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We construct a computationally universal quantum programming language QuantumΠ from two copies of Π,

the internal language of rig groupoids. The first step constructs a pure (measurement-free) term language

by interpreting each copy of Π in a generalisation of the category Unitary in which every morphism is

“rotated” by a particular angle, and the two copies are amalgamated using a free categorical construction

expressed as a computational effect. The amalgamated language only exhibits quantum behaviour for specific

values of the rotation angles, a property which is enforced by imposing a small number of equations on the

resulting category. The second step in the construction introduces measurements by layering an additional

computational effect.
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1 Introduction

A distinguishing and well-established aspect of quantum theory is the concept of complementarity.
Roughly speaking, an observation in one experimental setting excludes the possibility of gaining
any information in a complementary setting. This phenomenon has been formalised as an equation
that relates a particular collection of “classical morphisms” in the category of finite-dimensional
Hilbert spaces, giving axiomatic models of quantum theory [16].
From a programming language perspective, the natural question is whether it is possible to

extend a classical language to witness complementarity within the language. The most important
practical significance of such a construction would be that some forms of reasoning about quantum
programs would reduce to classical reasoning. Foundationally, this construction would turn around
the prevalent view of quantum computing [21, 49, 50, 53], potentially shedding light on a long-
standing foundational question in physics about the relationship between quantum and classical
theories [8].
We give just such a recipe, namely constructing a computationally universal quantum

programming language from two copies of a (particular) universal classical reversible language Π.

Authors’ Contact Information: Jacques Carette, McMaster University, Hamilton, Canada, carette@mcmaster.ca; Chris

Heunen, University of Edinburgh, Edinburgh, United Kingdom, Chris.Heunen@ed.ac.uk; Robin Kaarsgaard, University

of Southern Denmark, Odense, Denmark, kaarsgaard@imada.sdu.dk; Amr Sabry, Indiana University, Bloomington, USA,

sabry@iu.edu.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/8-ART236

https://doi.org/10.1145/3674625

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 236. Publication date: August 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0001-8993-9804
HTTPS://ORCID.ORG/0000-0001-7393-2640
HTTPS://ORCID.ORG/0000-0002-7672-799X
HTTPS://ORCID.ORG/0000-0002-1025-7331
https://doi.org/10.1145/3674625
https://orcid.org/0000-0001-8993-9804
https://orcid.org/0000-0001-7393-2640
https://orcid.org/0000-0001-7393-2640
https://orcid.org/0000-0002-7672-799X
https://orcid.org/0000-0002-1025-7331
https://doi.org/10.1145/3674625


236:2 Jacques Care�e, Chris Heunen, Robin Kaarsgaard, and Amr Sabry

Technically, in one copy of Π, every term is given a conventional interpretation where boolean
negation is modeled by ( 0 1

1 0 ) and controlled operations like the Toffoli gate are modeled using
classical conditional expressions. In the other copy of Π, every term is interpreted as follows:
rotate by c/8, apply the standard interpretation, and rotate back. This conjugation by rotations
interprets boolean negation as 1√

2
( 1 1
1 −1 ), which is the Hadamard gate. Since the combined language

provides both the the Toffoli and Hadamard gates, it is computationally universal for quantum
computing [3, 51]. Complementarity is quite a bit more subtle and requires more details of the
construction beyond rotating by c/8 and is the topic of Section 7.

If our goal wasmerely to design some computationally universal quantum programming language,
the recipe above would suffice. However, we insist that the resulting programming language is
equipped with a sound theory for reasoning about program equivalences, which we achieve as
follows. First, we do not fix an arbitrary rotation of c/8 but assume the rotation is given by some
angle q . We then impose equations to define two Frobenius structures [28, Chapter 5], and force
them to be complementary [16][28, Chapter 6]). Thm. 7.3 then proves that the equations force q to
be chosen such that the two copies of Π combine to form a computationally universal language,
each with well-established reasoning principles, and extended with the additional equations in
Fig. 12 and Def. 7.1.
The mathematical formalism is expressed using free categorical constructions, and makes

heavy use of Hughes’ arrows [29, 31]. To show the recipe in action and explore its pragmatics
in programming and reasoning about quantum circuits, we apply it to a canonical reversible
programming language Π yielding the computationally universal quantum programming language
QuantumΠ, and implement the entire project in Agda. 1

Related work. Quantum programming languages [7, 10, 21, 43, 47, 48, 50, 53], classical reversible
languages [12, 15, 32, 33, 56, 57], their categorical semantics [14, 20, 25, 26, 30, 34, 44, 46, 52, 54],
complementarity of classical structures [16, 17], and amalgamation of categories [40] have all been
individually studied before.
Existing quantum programming languages are really “circuit description languages”, on

which this article improves by exhibiting QuantumΠ’s canonical status. The difference between
QuantumΠ and languages like Quipper and Qunity is the language design itself: QuantumΠ by
construction combines classical reversible languages, whereas the latter layer explicit quantum
constructs on top of classical ones. Similarly, complementarity is central to the ZX- [16] and ZH-
calculi [6, 19], though completeness needs more axioms. Those calculi concern general quantum
theory (all complex matrices), whereas QuantumΠ concerns quantum computation (only unitary
matrices). Hence QuantumΠ need not be able to emulate these calculi, and entirely circumvents
the accompanying circuit synthesis problem. Our main contribution is an infrastructure organising
these established ideas so that quantum behaviour emerges from classical programming languages
using computational effects. The quest for such a computational ‘quantum effect’ also underlies [4],
and this article improves on that very early work. We focus on reversible quantum computing, and
in Sec. 8.3 add measurement in a modular way following Heunen and Kaarsgaard [25].
Outline. Fig. 1 summarises the technical development in two parallel threads: the design of a

computationally universal quantum programming language on the left and the corresponding
categorical models on the right. Sec. 2 starts with a review of relevant background on the categorical
semantics of quantum computing, and Sec. 3 reviews the core classical reversible programming
language Π and its semantics in rig groupoids. The first step of our construction in Sec. 4 is to
take two copies of Π, called Π/ and Πq , and embed their semantics, in two different ways, in the
category Unitary of finite-dimensional Hilbert spaces and unitaries. These are then amalgamated

1Available from https://github.com/JacquesCarette/QuantumPi and artifact on Zenod.
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Fig. 1. Progression of languages and their categorical semantics.

in Sec. 5 to produce a language Π Π where expressions from Π/ and Πq can be freely interleaved.

Π Πis then itself extended in Sec. 6 to the language ⟨Π Π⟩ which exposes the classical structures
explicitly. Sec. 7 proves our main result, the canonicity theorem. Sec. 8 introduces QuantumΠ, the
user-level interface of ⟨Π Π⟩. There we provide an Agda implementation of executable circuits and
machine checkable proofs of various circuit equivalences. Our proofs show that some forms of
reasoning about quantum programs in QuantumΠ indeed reduce to classical reasoning augmented
with complementarity. It also shows that QuantumΠ can model gates with complex numbers and
be extended with measurement to model complete quantum algorithms. A concluding section
summarises results and discusses possible future directions.

2 Categories; �antum Computing; Computational Universality

To fix notation and the background knowledge assumed, we briefly discuss the types of categories
that are useful in reversible programming: dagger categories and rig categories. Then we will
discuss quantum computing in categorical terms, complementarity, and computational universality.
For the basics of category theory, we refer to Leinster [37].

2.1 Dagger Categories and Groupoids

A morphism 5 : �→ � is invertible, or an isomorphism, when there exists a morphism 5 −1 : � → �

such that 5 −1 ◦ 5 = id� and 5 ◦ 5 −1 = id� . This inverse 5
−1 is necessarily unique. A category where

every morphism is invertible is a groupoid.
At first sight, groupoids form the perfect semantics for reversible computing. But every step

in a computation being reversible is slightly less restrictive than it being invertible. For each step
5 : �→ �, there must still be a way to ‘undo’ it, given by 5 † : � → �. This should also still respect

composition, in that (6 ◦ 5 )† = 5 † ◦ 6† and id†
�
= id�. Moreover, a ‘cancelled undo’ should not

change anything: 5 †† = 5 . Therefore every morphism 5 has a partner 5 †. A category equipped
with such a choice of partners is called a dagger category.

A groupoid is an example of a dagger category, where everymorphism is unitary, that is, 5 † = 5 −1.
Think, for example, of the category FinBij with finite sets for objects and bijections for morphisms.
But not every dagger category is a groupoid. For example, the dagger category PInj has sets as
objects, and partial injections as morphisms. Here, the dagger satisfies 5 ◦ 5 † ◦ 5 = 5 , but not
necessarily 5 † ◦ 5 = id because 5 may only be partially defined. In a sense, the dagger category
PInj is the universal model for reversible computation [24, 35]. When a category has a dagger, it

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 236. Publication date: August 2024.
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makes sense to demand that every other structure on the category respects the dagger, and we will
do so. The theory of dagger categories is similar to the theory of categories in some ways, but very
different in others [27].

