or Gröbner basis computations, to proof rules for applying tac-
tics, or an algorithm for solving PDEs symbolically. It is important to
note that all these are maps from some pieces of syntax to other pieces
of syntax, although our chief interest in all of them is what that syntax
denotes. This point is worth emphasizing because this is a principal dif-
ference between theorem proving systems and computer algebra systems:
both implement transformers, but they differ greatly in what meaning is
a priori given to each transformer.

Another characteristic of mathematics which is important to model
is the pervasive use of conceptual layers and abstraction. Concepts often
appear in various guises: for example, (computable) functions can both be
used directly as transformers and can also be a concept of study. Directed
graphs with labeled edges and nodes can be studied directly or can be
used to conveniently represent other concepts like commutative diagrams,
which themselves represent equations in a theory. An HLT should give us
the tools to draw a commutative diagram (as a labeled graph) and have
the MMS properly interpret the result.

3.3 Semi-formal definition

In the previous subsection we defined an HLT to be a collection of con-
cepts and transformers that satisfy certain pragmatic requirements. Con-
cepts are names representing mathematical ideas and objects, while trans-
formers are functions mapping expressions to expressions that represent
deduction and computation rules. In this section we will introduce a semi-
formalization of an HLT, based on the notion of a biform theory [16, 20].

We will begin by formalizing the notion of a transformer. Fix a set
E of expressions that includes a set of formulas. For n ≥ 0, an n-ary
transformer for E is Π = (π, π̂) where π is a symbol and π̂ is an algorithm
that implements a (possibly partial) function fπ̂ : En → E . The symbol π

serves as a name for the algorithm π̂. There is no restriction on how the



8

algorithm is presented. For example, it could be a lambda-expression in
E or a program written in a high-level programming language.

Definition 2 A biform theory T is a triple (E ,T , Γ ) where E is a set of
expressions, T is a set of transformers for E, and Γ is a set of formulas
in E.

The set E is generated from a set of symbols. Each symbol is either
the name of a concept of T or is the name of a transformer of T . The
members of Γ are the axioms of T . They specify the meanings of the
concepts and transformers of T . Implicit in the above definition is the
notion of a background logic that provides a semantic foundation for the
meaning of a biform theory. We may define a biform theory T = (E ,T , Γ )
to be an axiomatic theory if T is empty and an algorithmic theory if Γ

is empty. Thus a biform theory is a generalization of both an axiomatic
theory and an algorithmic theory.

A rule for E is a formula A in E of form

∀ e1 : E , . . . , em : E . B

where B contains one or more occurrences of an expression of the form
π(a1, . . . , an), which represents an application of the algorithm π̂ to n

expressions denoted by a1, . . . , an. The application of A to an input list
E1, . . . , Em of expressions in E is the formula A′ obtained by replacing
each occurrence of the form π(E′

1
, . . . , E′

n) in

B[e1 7→ E1, . . . em 7→ Em]

with the result of applying π̂ to the list E′

1
, . . . , E′

n
of expressions. A rule

can be a rule of computation, deduction, or a mixture of the two.

Declaratively, a rule is a formula that specifies the set of transformers
whose names occur in the formula. Functionally, a rule maps a list of
expressions to a formula that relates the expressions as inputs to the
expressions that are produced as outputs.

Definition 3 A high-level theory (HLT) is a biform theory T = (E ,T , Γ )
such that Γ includes a set of rules that have the pragmatic attributes listed
in Figure 2.

Since rules are statements about both the syntax of expressions and
what the expressions mean, nontrivial biform theories are not easy to



9

formalize in traditional logics such as first-order logic or simple type the-
ory [16]. A logic is needed in which reasoning about the syntax of expres-
sions (normally performed outside the logic) is integrated with reasoning
about the semantics of expressions (normally performed in the logic it-
self). We have proposed a logic of this kind named Chiron [17, 18] that
we believe is exceptionally well-suited for formalizing biform theories. A
derivative of von-Neumann-Bernays-Gödel (nbg) set theory, Chiron sup-
ports several reasoning paradigms by integrating set theory with elements
of type theory, a scheme for handling undefinedness, and a facility for rea-
soning about the syntax of expressions.

3.4 Extended example

To give a taste of what we would like to do, we present a “simple” example
of what we can express in this setting.

Suppose that we define the concept commutative as the property
∀ a, b . a◦ b ' b◦a of a (possibly) partial binary operation ◦ : A×A ⇀ A.
As expected, commutativity is a property of binary operators; less usual
is the generalization to the partial setting.

Now consider the theory of Abelian groups. We would obtain a rather
unusual theory if we used the above definition of commutativity. Yet, that
is exactly the definition that we wish to use. Will we then need to rebuild
all of group theory for a generalization that does not seem important?
No, as we also have the following property:

Proposition 31 Let ∗ : A × A → A be a total binary operation. Then ∗

is commutative if and only if ∀ a, b : A . a ∗ b = b ∗ a.

This property is really an immediate corollary of a more fundamental
equivalence, namely

∀ a, b ∈ E . (a↓ ∧b↓) → (a ' b ↔ a = b) .

(a↓ means a is defined.)
We recall that a binary operation ∗ is total if and only if ∀ a, b : A .

(a ∗ b) ↓. Combining this with the property above allows us to create a
theory level transformer which (in Chiron with syntactic sugar) reads

λ e : E . if(match(e, e1 ' e2) ∧ Je1K↓ ∧Je2K↓, e1 = e2, e1 ' e2).

In other words, when we instantiate the concept of commutativity in the
process of creating the theory of Abelian groups, our theory building op-



10

> using ParnasTables

> f(x) =
x < 1 x ≥ 1 ∧ x ≤ 5 x > 5

0 x 5
denotes

8

>

<

>

:

0 x < 1

x x ≤ 5

5 otherwise

> f(π)

π

> total? f

true proof

Fig. 3. (Mock up of) working in an HLT of Parnas tables

erators can use the above as a simplification rule2. This rule belongs in
the HLT dedicated to building theories, which is a computation on the
syntactic representation of theories but relies on intermediate deductions
(and computations) for its proper application. Another aspect is to note
the different quantifications we are using above—universal for the defini-
tion of commutativity, over expressions for the equivalence of ' and =,
and over values for the definition of total.

4 Exploring High-Level Theories

The ultimate purpose of an HLT is to provide a convenient environment
for end users to formulate mathematical problems and to explore possible
solutions using deduction, computation, and other techniques such as
visualization. An HLT is intended to be self-contained in the sense that
everything the end user needs to reason within the HLT is available in
the HLT. The end user should not have to introduce many new concepts,
construct many new transformers, or look for many results in other HLTs.
Not only does the end user have the tools he or she needs, the tools are
designed to work together efficiently.

Since the tools of an HLT should usually involve both deduction and
computation, an HLT-based MMS should provide a derivation facility
for proving conjectures and performing computation in which proving
and computing are mixed. For example, in derivation a computation can
involve the proof of side conditions and a proof can involve the computa-
tion of expressions. Figure 3 shows an idealized end user interaction with

2 It is important to note that we are implicitly using deep inference and inference “in
context” in the statement of this rule.



11

the HLT of Parnas tables [21] (as a particularly useful visual metaphor for
piecewise functions [6]). A notable “feature” is the first-class proof object
in the last interaction, while we retain the dubious feature of Parnas tables
using only first-order logic to specify how to partition the domain of f .
Note the difference with Figure 1 which gives the developer’s view of the
definition of an HLT, whereas Figure 3 is the end user’s view. The vocab-
ulary is the same, but an end user will typically interact via (the names
of) transformers on expressions and see their results pretty-printed, while
the developer gets a more theory-centric view.

5 Creating and Connecting High-Level Theories

The job of an MMS developer is to create HLTs. There are several ap-
proaches for doing this. First, an HLT can be created from scratch. This
will be difficult and labor intensive if the subject matter of the HLT is
complex or unfamiliar. On the other hand, this could be feasible if the
HLT mirrors a well-understood and well-tested high-level reasoning envi-
ronment such as elementary calculus. In either case, there is a significant
danger that the concepts and transformers of the HLT may be inconsis-
tent with each other. Another danger is that it could be extremely difficult
to connect an HLT developed from scratch to another HLT so that results
shared between the HLTs can be trusted, as witnessed by CASs.

A second approach is to construct an HLT incrementally starting from
a set of very low-level axiomatic theories. Using concept and transformer
definition techniques as well as module building techniques such as ex-
tension, union, renaming, and parameter instantiation [30], a network of
interconnected biform theories can be build on top of the starting set
of axiomatic theories. As one of the biform theories in the network, the
HLT has a modular construction that is recorded in the structure of the
theory network. The HLT is thus derived in a structured fashion from its
underlying set of axiomatic theories.