2.2 Monoidal Categories and Rig Categories

Programming becomes easier when the programmer can express more programs natively. For
example, it is handy to have type combinators like sums and products. Semantically, this is modelled
by considering not mere categories, but monoidal ones. Amonoidal category is a category equipped
with a type combinator that turns two objects � and � into an object � ⊗ �, and a term combinator
that turns two morphisms 5 : �→ � and 5 ′ : �′ → �′ into a morphism 5 ⊗ 5 ′ : � ⊗ �′ → � ⊗ �′.
This has to respect composition and identities. Moreover, there has to be an object � that acts as a
unit for ⊗, and isomorphisms U : � ⊗ (� ⊗�) → (� ⊗ �) ⊗� and _ : � ⊗�→ � and d : � ⊗ � → �.
In a symmetric monoidal category, there are additionally isomorphisms f : � ⊗ � → � ⊗�. All these
isomorphisms have to respect composition and satisfy certain coherence conditions, see [39] or [28,
Chapter 1]. We speak of a (symmetric) monoidal dagger category when the coherence isomorphisms
are unitary. Intuitively, 6 ◦ 5 models sequential composition, and 5 ⊗6 models parallel composition.
For example, FinBij and PInj are symmetric monoidal dagger categories under cartesian product.
A rig category is monoidal in two ways in a distributive fashion. More precisely, it has two

monoidal structures ⊕ and ⊗, such that ⊕ is symmetric monoidal but ⊗ not necessarily, and there
are isomorphisms X! : � ⊗ (� ⊕ �) → (� ⊗ �) ⊕ (� ⊗ �) and X0 : � ⊗ 0→ 0. These isomorphisms
again have to respect composition and certain coherence conditions [36]. For example, FinBij
and PInj are not only monoidal under cartesian product, but also under disjoint union, and the
appropriate distributivity holds. Intuitively, 5 ⊕ 6 models a choice between 5 and 6.

2.3 �antum Computing (categorically)

Quantum computing with pure states is a specific kind of reversible computing. Good references
are Nielsen and Chuang [41], Yanofsky and Mannucci [55]. A quantum system is modelled by
a finite-dimensional Hilbert space �. The category giving semantics to finite-dimensional pure
state quantum theory is therefore FHilb, whose objects are finite-dimensional Hilbert spaces, and
whose morphisms are linear maps. Categorical semantics for pure state quantum computing is
the groupoid Unitary of finite-dimensional Hilbert spaces as objects with unitaries as morphisms.
Both are rig categories under direct sum ⊕ and tensor product ⊗.

The pure states of a quantum system modelled by a Hilbert space � are the vectors of unit norm,
conventionally denoted by a ket |~⟩ ∈ �. These are equivalently given by morphisms C→ � in
FHilb that map I ∈ C to I |~⟩ ∈ �. Dually, the functional �→ C maps ~ ∈ � to the inner product
⟨G |~⟩ is conventionally written as a bra ⟨G |. Morphisms �→ C are also called effects.
FHilb is a dagger rig category. The dagger of linear map 5 : �→ � is uniquely determined via

the inner product by ⟨5 (G) |~⟩ = ⟨G |5 † (~)⟩. The dagger of a state is an effect, and vice versa. In
quantum computing, pure states evolve along unitary gates. These are exactly the morphisms that
are unitary in the dagger categories sense: 5 † ◦ 5 = id and 5 ◦ 5 † = id, exhibiting the groupoid
Unitary as a dagger subcategory of FHilb.

Once orthonormal bases {|8⟩} and {| 9⟩} for finite-dimensional Hilbert spaces � and � are fixed,
we can express morphisms 5 : �→ � as a matrix with entries ⟨8 |5 | 9⟩. The dagger then becomes the
complex conjugate transpose, the tensor product becomes the Kronecker product of matrices, and
the direct sum becomes a block diagonal matrix. The Hilbert spaces C= come with the canonical
computational basis consisting of the = vectors with a single entry 1 and otherwise 0, also called
the / -basis and denoted {|0⟩ , . . . , |= − 1⟩}.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 236. Publication date: August 2024.
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We can embed the category FPInj of finite sets and partial injections in to FHilb, that sends
{0, . . . , = − 1} to C= preserving composition, identities, tensor product, direct sum, and dagger; we
get a dagger rig functor ℓ2 : FPInj→ FHilb, that restricts to a dagger rig functor FinBij→ Unitary.
Thus reversible computing (FinBij) is to classical reversible theory (FPInj) as quantum computing
(Unitary) is to quantum theory (FHilb). In particular, the Toffoli gate, which is universal for reversible
computing, transfers to a quantum gate that acts on vectors.
There are many such embeddings, one for every uniform choice of computational basis [24]. If

we only care about computation with qubits (rather than qutrits or the more general qudits), we
could also send a bijection 5 to (�⊗=)† ◦ ℓ2 (5 ) ◦�⊗= , where � is the Hadamard matrix, to compute
in the - basis rather than the computational (/ ) basis.

2.4 Complementarity

A choice of basis {|8⟩} on an =-dimensional Hilbert space � defines a morphism X : �→ � ⊗ � in
FHilb that maps |8⟩ to |88⟩ = |8⟩ ⊗ |8⟩. In fact, the morphisms arising this way are characterised by
certain equational laws that make them into so-called classical structures, or commutative special

dagger Frobenius structures [28, Chapter 5].

(X ⊗ id�) ◦ X = (id� ⊗ X) ◦ X f�,� ◦ X = X (1)

(id� ⊗ X†) ◦ (X ⊗ id�) = (X† ⊗ id�) ◦ (id� ⊗ X) X† ◦ X = id� (2)

As� is finite-dimensional, the basis vectors determine a state
∑=

8=1 |8⟩ that is in uniform superposition.
For the computational basis, this state is also denoted |+⟩ = 1√

2
( |0⟩ + |1⟩). Similarly, we shorthand

|−⟩ = 1√
2
( |0⟩ − |1⟩). Now {|+⟩ , |−⟩} forms an orthogonal basis for C2, called the - -basis, different

from the / -basis.
As far as picking a basis to treat as ‘the’ computational basis is concerned, all bases are created

equal. But once that arbitrary choice is fixed, some other bases are more equal than others. The
/ -basis and the - -basis are mutually unbiased, meaning that a state of the one basis and an effect
of the other basis always give the same inner product: ⟨0|+⟩ = ⟨1|+⟩ = ⟨0|−⟩ = ⟨1|−⟩. That is,
measuring in one basis a state prepared in the other gives no information at all. This can also be
expressed by an equation between the associated Frobenius structures X1, X2 : �→ � ⊗ � (see [16]
or [28, Chapter 6]):

(X†1 ⊗ id�) ◦ (id� ⊗ X2) ◦ (id� ⊗ X†2 ) ◦ (X1 ⊗ id�) = id�⊗� (3)

(To be precise, we adopt a simplified version using Heunen and Vicary [28, Prop. 6.7], and the fact
that in finite dimension any injective morphism �→ � is an isomorphism.)
Two complementary classical structures � → � ⊗ � determine a unitary gate � → �,

corresponding to the linear map that turns the basis corresponding to one classical structure
into the basis corresponding to the other. In the case of the / and - bases, this is the Hadamard
gate. Notice that the Hadamard gate is involutive: � ◦ � = id.

2.5 Computational Universality

The inner product of a Hilbert space � lets us measure how close two vectors |G⟩ , |~⟩ ∈ � are
by looking at the norm of their difference ∥G − ~∥2 = ⟨G − ~ | G − ~⟩. This leads to the dagger rig
category Contraction of finite-dimensional Hilbert spaces and contractions: linear maps 5 : �→ �

satisfying ∥ 5 (0)∥ ≤ ∥0∥ for all 0 ∈ �. In Contraction, the notion of state is relaxed from a vector
of unit length to a vector of at most unit length (these are sometimes called subnormalised states or
simply substates). This categorical model adds to pure state quantum computation the ability to

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 236. Publication date: August 2024.
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1 ::= 0 | 1 | 1 + 1 | 1 × 1 (value types)

C ::= 1 ↔ 1 (combinator types)

8 ::= id | swap+ | assocr+ | assocl+ | unite+; | uniti+; (isomorphisms)

| swap× | assocr× | assocl× | unite×; | uniti×;
| dist | factor | absorbl | factorzr

2 ::= 8 | 2 o
9 2 | 2 + 2 | 2 × 2 | inv 2 (combinators)

Fig. 2. Π syntax

terminate without a useful outcome, where the norm ∥G ∥ of a state G signifies the probability of a
nondegenerate outcome when measured; interpreting a state of norm 0 as complete failure,
A finite set of unitary gates {*1, . . . ,*: } on qubits is strictly universal when for any unitary *

and any Y > 0 there is a sequence of gates*81 ◦ · · · ◦*8? with distance at most Y to* . This means
that any computation whatsoever can be approximated by a circuit from the given set of gates up
to arbitrary accuracy. The set is computationally universal when it can be used to simulate, possibly
using ancillae and/or encoding, to accuracy within Y > 0 any quantum circuit on = qubits and C
gates from a strictly universal set with only polylogarithmic overhead in =, C , and 1

Y
. This means

that the gate set can perform general quantum computation without too much overhead.