The concepts and transformers of the HLT can be viewed as its inter-
face and the theory network that records its construction can be viewed
as its implementation. Just like the interface of a software module, the
interface should not include everything in the implementation. Many low-
level tools that are needed by developers to construct an HLT are either
of no use to the end user or are subsumed by the high-level tools in the
HLT’s interface. Moreover, it is certainly possible that the same HLT can
be derived from several different sets of axiomatic theories. That is, an
HLT can have more than one implementation.



12

The implementation of an HLT is crucial for connecting one HLT to
another HLT. Suppose we would like to connect an HLT T1 to an HLT
T2. Let us assume that Ti is derived from a set Si of axiomatic theories
for i = 1, 2. We first construct translations from the axiomatic theories of
S1 to the axiomatic theories of S2. Next we show that these translations
are meaning preserving, i.e., are theory interpretations [14, 15]. The last
step is to use the constructions of T1 and T2 as a guide to lift and merge
these axiomatic theory interpretations to a theory interpretation of T1

in T2. This last step would ideally be performed automatically. This has
very natural categorical semantics in terms of limits of diagrams (in the
category of biform theories).

A third approach is to construct an HLT, or least part of an HLT,
automatically from an axiomatic theory. The work by R. McCasland on
mechanical theorem discovery is an interesting step in this direction [24].
Two classical examples are the use of the Knuth-Bendix completion algo-
rithm to automatically generate a terminating term rewrite system from
a set of equational axioms [23] and the use of Buchberger’s algorithm
to construct a Gröbner basis for a system of polynomials [3]. For the
algorithmic aspects, one can instantiate generic algorithms and still get
efficient implementations [5, 8].

We will finish this section with an important observation. Mathemat-
ical knowledge as a whole is a network of interconnected smaller bodies
of mathematical knowledge. The interconnectivity of mathematics allows
problems to be expressed and solved in a general context (e.g., metric
spaces) and then their solutions to be applied in more specialized contexts
(e.g., real analysis). The little theories method [19] models the network of
interconnected bodies of mathematical knowledge as a network of sepa-
rate, but interconnected axiomatic theories. The big theory method [19]
models mathematical knowledge as one big theory. The little theories
method is central in the creation and connection of HLTs, but the big
theory method is followed in the exploration of HLTs.

6 Examples of High-Level Theories

We further examine how we might formalize the two examples of high-
level reasoning environments given in section 2.

An HLT formalization of natural number arithmetic would be a biform
theory T1 containing several hundred concepts, transformers, and axioms.
It would be carefully constructed in two ways.



13

First, T1 would be constructed in a modular fashion from a well-
understood, low-level axiomatization of natural number arithmetic, like
Peano’s axioms, and a set of supporting low-level theories about such
things as sets and real numbers. Its construction would demonstrate that
each of its axioms is a theorem derived from the low-level theories. How
the low-level theories are axiomatized is not important as long as the
axioms of T1 can be derived from the theories.

Second, the concepts, transformers, and axioms of T1 would be care-
fully chosen. They would not include every known concept, transformer,
and theorem of natural number arithmetic. In particular, T1 would not
be simply the sum of the low-level theories from which it is constructed.
Instead the constituents of T1 would have a high level of coverage and
a low level of redundancy. For example, the concepts of T1 might well
not include the successor function since it can be easily expressed us-
ing the addition function. And there would be no need for the recursive
definitions of addition and multiplication if T1 includes transformers for
computing sums and products. The axioms of T1 would be high-level the-
orems such as the fundamental theorem of arithmetic and the Chinese
remainder theorem, high-level deduction rules such as various induction
principles, and high-level computation rules such as those for computing
greatest common divisors and factoring natural numbers into primes.

To end users, T1 would look like a formalization of what mathemati-
cians call “number theory”; the concepts, transformers, and axioms of
T1 would be basic ideas, tools, and assumptions of the theory. To devel-
opers, T1 would look like the end result of a large, complicated theory
development; the concepts, transformers, and axioms of T1 would be the
high-level ideas, tools, and theorems derived from the underlying low-level
theories.

An HLT formalization of group theory would be a biform theory T2

that contains, like T1, several hundred concepts, transformers, and ax-
ioms, and constructed in the same careful manner to embody “group
theory”. In particular, “group theory” does not care whether an inverse
function is provided axiomatically or as a derived property.

7 Related Work

As we have already mentioned, the working environment of a mainstream
CAS (like Maple and Mathematica) gives the impression of working in
a HLT, but in reality only achieves properties (3) and (7) (of those in



14

Figure 2), and somewhat implements (5) and (6). Theorema [4] adds (2).
But since they are unsound, it is unclear if that all amounts to much.