Theorem 2.1. [3, 51] The Toffoli and Hadamard gate set is computationally universal. In fact, Toffoli

is computationally universal in conjunction with any real basis-changing single-qubit unitary gate.

Notice that this theorem only needs sequential composition ◦ and parallel composition ⊗, and
not sum types ⊕. Correspondingly, it only applies to Hilbert spaces of dimension 2= .

3 The Classical Core: Π

Our eventual goal is to define a computationally universal quantum programming language from
two copies of a classical reversible language. In this section, we review the syntax and semantics
ofΠ [33], a language that is universal for reversible computing over finite types andwhose semantics
is expressed in the rig groupoid of finite sets and bijections.

3.1 Syntax and Types

In reversible boolean circuits, the number of input bits matches the number of output bits. Thus,
a key insight for a programming language of reversible circuits is to ensure that each primitive
operation preserves the number of bits, which is just a natural number. The algebraic structure of
natural numbers as the free commutative semiring (or, commutative rig), with (0, +) for addition,
and (1,×) for multiplication then provides sequential, vertical, and horizontal circuit composition.
Generalizing these ideas, a typed programming language for reversible computing should ensure
that every primitive expresses an isomorphism of finite types, i.e., a permutation. The syntax of
the language Π in Fig. 2 captures this concept. Type expressions 1 are built from the empty type
(0), the unit type (1), the sum type (+), and the product type (×). A type isomorphism 2 : 11 ↔ 12
models a reversible circuit that permutes the values in 11 and 12. These type isomorphisms are
built from the primitive identities and their compositions. These isomorphisms correspond exactly
to the laws of a rig operationalised into invertible transformations [11, 12] which have the types in
Fig. 3. Each line in the top part of the figure has the pattern 21 : 11 ↔ 12 : 22 where 21 and 22 are
duals; 21 has type 11 ↔ 12 and 22 has type 12 ↔ 11.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 236. Publication date: August 2024.
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id : 1 ↔ 1 : id

swap+ : 11 + 12 ↔ 12 + 11 : swap+

assocr+ : (11 + 12) + 13 ↔ 11 + (12 + 13) : assocl+

unite+; : 0 + 1 ↔ 1 : uniti+;
swap× : 11 × 12 ↔ 12 × 11 : swap×

assocr× : (11 × 12) × 13 ↔ 11 × (12 × 13) : assocl×

unite×; : 1 × 1 ↔ 1 : uniti×;
dist : (11 + 12) × 13 ↔ (11 × 13) + (12 × 13) : factor

absorbl : 1 × 0 ↔ 0 : factorzr

21 : 11 ↔ 12 22 : 12 ↔ 13

21 o
9 22 : 11 ↔ 13

2 : 11 ↔ 12

inv 2 : 12 ↔ 11
21 : 11 ↔ 13 22 : 12 ↔ 14

21 + 22 : 11 + 12 ↔ 13 + 14
21 : 11 ↔ 13 22 : 12 ↔ 14

21 × 22 : 11 × 12 ↔ 13 × 14

Fig. 3. Types for Π combinators

ctrl 2 = dist o
9 id + (id × 2) o

9 factor : (1 + 1) × G → (1 + 1) × G
x = swap+ : 1 + 1→ 1 + 1
cx = ctrl swap+ : (1 + 1) × (1 + 1) → (1 + 1) × (1 + 1)
ccx = ctrl cx : (1 + 1) × ((1 + 1) × (1 + 1)) → (1 + 1) × ((1 + 1) × (1 + 1))

Fig. 4. Derived Π constructs.

To see how to express reversible circuits, we first define =-bit words, i.e. 2= . We define 2 as
the type 1 + 1, with the left injection representing false and the right injection representing true.
Boolean negation (the x-gate) is then the primitive combinator swap+. Then =-bit words are an
=-ary product of values of 2. To express the cx- and ccx-gates we need to encode a notion of
conditional expression. Such conditionals turn out to be expressible using the distributivity and
factoring identities of rigs as shown in Fig. 4. An input value of type 2 × 1 is processed by the dist
operator, which converts it into a value of type (1 × 1) + (1 × 1). Only in the right branch, which
corresponds to the case when the boolean is true, is the combinator 2 applied to the value of type 1.
The inverse of dist, namely factor is applied to get the final result. Using this conditional, cx is
defined as ctrl x and the Toffoli ccx is defined as ctrl cx.

Theorem 3.1 (Π Expressivity). Π is universal for classical reversible circuits, i.e., boolean bijections

2= → 2= (for any natural number =).

3.2 Semantics

By design, Π has a natural model in rig groupoids [12, 15]. Indeed, every atomic isomorphism of
Π corresponds to a coherence isomorphism in a rig category, while sequencing corresponds to
composition, and the two parallel compositions are handled by the two monoidal structures.
Inversion corresponds to the canonical dagger structure of groupoids. This interpretation is
summarised in Fig. 5. The denotational semantics directly suggests a big-step operational semantics
where each combinator 2 : 11 ↔ 12 maps to a (bijective) function J11K → J12K [15, 33]. With a

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 236. Publication date: August 2024.
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Types

J0K = $ J1K = �

J11 + 12K = J11K ⊕ J12K J11 × 12K = J11K ⊗ J12K

Terms

JidK = id Jinv 2K = J2K† J21 o
9 22K = J22K ◦ J21K

Jassocr+K = U⊕ Jassocl+K = U−1⊕ Jswap+K = f⊕
Juniti+;K = _−1⊕ Junite+;K = _⊕

Jassocr×K = U⊗ Jassocl×K = U−1⊗ Jswap×K = f⊗
Juniti×;K = _−1⊗ Junite×;K = _⊗

JdistK = X' JfactorK = X−1
'

J21 + 22K = J21K ⊕ J22K
JabsorblK = X0 JfactorzrK = X−10 J21 × 22K = J21K ⊗ J22K

Fig. 5. The semantics of Π in rig groupoids with monoidal structures ($, ⊕) and (� , ⊗).

little more effort, it is possible to derive an equivalent presentation using a small-step abstract
machine [13].

4 Models of Π from Automorphisms

When Π is used as a stand-alone classical language, FinBij is the canonical choice for the semantics.
As we aim to recover quantum computation from two copies of Π, we need more structure. We
begin by explaining the categorical construction needed to embed a rig groupoid in the category
Aut0 (Unitary) parameterised by a family of automorphisms 0. We then use this construction to
give two models for Π embedded in Aut0 (Unitary) (for different 0).

4.1 Aut0 (Unitary)
We generalize the category Unitary to a family of categories parameterised by automorphisms that
are pre- and post-composed with every morphism.

Definition 4.1. Let C be a category, and for each object � let 0� : � → � be an automorphism
(that is not necessarily natural in any sense). Form a new category Aut0 (C) with:
• Objects: objects of C.
• Morphisms: morphisms are those of the form 0−1

�
◦ 5 ◦ 0� for every 5 : �→ � of C.

• Composition: as in C.

We note that C andAut0 (C) are equivalent as categories, but not as rig categories – their additive
monoidal structure differ.

Proposition 4.2. When C is a rig groupoid, so is Aut0 (C).

Proof. To see that Aut0 (C) is a category, observe that, since Aut0 (C) inherits composition
from C, identities are those from C since 0−1

�
◦ id� ◦ 0� = 0−1

�
◦ 0� = id�, and composition is

conjugated composition of morphisms from C since 0−1
�
◦ 6 ◦ 0� ◦ 0−1� ◦ 5 ◦ 0� = 0−1

�
◦ 6 ◦ 5 ◦ 0�.