Current large TPSs (like Coq [9], Isabelle [26], and PVS [25]) also seem
to be moving in this direction, with their strength being properties (4)
and frequently (5), and slowly moving in the direction of (2). Mizar [28]
is hobbled by being nonmodular. There is a lot of work being done to
integrate computation into deduction [1, 2, 13]. This work will certainly
have an effect on ours, but we feel that it is too asymmetric compared to
the symmetry between computation and deduction in biform theories.

The most direct implementation of something akin to HLTs is in Fo-
cal [27]. Unfortunately, this system is only really comfortable for dedicated
developers and does not yet enable multiple modes of interaction.

It is possible to build a safe computational system atop a theorem
prover, as Kaliszyk and Wiedijk show [22]. While a definite achievement,
this seems to embody (part of) one handbuilt HLT.

Lastly, we should note that it is possible to encode biform theories in
the Calculus of Inductive Constructions [10, 11], and thus in Coq. It is
however our current feeling that Chiron is better suited for this task.

8 Conclusion

A high-level theory (HLT) is a model of the high-level reasoning environ-
ments employed in mathematical practice. Roughly speaking, it consists
of a well-crafted set of concepts and transformers. More precisely, it is a
biform theory with certain pragmatic properties. In particular, it includes
high-level tools for deduction, computation, and a mixture of the two. An
HLT is to a low-level axiomatic theory or algorithmic theory as a high-
level programming language is to an assembly language. Working in an
HLT is much more effective and convenient than working in a low-level
theory.

We recommend that the ultimate goal of an MMS should be to pro-
vide a library of HLTs that are useful and accessible to a wide range of
mathematics practitioners. The library’s HLTs should include the best
of the features currently found in the axiomatic and algorithmic theories
of contemporary TPSs and CASs. Low-level axiomatic and algorithmic
theories should be considered as part of the supporting infrastructure of
the library, not as the end product of the system. To facilitate the devel-
opment and expansion of the library, the MMS should include a facility
with a powerful set of tools for developers to construct HLTs from low-
level theories. We believe that an MMS that offers HLTs to end users and



15

the tools for building HLTs to developers has the best chance of realizing
the immense potential of mechanized mathematics.

References

1. F. Blanqui, J.-P. Jouannaud, and P.-Y. Strub. Building decision procedures in the
calculus of inductive constructions. In J. Duparc and T. A. Henzinger, editors,
CSL, volume 4646 of Lecture Notes in Computer Science, pages 328–342. Springer,
2007.

2. F. Blanqui, J.-P. Jouannaud, and P.-Y. Strub. From formal proofs to mathematical
proofs: A safe, incremental way for building in first-order decision procedures. In
TCS 2008: 5th IFIP International Conference on Theoretical Computer Science.
Springer-Verlag, 2008.

3. B. Buchberger. Theoretical basis for the reduction of polynomials to canonical
forms. SIGSAM Bulletin, 39:19–24, 1976.

4. B. Buchberger, A. Craciun, T. Jebelean, L. Kovacs, T. Kutsia, K. Nakagawa,
F. Piroi, N. Popov, J. Robu, M. Rosenkranz, and W. Windsteiger. Theorema:
Towards computer-aided mathematical theory exploration. Journal of Applied
Logic, 4:470–504, 2006.

5. J. Carette. Gaussian Elimination: a case study in efficient genericity with MetaO-
Caml. Science of Computer Programming, 62(1):3–24, 2006. Special Issue on the
First MetaOCaml Workshop 2004.

6. J. Carette. A canonical form for piecewise defined functions. In Proceedings of the
2007 International Symposium on Symbolic and Algebraic Computation (ISSAC),
pages 77–84, New York, NY, USA, 2007. ACM Press.

7. J. Carette, W. M. Farmer, and V. Sorge. A rational reconstruction of a system
for experimental mathematics. In Proceedings of MKM/Calculemus 2007, volume
4573 of LNCS, pages 13–26. Springer Verlag, 2007.

8. J. Carette and O. Kiselyov. Multi-stage programming with Functors and Monads:
eliminating abstraction overhead from generic code. Accepted. Special issue for
GPCE ’04 and ’05, 2008.

9. Coq Development Team. The Coq Proof Assistant Reference Manual, Version 7.4,
2003. Available at http://pauillac.inria.fr/coq/doc/main.html.