Associativity and unitality of composition in Aut0 (C) follow directly. That Aut0 (C) is a groupoid
when C is follows since for every isomorphism 5 :

0−1� ◦ 5 ◦ 0� ◦ 0−1� ◦ 5 −1 ◦ 0� = 0−1� ◦ 5 ◦ 5 −1 ◦ 0� = 0−1� ◦ 0� = id�

and analogously 0−1
�
◦ 5 −1 ◦ 0� ◦ 0−1� ◦ 5 ◦ 0� = id�.
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Supposing now C is symmetric monoidal, define a symmetric monoidal structure on objects as
in C (with unit � as in C), and on morphisms 0−1

�
◦ 5 ◦ 0� and 0′−1

�
◦ 5 ′ ◦ 0′� by

0−1�⊗�′ ◦ (0� ◦ (0−1� ◦ 5 ◦ 0�) ◦ 0−1� ) ⊗ (0′� ◦ (0′−1� ◦ 5 ′ ◦ 0′�) ◦ 0′−1� ) ◦ 0�⊗�′

in C, which simplifies to 0−1
�⊗�′ ◦ (5 ⊗ 5 ′) ◦ 0�⊗�′ . In other words, monoidal products of morphisms

in Aut0 (C) are merely monoidal products of morphisms from C conjugated by the appropriate
automorphisms. Coherence isomorphisms are those from C, but conjugated by the appropriate
automorphisms.
The rest of the proof (bifunctoriality, naturality of coherence isomorphisms, coherence conditions

and rig structure) proceed in much the same way. The details are omitted for length, but are found
in the extended version. □

4.2 Models of Π/ and Πq : Unitary and Aut'q (Unitary)
The choice of semantics for Π/ is easy to justify: it will use the family of identity automorphisms,
i.e, it will use the canonical category Unitary itself. The semantics for Πq will be “rotated” by some
angle with respect to that of Π/ . By that, we mean that the semantics of Πq will use a family of

automorphisms that is parameterised by a rotation matrix rq = ( cosq − sinqsinq cosq ) for some yet-to-be

determined angle q .

Definition 4.3. The canonical model of Π/ is the rig groupoid Unitary of finite-dimensional
Hilbert spaces and unitaries.

We recall that as a rig category, Unitary is semi-simple in the sense that all of its objects are
generated by the rig structure (this is a direct consequence of the fact that each finite-dimensional
Hilbert space is isometrically isomorphic to C= for some = [38]). In other words, every object in
Unitary can be written (up to isomorphism) using the two units $ and � as well as the monoidal

product ⊗ and sum ⊕. We will use this fact to define a family of automorphisms '
q

�
in Unitary

which will be used to form a model of Πq .

Definition 4.4. Given an angle q , we define a family '
q

�
of automorphisms in Unitary as follows:

'
q

$
= id$ '

q

�
= id�

'
q

�⊗� = '
q

�
⊗ 'q

�

'
q

�⊕� = (\−1
�
⊕ \−1

�
) ◦ rq ◦ (\� ⊕ \�) (when � ≃ � ≃ �)

'
q

�⊕� = '
q

�
⊕ 'q

�
(when � ; � or � ; � )

The morphisms \� and \� in this definition refer to the isomorphisms witnessing � ≃ � and � ≃ �

respectively. In particular, this definition requires one to decide isomorphism with � . This sounds
potentially difficult, but is fortunately very simple: an object is isomorphic to � iff it can be turned
into � by eliminating additive units $ and multiplicative units � using the unitors _⊕ , d⊕ , _⊗ , and
d⊗ as well as the associators U⊕ and U⊗ as necessary.

Essentially, Aut'q (Unitary) consists of unitaries in which qubit (sub)systems are conjugated by
the unitary rq . This is significant, because it means that the additive symmetry f⊕ on � ⊕ � is no
longer ( 0 1

1 0 ) as usual, but instead the potentially much more interesting gate:
(
cosq sinq

− sinq cosq

) (
0 1

1 0

) (
cosq − sinq
sinq cosq

)
=

(
sin 2q cos 2q

cos 2q − sin 2q

)
.

This leads us to the family of models of Πq .
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Definition 4.5. Given a value for q , a model of Πq is the rig groupoid Aut'q (Unitary) of finite-
dimensional Hilbert spaces and unitaries of the form ('q

�
)−1 ◦* ◦ 'q

�
.

5 Π Π from Amalgamation

The aim of this section is to define the language Π Π that combines the separate definitions of Π/

and Πq into a combined language that interleaves expressions from each. We begin by explaining
the amalgamations of categories in Secs. 5.1, 5.2, and 5.3. We use these constructions to define
categorical models of Π Π in Sec. 5.4. These models justify the definition of Π Π as an arrow over
the individual sublanguages as shown in Sec. 5.5.

5.1 Amalgamation of Categories

Programs in Π Π are formal compositions of Π/ programs and Πq programs that respects product
types. To account for this semantically, we need to combine models of Π/ and Πq in a way that
preserves the monoidal product. This construction is known as the amalgamation of categories (see,
e.g., MacDonald and Scull [40]). We now recall this construction in the slightly simpler case where
the two categories have the same objects, and go on to extend it to the symmetric monoidal case.

Definition 5.1. Given two categories C and D with the same objects, form a new category
Amalg(C,D) as follows:
• Objects: Objects of C (equivalently D).
• Morphisms: Morphisms �1 → �=+1 are equivalence classes of finite lists [5=, . . . , 51] of
morphisms 58 : �8 → �8+1 ofC orD taggedwith their category of origin, under the equivalence
∼ below.
• Identities: Empty lists [].
• Composition: Concatenation of lists, [6=, . . . , 61] ◦ [5<, . . . , 51] = [6=, . . . , 61, 5<, . . . , 51].

When the origin category is important we will write, e.g., 5 C to mean that 5 is tagged with C and
so originated from this category. Let ∼ denote the least equivalence satisfying

[id] ∼ [] (4) [5 A, 6A] ∼ [5 A ◦ 6A] (5)

as well as the congruence:

[5=, . . . , 51] ∼ [5 ′=′ , . . . , 5 ′1 ] [6<, . . . , 61] ∼ [6′<′ , . . . , 6′1]
[5=, . . . , 51] ◦ [6<, . . . , 61] ∼ [5 ′=′ , . . . , 5 ′1 ] ◦ [6′<′ , . . . , 6′1]

(6)

Note that the inner composition in (5) refers to composition in the category A, which in turn
refers to either C or D. To verify that this forms a category, we notice that concatenation of
lists is associative and has the empty list as unit; however, since these are not lists per se but
equivalence classes of lists, we must check that composition is well-defined. To see this, consider
the normalisation procedure that repeats the following two steps until a fixed point is reached:

(1) Remove all identities using (4) and (6).
(2) Compose all composable adjacent morphisms using (5) and (6).

That a fixed point is always reached follows by the fact that both of these steps are monotonically
decreasing in the length of the list, which is always finite.
As we would hope, there are straightforward embeddings C→ Amalg(C,D) ← D.

Proposition 5.2. There are embeddings ℰ! : C → Amalg(C,D) and ℰ' : D → Amalg(C,D)
given on objects by - ↦→ - and on morphisms by 5 ↦→ [5 ].

Proof. ℰ! (id) = [id] ∼ [] andℰ! (6 ◦ 5 ) = [6 ◦ 5 ] ∼ [6, 5 ] =ℰ! (6) ◦ℰ! (5 ), likewise forℰ' . □
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Since Π/ and Πq are both reversible, we would expect Π Π to be so, by taking inverses pointwise.
We show that the amalgamation of groupoids is, again, a groupoid.

Proposition 5.3. Amalg(C,D) is a groupoid when C and D are.

Proof. Define [5=, . . . , 51]−1 = [5 −11 , . . . , 5 −1= ] (where 5 −18 is the inverse to 58 in the origin

category), and proceed by induction on =. When = = 0, [] ◦ []−1 = [] ◦ [] = []. Assuming
the inductive hypothesis on all lists of length = we see on lists of length = + 1 that

[5=+1, . . . , 51] ◦ [5=+1, . . . , 51]−1 = [5=+1, . . . , 51, 5 −11 , . . . , 5 −1=+1] ∼ [5=+1, . . . , 51 ◦ 5 −11 , . . . , 5 −1=+1]
= [5=+1, . . . , 52, id, 5 −12 , . . . , 5 −1=+1] ∼ [5=+1, . . . , 52, 5 −12 , . . . , 5 −1=+1]
= [5=+1, . . . , 52] ◦ [5 −12 , . . . , 5 −1=+1] = [5=+1, . . . , 52] ◦ [5=+1, . . . , 52]−1 = []

where the last identity follows by the inductive hypothesis. □

5.2 Amalgamation of Symmetric Monoidal Categories

Categorically, the amalgamation of categories (with the same objects) has a universal property
as a pushout of (identity-on-objects) embeddings in the category Cat of (small) categories and
functors between them [40]. While a good first step towards a model of Π Π, it is not enough.
This is because it is only a pushout of mere functors between unstructured categories, so it will
not necessarily respect structure present in the categories being amalgamated, such as symmetric
monoidal structure. Thus we extend the amalgamation of categories to one for symmetric monoidal
categories, and later that this yields an arrow over the symmetric monoidal categories involved.

Definition 5.4. Given two symmetric monoidal categories C and D with the same objects, such
that their symmetric monoidal products agree on objects (specifically, their units are the same),
form a new category SymMonAmalg(C,D) as follows:
• Objects, Morphisms, Identities, and Composition as in Amalg(C,D) (Def. 5.1).
• Monoidal unit: � , the monoidal unit of C and D.
• Monoidal product: On objects, define � ⊗ � to be as in C and D. On morphisms, define
[5=, . . . , 51] ⊗ [6<, . . . , 61] = [5= ⊗ id, . . . , 51 ⊗ id, id⊗6<, . . . , id⊗61] where 58 ⊗ id and id⊗6 9
are formed in the origin category of 58 and 6 9 respectively, up to the extended equivalence
below.
• Coherence isomorphisms: The coherence isomorphisms U , f , _, d , and their inverses are
given by equivalence classes of lifted coherence isomorphisms from C and D (e.g., [UC]) up
to the extended equivalence below.

The extended equivalence is the least one containing (4), (5), and (6) from Def. 5.1 as well as

[5 ⊗ id, id ⊗ 6] ∼ [id ⊗ 6, 5 ⊗ id] (7)

[UC] ∼ [UD] [fC] ∼ [fD] [_C] ∼ [_D] [dC] ∼ [dD] (8)

in addition to the congruence:

[5=, . . . , 51] ∼ [5 ′=′ , . . . , 5 ′1 ] [6<, . . . , 61] ∼ [6′<′ , . . . , 6′1]
[5=, . . . , 51] ⊗ [6<, . . . , 61] ∼ [5 ′=′ , . . . , 5 ′1 ] ⊗ [6′<′ , . . . , 6′1]

(9)

Note that (7) above holds even when 5 and 6 originate from different categories, such that this is
not simply a consequence of (5) and bifunctoriality in the origin category.
It follows that this defines a category, but we also need:

Proposition 5.5. SymMonAmalg(C,D) is symmetric monoidal.
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For reasons of space, we omit this proof, which contains no ideas not already seen in previous
proofs. An extended version of this paper has all the details.
As with the amalgamation of mere categories, one can show that this extends to a pushout of

monoidal embeddings. Further, the embeddings we presented earlier into the amalgamation of
mere categories extends to well-behaved ones in the symmetric monoidal case well:

Proposition 5.6. There are strict monoidal embeddings ℰ! : C → SymMonAmalg(C,D) and
ℰ' : D→ SymMonAmalg(C,D) given by - ↦→ - on objects and 5 ↦→ [5 ] on morphisms.

Proof. We show the case forℰ! , asℰ' is entirely analogous.ℰ! was shown to be functorial in
Prop. 5.2, so suffices to show that it preserves coherence isomorphisms and the monoidal product
exactly on objects and morphisms. On objectsℰ! (� ⊗ �) = � ⊗ � =ℰ! (�) ⊗ℰ! (�). On morphisms
ℰ! (5 ⊗ 6) = [5 ⊗ 6] = [5 ⊗ id ◦ id ⊗ 6] ∼ [5 ⊗ id, id ⊗ 6] = [5 ] ⊗ [6] =ℰ! (5 ) ⊗ℰ! (6). Finally, on
coherence isomorphisms V ,ℰ! (V) = [VC] ∼ [VD] = �' (V), as desired. □

From the construction of inverses in Prop. 5.3, it follows that amalgamation preserves symmetric
monoidal groupoids as well:

Corollary 5.7. SymMonAmalg(C,D) is a symmetric monoidal groupoid when C and D are.

Lastly we show that whenever a functor out of a symmetric monoidal amalgamation is needed,
it is sufficient to consider functors out of each of the underlying categories. The lemma will be used
to prove the existence of a computationally universal model of Π Π in Thm. 5.11.

Lemma 5.8. Let C and D be symmetric monoidal categories with the same objects such that their

monoidal structures agree. For any other symmetric monoidal category E, to give a strict monoidal

identity-on-objects functor SymMonAmalg(C,D) → E is to give strict monoidal identity-on-objects

functors C→ E and D→ E.

Proof. Given a strict monoidal identity-on-objects functor � : SymMonAmalg(C,D) → E, we
compose with the (strict monoidal identity-on-objects) functorsℰ! andℰ' to obtain the required
functors � ◦ℰ! : C→ E and � ◦ℰ' : D→ E.

In the other direction, given strict monoidal identity-on-objects functors� : C→ E and � : D→
E, we define a functor ��,� : SymMonAmalg(C,D) → E on objects by ��,� (�) = � (�) = � (�) = �.
Given some morphism [5=, . . . , 51], assume without loss of generality that each 58 originates in C

for all even 8 , and in D for all odd =. We define ��,� ( []) = id and

��,� ( [5=, . . . , 51]) = � (5=) ◦ � (5=−1) ◦ · · · ◦ � (51)
This is immediately functorial. To see that it is strict monoidal, ��,� (� ⊗ �) = ��,� (�) ⊗ ��,� (�)
follows trivially, while

��,� ( [5=, . . . , 51] ⊗ [6<, . . . , 61]) = ��,� ( [5= ⊗ id, . . . , 51 ⊗ id, id ⊗ 6<, . . . , id ⊗ 61])
= � (5= ⊗ id) ◦ · · · ◦ � (51 ⊗ id) ◦� (id ⊗ 6<) ◦ · · · ◦ � (id ⊗ 61)
= � (5=) ⊗ id ◦ · · · ◦ � (51) ⊗ id ◦ id ⊗ � (6<) ◦ · · · ◦ id ⊗ � (61)
= (� (5=) ◦ · · · ◦ � (51)) ⊗ id ◦ id ⊗ (� (6<) ◦ · · · ◦ � (61))
= (� (5=) ◦ · · · ◦ � (51)) ⊗ (� (6<) ◦ · · · ◦ � (61))
= ��,� ( [5=, . . . , 51]) ⊗ ��,� ( [6<, . . . , 61])

That this preserves coherence isomorphisms such as the associator [UC] ∼ [UD] follows by
� (U) = ��,� ( [UC]) = ��,� ( [UD]) = � (U) = U , and similarly for the unitors _, d and symmetry f .
Further, ��,� is clearly uniquely determined by� and � , i.e., ��,� ◦ℰ! = � and ��,� ◦ℰ' = � . □
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5.3 The Amalgamation Arrow

Semantically, arrows correspond to (identity-on-objects) strict premonoidal functors between
premonoidal categories [31, 45], a special case of these being the more well-behaved (identity-on-
objects) strict monoidal functors between monoidal categories. In this way, the strict monoidal
functors Unitary → SymMonAmalg(Unitary,Aut'q (Unitary)) ← Aut'q (Unitary) of Prop. 5.6
provide a semantics for the arrow combinators.

Proposition 5.9. The strict monoidal functorsℰ! andℰ' are arrows over the categories Unitary

and Aut'q (Unitary).

5.4 Model of Π Π: SymMonAmalg(Unitary,Aut'q (Unitary))
Given models of Π/ (Def. 4.3) and Πq (Def. 4.5), using Def. 5.4 we can give a model of Π Π:

Definition 5.10. Given a value for q , a model of Π Π is the symmetric monoidal groupoid

SymMonAmalg(Unitary,Aut'q (Unitary))

with Unitary and Aut'q (Unitary) considered as symmetric monoidal groupoids equipped with
their monoidal products (⊗, � ).

In other words, SymMonAmalg(Unitary,Aut'q (Unitary)) identifies the monoidal products
(⊗, � ) in Unitary and Aut'q (Unitary), but leaves their respective monoidal sums (⊕,$) alone.
This may seem like a very curious choice—perhaps even a wrong one!—but is done for very
deliberate reasons, which we describe here.

First, identifying the two monoidal products is entirely reasonable, since '
q

�⊗� = '
q

�
⊗ 'q

�
, so the

monoidal product on morphisms in Aut'q (Unitary) is really

('q
�′⊗�′ )−1 ◦ (5 ⊗ 6) ◦ '

q

�⊗� = ('q
�′ )−1 ⊗ ('

q

�′ )−1 ◦ (5 ⊗ 6) ◦ '
q

�
⊗ 'q

�

= (('q
�′ )−1 ◦ 5 ◦ '

q

�
) ⊗ (('q

�′ )−1 ◦ 6 ⊗ '
q

�
)

i.e., the monoidal product in Unitary of morphisms from Aut'q (Unitary) (on objects, the two
monoidal products agree on the nose). From this it also follows that the coherence isomorphisms
for the monoidal product (i.e., the associator U⊗ , unitors _⊗ and d⊗ , and symmetry f⊗) in
Aut'q (Unitary) all coincide with those in Unitary by naturality, since, e.g.