10. T. Coquand and G. Huet. The calculus of constructions. Information and Com-
putation, 76:95–120, 1988.

11. T. Coquand and C. Paulin-Mohring. Inductively defined types. In P. Martin Löf
and G. Mints, editors, COLOG-88: Proceedings of the International Conference on
computer Logic, volume 417 of Lecture Notes in Computer Science, pages 50–66.
Springer-Verlag, 1990.

12. N. G. de Bruijn. Automath, a language for mathematics. In J. Siekmann and
G. Wrightson, editors, Automation of Reasoning 2: Classical Papers on Computa-
tional Logic 1967-1970, pages 159–200. Springer, Berlin, Heidelberg, 1983.

13. G. Dowek, T. Hardin, and C. Kirchner. Theorem proving modulo. J. Autom.
Reasoning, 31(1):33–72, 2003.

14. H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, second
edition, 2000.

15. W. M. Farmer. Theory interpretation in simple type theory. In J. Heering et al.,
editor, Higher-Order Algebra, Logic, and Term Rewriting, volume 816 of Lecture
Notes in Computer Science, pages 96–123. Springer-Verlag, 1994.



16

16. W. M. Farmer. Biform theories in Chiron. In M. Kauers, M. Kerber, R. R.
Miner, and W. Windsteiger, editors, Towards Mechanized Mathematical Assistants,
volume 4573 of Lecture Notes in Computer Science, pages 66–79. Springer-Verlag,
2007.

17. W. M. Farmer. Chiron: A multi-paradigm logic. In R. Matuszewski and A. Za-
lewska, editors, From Insight to Proof: Festschrift in Honour of Andrzej Trybulec,
volume 10(23) of Studies in Logic, Grammar and Rhetoric, pages 1–19. University
of Bia lystok, 2007.

18. W. M. Farmer. Chiron: A set theory with types, undefinedness, quotation, and
evaluation. SQRL Report No. 38, McMaster University, 2007. Revised 2008.

19. W. M. Farmer, J. D. Guttman, and F. J. Thayer. Little theories. In D. Kapur, ed-
itor, Automated Deduction—CADE-11, volume 607 of Lecture Notes in Computer
Science, pages 567–581. Springer-Verlag, 1992.

20. W. M. Farmer and M. von Mohrenschildt. An overview of a formal framework
for managing mathematics. Annals of Mathematics and Artificial Intelligence,
38:165–191, 2003.

21. R. Janicki, D. L. Parnas, and J. Zucker. Tabular representations in relational
documents. In C. Brink, W. Kahl, and G. Schmidt, editors, Relational Methods in
Computer Science, pages 184–196. Springer-Verlag, 1997.

22. C. Kaliszyk and F. Wiedijk. Certified computer algebra on top of an interactive
theorem prover. In Calculemus/MKM, pages 94–105, 2007.

23. D. E. Knuth and P. B. Bendix. Simple word problems in universal algebra. In
J. Leech, editor, Computational Problems in Abstract Algebra, pages 263–297. Perg-
amon Press, 1970.

24. R. L. McCasland, A. Bundy, and P. F. Smith. Ascertaining mathematical theorems.
Electronic Notes in Theoretical Computer Science, 151:21–38, 2006.

25. S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. Srivas. PVS: Combining
specification, proof checking, and model checking. In R. Alur and T. A. Henzinger,
editors, Computer Aided Verification: 8th International Conference, CAV ’96, vol-
ume 1102 of Lecture Notes in Computer Science, pages 411–414. Springer-Verlag,
1996.

26. L. C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture Notes
in Computer Science. Springer-Verlag, 1994.

27. V. Prevosto. Certified mathematical hierarchies: The FoCal system. In Thierry
Coquand, Henri Lombardi, and Marie-Françoise Roy, editors, Mathematics, Algo-
rithms, Proofs, number 05021 in Dagstuhl Seminar Proceedings, Dagstuhl, Ger-
many, 2005. Internationales Begegnungs- und Forschungszentrum (IBFI), Schloss
Dagstuhl, Germany.

28. P. Rudnicki. An overview of the MIZAR project. Technical report, Department of
Computing Science, University of Alberta, 1992.

29. J. Xu. Mei — A module system for mechanized mathematics systems. In Pro-
gramming Languages for Mechanized Mathematics Workshop, Hagenberg, Austria,
2007.

30. J. Xu. Mei — A Module System for Mechanized Mathematics Systems. PhD thesis,
McMaster University, January 2008.