('q
�⊗(�⊗� ) )

−1 ◦ U ◦ 'q(�⊗�)⊗� = ('q
�
)−1 ⊗ (('q

�
)−1 ⊗ ('q

�
)−1) ◦ U ◦ ('q

�
⊗ 'q

�
) ⊗ 'q

�

= ('q
�
)−1 ⊗ (('q

�
)−1 ⊗ ('q

�
)−1) ◦ 'q

�
⊗ ('q

�
⊗ 'q

�
) ◦ U

= U

and likewise for the unitors and symmetry. Thus all of themorphisms identified by the amalgamation
SymMonAmalg(Unitary,Aut'q (Unitary)) are ones which were equal to begin with.

Second, one may wonder why we do not go further and identify the monoidal sums in Unitary

and Aut'q (Unitary) as well. In short, this is because it would confine Π Π to being a classical
language! We saw in Sec. 4.2 that the symmetry of the monoidal sum f⊕ in Aut'q (Unitary) was
( sin 2q cos 2q
cos 2q − sin 2q ) whereas in Unitary it is the usual swap ( 0 1

1 0 ), and, indeed, the fact that we have
both of these is central to our approach. However, identifying the monoidal sums would force us
to identify these as well, destroying any hope of Π Π being more expressive than Π/ or Πq on
their own. One cannot even hope to identify the monoidal sums as mere monoidal structures (as
opposed to as symmetric monoidal structures), since the bifunctoriality clause of the equivalence
(i.e., clause (7) of Def. 5.4) fails for Unitary and Aut'q (Unitary) on � ⊕ � in all nontrivial cases.
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1 ::= 0 | 1 | 1 + 1 | 1 × 1 (value types)

C ::= 1 ↭/q 1 (combinator types)

< ::= [] | 2/ ::< | 2q ::< (amalgamations)

[] : 1 ↭/q 1

2 : 11 ↔/ 12 2B : 12 ↭/q 13

2 :: 2B : 11 ↭/q 13

2 : 11 ↔q 12 2B : 12 ↭/q 13

2 :: 2B : 11 ↭/q 13

Fig. 6. Syntax and type rules of Π Π. The combinators 2/ and 2q are Π combinators (Fig. 2) tagged with their

sublanguage of origin.

< ::= . . . | < @< (derived amalgamations)

3 ::=< | arr/ 2/ | arrq 2q | 3 ≫ 3 (derived combinators)

| id : 1 ↭/q 1 | swap× : 11 × 12 ↭/q 12 × 11 | assocr× | assocl×

| unite× | uniti× | first 3 | second 3 | 3 ∗∗∗ 3 | inv 3

Fig. 7. Derived Π Π constructs. The combinators first : 11 × 12 ↭/q 11 and second : 11 × 12 ↭/q 12 are

instances of the standard arrow constructors [29].

5.5 Π Π: Syntax, Arrow Combinators, and Computational Universality

As the two languages Π/ and Πq share the same syntax, their syntactic amalgamation in Fig. 6 is
rather straightforward. We simply build sequences of expressions coming from either language. To
disambiguate amalgamations, we will annotate terms from Π/ and Πq by their language of origin
and write, e.g., xq for the x isomorphism from Πq . Further, we will consider the cons operator ::
to be right associative, and use list notation such as [swap+

q
, swap+/ ] as syntactic sugar for the

amalgamation swap+
q
:: swap+/ :: [].

For convenience, we introduce the meta-operation ·@· that takes two amalgamations and forms
the amalgamation given by their concatenation, e.g., [21, 22] @ [23, 24] = [21, 22, 23, 24]. As such, any
amalgamation can be uniquely described as a finite heterogeneous list of terms from Πq and Π/ .

But there is no need to reason about raw lists since Π Π is an arrow over both Π/ and Πq that
lifts the underlying multiplicative structure to the combined language (see Fig. 7 for the derived
arrow constructs). We recall that the construction only involves lifting products (via the arrow
combinators first, second, and ∗∗∗) and not also sums; in other words, we merely define an arrow

and not an arrow with choice [29]. The reason is that doing so in any meaningful way would require
semantically identifying the sum structures of Π/ and Πq , and that this, in turn, would prevent
quantum behaviours from emerging from the construction.

The semantics of Π Π (in SymMonAmalg(Unitary,Aut'q (Unitary))) is given in Fig. 8. First the
lifting of combinators builds singleton lists arr/ (2/ ) = [2/ ] and arrq (2q ) = [2q ], and composition
of amalgamations is given by their concatenation: 2B1 ≫ 2B2 = 2B1 @ 2B2. To define first we need to
make use of meta-level recursion in order to traverse amalgamations. To do this, we notice that both
Π/ and Πq are trivially arrows, with arrow lifting given by the identity, arrow composition given by

composition, and first 2 given by first 2 = 2× id. As such, first can be defined in Π Π by mapping this
underlying combinator over the list, i.e., first GB = map first GB . To derive second, we note that we
can define all of the combinators relating to × (precisely: swap×, assocr×, assocl×, unite×, uniti×) by
lifting them from either Π/ or Πq . It turns out not to matter which we choose, as they are equivalent.
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Semantics of new constructs

J[21, . . . , 2=]K = [J21K, . . . , J2=K]

Derived identities

Jarr/ 2K = ℰ! (J2K) Jarrq 2K = ℰ' (J2K)
JidK = [] J31 ≫ 32K = J32K ◦ J31K Jinv 3K = J3K†

Jassocr×K = [U⊗] Jassocl×K = [U−1⊗ ] Jswap×K = [f⊗]
Junite×K = [d⊗] Juniti×K = [d−1⊗ ]
Jfirst 3K = J3K ⊗ id Jsecond 3K = id ⊗ J3K J31 ∗∗∗ 32K = J31K ⊗ J32K

Fig. 8. The arrow semantics of Π Π.

Arbitrarily, we define their liftings in Π Π to be those from Π/ , e.g., swap
×
= arr/ (swap×/ ) and so

on for the remaining ones. We can then derive second and ∗∗∗ in the usual way as:

second = swap× ≫ first ≫ swap× and GB ∗∗∗ ~B = first GB ≫ second ~B

We conclude this section by showing that there exists a particular model in which Π Π is
computationally universal for quantum circuits.

Theorem 5.11. If q is chosen to be c/8, the model of Π Π is computationally universal for quantum

circuits, i.e., unitaries on Hilbert spaces of dimension 2= (for any natural number =).

Proof. Define a functorAut'c/8 (Unitary) → Unitary given by� ↦→ � and ('c/8
�
)−1◦5 ◦'c/8

�
↦→

('c/8
�
)−1 ◦ 5 ◦ 'c/8

�
; this is strict monoidal and identity-on-objects. By Lem. 5.8, this functor, along

with the identityUnitary→ Unitary uniquely define a (strict monoidal identity-on-objects) functor
J·K : SymMonAmalg(Unitary,Aut'c/8 (Unitary)) → Unitary sending Π/ programs to their usual
interpretation lifted into unitaries, and Πq programs to the meaning of the corresponding Π/

program conjugated by appropriate '
c/8
�

’s. Under this interpretation, Jarr/ ccxK is the Toffoli
gate, and Jarrq xK is the Hadamard gate, while at the same time J21 ∗∗∗ 22K = J21K ⊗ J22K and
J21 ≫ 22K = J22K ◦ J21K, allowing parallel and sequential composition of gates. But then it follows
by Thm. 2.1 that Π Π is computationally universal. □

6 ⟨Π Π⟩ from States and Effects

In the previous section, we arbitrarily chose a value of q to induce quantum behaviour. We will
now demonstrate that the “right” values of q emerge from requiring the categorical model to satisfy
one complementarity equation relating states and effects. Towards that goal, we generalise in this
section Π Π with the notions of states |·⟩ and effects ⟨·| yielding the language ⟨Π Π⟩.

6.1 Classical Structures

The no-cloning theorem states that it is not possible to clone an arbitrary quantum state. However,
it is possible to clone the subset of quantum states that are “classical.” For example:

|0⟩ ↦→ |00⟩
|1⟩ ↦→ |11⟩

1/
√
2 ( |0⟩ + |1⟩) ↦→ 1/

√
2 ( |00⟩ + |11⟩)

If partial operations are allowed, then these maps are reversible, i.e, the classical clone maps are
injective but not surjective and their inverses are only partial injective functions. An important
property of these classical clone maps is that their behaviour is basis dependent. In particular, the
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above maps assume the clone operation is defined in the computational / -basis. If we instead use

the - -basis = {|+⟩ , |−⟩}, we get that cloning |+⟩ = 1/
√
2 ( |0⟩ + |1⟩) produces |++⟩ = 1/2( |00⟩ +

|01⟩ + |10⟩ + |11⟩) which is quite different from cloning the same state in the / -basis.
As we will establish, the cloning operations in Π/ and Πq each satisfy the properties of classical

structures necessary for quantum behaviour to emerge in the next section.

6.2 Monoidal Indeterminates

At a categorical level, the only missing ingredient is to allow for morphisms to manipulate ancilla
systems 	# (* ) generated by a single object # . The first step in this construction involves (strong
monoidal) functors out of the free symmetric monoidal category on a single distinguished object ★.

Definition 6.1. Let Gen★ denote the free symmetric monoidal category of one generator, which
we denote ★. Given an object # of a symmetric monoidal category C, let 	# : Gen★→ C denote
the evident strong monoidal functor such that 	# (★) = # .

See, e.g., [1] for an explicit description of the free symmetric monoidal category. The functor 	#

allows us to form a new category C# .

Definition 6.2. Define a symmetric monoidal category C# as follows:

• Objects: As in C.
• Morphisms: Morphisms � → � are equivalence classes of triples [* , 5 ,+ ] consisting of
two objects * and + of Gen# (C) and a morphism 5 : � ⊗ 	# (* ) → � ⊗ 	# (+ ) under the
equivalence ∼ below.
• Identities: The identity �→ � is the equivalence class of id�⊗� (since 	# (� ) = � ).
• Composition: The composition of [* , 5 ,+ ] and [,,6,- ] with 5 : �⊗	# (* ) → �⊗	# (+ )
and 6 : � ⊗ 	# (, ) → � ⊗ 	# (- ) is the equivalence class of the representative � ⊗ 	# (* ⊗
, ) → � ⊗ 	# (+ ⊗ - ) in C given by

[* ⊗,,U⊗ ◦ 6 ⊗ id	# (+ ) ◦ U−1⊗ ◦ id� ⊗ f⊗ ◦ U⊗ ◦ 5 ⊗ id	# (, ) ◦ U−1⊗ ,+ ⊗ - ].
• Monoidal structure: On objects as in C. On morphisms, the monoidal product of [* , 5 ,+ ]
and [,,6,- ] with 5 : � ⊗ 	# (* ) → � ⊗ 	# (+ ) and 6 : � ⊗ 	# (, ) → � ⊗ 	# (- ) is
[* ⊗,,o−1 ◦ 5 ⊗ 6 ◦ o,+ ⊗ - ], where o : (� ⊗ �) ⊗ (� ⊗ �) → (� ⊗ �) ⊗ (� ⊗ �) is the
evident isomorphism. Coherence isomorphisms V are given by [� , V ⊗ id� , � ].

Define the equivalence relation ∼ as the least such satisfying (for all* and + )

5 ⊗ 	# (id* ) ∼ 5 ⊗ 	# (id+ ) (10)

and 5 ∼ 6 if there exist mediators< : * → * ′ and = : + → + ′ in Gen# (C) making the square
below commute:

� ⊗ 	# (* ) � ⊗ 	# (+ )

� ⊗ 	# (* ′) � ⊗ 	# (+ ′)

5

6

id⊗	# (<) id⊗	# (=) (11)

This construction is a dual pair ofmonoidal indeterminates constructions of Hermida and Tennent
[23] (using the simplified form for the equivalence due to Andrés-Martínez et al. [5, Def. 8]). This
describes a symmetric monoidal category [23]. Note that the two clauses in the equivalence relation
are necessary precisely to ensure uniqueness of identities and associativity of composition. For a
given morphism [-, 5 , . ], we will collectively denote the objects - and . as the ancilla system of
[-, 5 , . ].
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Importantly, this also defines an arrow over C in the form of a strict monoidal functor:

Proposition 6.3. There is a strict monoidal functorℱ# : C→ C# (for any choice of # ) given by

� ↦→ � on objects and 5 ↦→ [� , 5 ⊗ id� , � ] on morphisms.

Proof. See Hermida and Tennent [23, Remark 2.4]. □

The category C# contains all morphisms 5 of C by lifting them into the trivial ancilla system
[� , 5 ⊗ id� , � ]. However, it also adds a state � → # (as the equivalence class of f⊗ : � ⊗ # → # ⊗ � ,
i.e., [#, f⊗, � ]) and an effect # → � (as the equivalence class of f⊗ : # ⊗ � → � ⊗ # , i.e., [� , f⊗, # ]).
One may reasonably wonder whether this construction adds more than this unique state and

effect: the answer, informally, is no. The trivial ancilla system (e.g., [� , 5 , � ]) is needed to account
for morphisms that do not use states or effects at all, while ancilla systems involving # ⊗ · · · ⊗ #

represent multiple uses of the unique state or effect. The more formal answer to this question is
that the functorℱ# is universal with the following property:

Proposition 6.4. Given any symmetric monoidal category D outfitted

with distinguished morphisms � → # and # → � , and strict monoidal

functor � : C→ D, there is a unique strict monoidal functor �̂ : C# →
D satisfying � (# ) = # and making the triangle on the right commute.

C C#

D

�

ℱ#

�̂

Proof. See Hermida and Tennent [23, Theorem 2.9], noting that this straightforwardly extends
to strict monoidal functors when all functors involved are strict monoidal. □

Note that the morphisms � → # and # → � are considered part of the structure of D. While D
has other choices of morphisms � → # and # → � , the theorem states that for any such choice of
morphisms and strict monoidal functor C→ D, there is a unique strict monoidal functor C# → D.
Observe further that C# is a dagger category when C is, with [-, 5 , . ]† = [., 5 †, - ]. With this
dagger structure, the adjoint of the state � → # is the effect # → � and vice versa.

6.3 Models of ⟨Π Π⟩: SymMonAmalg(Unitary,Aut'q (Unitary))�⊕� and Contraction

In order to model quantum computation, we specialize the free model C# over an arbitrary
model C built in the last section by fixing the semantics of the state and effect to correspond
to the traditional basis vector |0⟩ and dual vector ⟨0|. This is achieved by choosing # = � ⊕ �

making SymMonAmalg(Unitary,Aut'q (Unitary))�⊕� a model of ⟨Π Π⟩. This model embeds in
Contraction, the universal dagger rig category containing all unitaries, states, and effects [5] as
follows.
Recall how we gave semantics to Π Π via an (identity-on-objects) strict monoidal functor

J−K : SymMonAmalg(Unitary,Aut'q (Unitary)) → Unitary. Recall further that the category
Contraction of finite-dimensional Hilbert spaces and contractions contains all states as morphisms
� → � (as these are isometries), all effects as morphisms �→ � (as these are coisometries). Since
all unitaries are contractions we get an inclusion functor Unitary→ Contraction (which is easily
seen to be a strict monoidal dagger functor), and precomposing with the strict monoidal functor
J−K : SymMonAmalg(Unitary,Aut'q (Unitary)) → Unitary yields a functor:

SymMonAmalg(Unitary,Aut'q (Unitary)) → Contraction

Now, choosing |0⟩ as the distinguished state � → � ⊕ � , and ⟨0| as the distinguished effect � ⊕ � → � ,
by Prop. 6.4 we get a unique extended functor

J−K : SymMonAmalg(Unitary,Aut'q (Unitary))�⊕� → Contraction

which assigns concrete semantics to ⟨Π Π⟩ in Contraction.
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1 ::= 0 | 1 | 1 + 1 | 1 × 1 (value types)

= ::= 1 | 1 + 1 | = × = (ancilla types)

C ::= 1 ↭ 1 (combinator types)

? ::= li� < (primitives)

GB : 11 × =1 ↭/q 12 × =2
li� GB : 11 ↭ 12

Fig. 9. ⟨Π Π⟩ syntax and type rules. Amalgamations< are defined in Figs. 6 and 7.

3 ::= ? | arr < | 3 ≫ 3 | first 3 | second 3 | 3 ∗∗∗ 3 (derived combinators)

| id | swap× | assocr× | assocl× | unite× | uniti×

| inv 3 | zero | assertZero

Fig. 10. Derived ⟨Π Π⟩ constructs. The combinators first and second are instances of the standard arrow

constructors [29].

Semantics of new constructs
Jli� GBK = [J=1K, JGBK, J=2K]

Derived identities
JidK = [� , id, � ] Jinv 3K = J3K† J31 ≫ 32K = J32K ◦ J31K

Jassocr×K = [� , U⊗ ⊗ id, � ] Jassocl×K = [� , U−1⊗ ⊗ id, � ]
Junite×K = [� , d⊗ ⊗ id, � ] Juniti×K = [� , d−1⊗ ⊗ id, � ] Jswap×K = [� , f⊗ ⊗ id, � ]
Jfirst 3K = J3K ⊗ id Jsecond 3K = id ⊗ J3K J31 ∗∗∗ 32K = J31K ⊗ J32K

JzeroK = [� ⊕ � , f⊗, � ] JassertZeroK = [� , f⊗, � ⊕ � ] Jarr <K = ℱ�⊕� (J<K)

Fig. 11. The arrow semantics of ⟨Π Π⟩.

The only difference between SymMonAmalg(Unitary,Aut'q (Unitary))�⊕� and Contraction is
that the latter has more morphisms, which can only be approximated with morphisms from the
former – which matches our main theorem that ⟨Π Π⟩ is (only) computationally (and not exactly)
universal.

6.4 Syntax, States, and Effects

In ⟨Π Π⟩, we allow the creation and discarding of a restricted set of values of ancilla types. As
given in Fig. 9, the ancilla types are restricted to be collections of bits. The construct li� allows
the discarding of some ancilla =1 and the creation of some ancilla =2. The new language defines an
arrow over Π Π with the derived combinators in Fig. 10. Most notably, the language includes two
new derived constructs zero and assertZero whose semantics are |0⟩ and ⟨0| respectively.
We summarise the arrow semantics of ⟨Π Π⟩ in Fig. 11. To see that this is an arrow, we must

define arr ,≫, and first. Bringing combinators from Π Π into ⟨Π Π⟩ is straightforwardly done by
adding the trivial ancilla 1 to both the input and output, arr < = li� (unite× ≫ < ≫ uniti×).
This allows us to lift the isomorphisms id, swap× , assocr× , assocl× , unite× , and uniti× of Π Π by
applying arr to them. To compose lifted Π Π terms< : 11 × =1 ↭/q 12 × =2 and ? : 12 × =3 ↭/q
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copy/ ≫ (id ∗∗∗ copy/ ) = copy/ ≫ (copy/ ∗∗∗ id)≫ assoc×

copy/ ≫ swap× = copy/

copy/ ≫ (inv copy/ ) = id

(copy/ ∗∗∗ id)≫ (id ∗∗∗ inv copy/ ) = (id ∗∗∗ copy/ )≫ (inv copy/ ∗∗∗ id)

copy- ≫ (id ∗∗∗ copy- ) = copy- ≫ (copy- ∗∗∗ id)≫ assoc×

copy- ≫ swap× = copy-

copy- ≫ (inv copy- ) = id

(copy- ∗∗∗ id)≫ (id ∗∗∗ inv copy- ) = (id ∗∗∗ copy- )≫ (inv copy- ∗∗∗ id)

zero ≫ assertZero = id

zero ∗∗∗ id ≫ ctrl 2 = zero ∗∗∗ id
one ∗∗∗ id ≫ ctrl 2 = one ∗∗∗ 2

zero ≫ xq ≫ assertOne = one ≫ xq ≫ assertZero

Fig. 12. Equations satisfied in ⟨Π Π⟩.

13 × =4, since ancillae are closed under products, we can form this as the lifting of a term of type
11 × (=1 × =3)↭/q 13 × (=4 × =2), namely

(li� <)≫ (li� ?) = li� (assocl× ≫ first < ≫ assocr× ≫ second swap× ≫

assocl× ≫ first ? ≫ assocr×) .

Then, first can be defined using first in Π Π, since this allows us to extend a lifted term of type
11 × =1 ↭/q 12 × =2 to one of type (11 × =1) × 13 ↭/q (12 × =2) × 13, so we need only swap the
ancillae back into the rightmost position from there, i.e.,

first (li� <) = li� (assocr× ≫ second swap× ≫ assocl× ≫ first < ≫

assocr× ≫ second swap× ≫ assocr×) .

In turn, second and ∗∗∗ are derived exactly as in Π Π. Inversion is simple since lifted terms are
symmetric in having an ancilla type on both their input and output, so we have inv(li� <) =
li� (inv<). Finally, the state zero and effect assertZero exist as the lifting of swap× : 1× (1+1)↭/q

(1 + 1) × 1 and swap× : (1 + 1) × 1 ↭/q 1 × (1 + 1), i.e.,
zero = li� (swap×) : 1 ↭ 1 + 1 and assertZero = li� (swap×) : 1 + 1 ↭ 1 ,

bringing the state into and out of focus respectively. A pleasant consequence of these definitions is
that inv(zero) = assertZero and vice versa. More generally, states and effects in ⟨Π Π⟩ satisfy the
following properties.

Proposition 6.5 (Classical Structures for Π/ and Πq and their execution laws). To

avoid clutter, we will implicitly lift Π/ and Πq gates to ⟨Π Π⟩, writing 2/ for arr (arr/ 2) and 2q for

arr (arrq 2). Introduce the following abbreviations:
copy/ = uniti× ≫ id ∗∗∗ zero ≫ cx/ copy- = xq ≫ copy/ ≫ xq ∗∗∗ xq

one = zero ≫ x/ assertOne = x/ ≫ assertZero
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The equations in Fig. 12 are satisfied in ⟨Π Π⟩.

Proof. The first two groups state that copy/ and copy- are each a classical cloning map for
the relevant basis: the / -basis in the case of copy/ and some rotated basis depending on q for
copy- . Because we fixed the semantics of Π/ to be the standard semantics in Unitary without any
rotation, the action of copy/ on input E is to produce the pair (E, E). The rotated version copy- has
the same semantics but in another basis. The last group of equations are the execution equations,
which are so named as they describe how the states (and, by duality, effects) interact with program
execution. The first shows that preparing the zero state and then asserting it does nothing at all.
The remaining equations define how states (and, by dualising the equations, effects) must interact
with control, and with one another: e.g., the second equation shows that passing |0⟩ to a control
line prevents the controlled program from being executed, while the third shows that passing |1⟩
on a control line executes the controlled program. □

6.5 Computational Universality

Like in the previous section, we can conclude that there exists a particular model in which ⟨Π Π⟩ is
computationally universal for quantum circuits equipped with arbitrary states and effects.

Theorem 6.6 (Expressivity). If q is chosen to be c/8, the model of ⟨Π Π⟩ is computationally

universal for quantum circuits equipped with arbitrary states and effects.

The more technical presentation of this theorem is the following. Say that a preparation of states

on a 2=-dimensional Hilbert space is a tensor product B1 ⊗ · · · ⊗ B= , where each B8 is either a state

or an identity. Dually, a preparation of effects is the adjoint B†1 ⊗ · · · ⊗ B
†
= to a preparation of states

B1 ⊗ · · · ⊗ B= . The theorem then states that ⟨Π Π⟩ is approximately universal for contractions�→ �

between Hilbert spaces � (of dimension 2=) and � (of dimension 2<) of the form (U�, where ( is a
preparation of states,U is unitary, and � is a preparation of effects.

Proof. Let B1 ⊗ · · · ⊗ B= be some state preparation,U be some unitary, and C†1 ⊗ · · · ⊗ C
†
= be some

effect preparation. In the state preparation B1⊗· · ·⊗B= , for each non-identity B8 , choose some unitary

(8 mapping |0⟩ to B8 . Likewise, in the effect preparation C†1 ⊗ · · · ⊗ C
†
= , choose for each non-identity

C†8 a unitary ) †8 mapping ⟨0| to C†8 . Produce now a state preparation B′1 ⊗ · · · ⊗ B′= where B′8 = |0⟩ if B8
is a state, and B′8 = id if B8 is an identity. Produce an effect preparation C ′1 ⊗ · · · ⊗ C ′= similarly. Notice
that ((1 ⊗ · · · ⊗ (=) (B′1 ⊗ · · · ⊗ B′=) = B1 ⊗ · · · ⊗ B= and ()1 ⊗ · · · ⊗ )=) (C ′1 ⊗ · · · ⊗ C ′=) = C1 ⊗ · · · ⊗ C= .
However, the state preparation B′1 ⊗ · · · ⊗ B′= involves only identities and |0⟩, and so has a direct

representation in Π Π as a product of a number of id and zero terms—call the resulting term ? .
Likewise, C ′1 ⊗ · · · ⊗ C ′= has a direct representation in Π Π as a product of a number of id and
assertZero terms—call the resulting term @. Finally, by Thm. 5.11 we can approximate the unitary

((1 ⊗ · · · ⊗ (=)U() †1 ⊗ · · · ⊗ ) †= ) by some Π Π term D. But then ? ≫ D ≫ @ approximates

(B1 ⊗ · · · ⊗ B=)U(C†1 ⊗ · · · ⊗ C
†
=). □

Though the proof above may at first glance appear to be non-constructive (as it involves choice
among unitaries), we note that a unitary in finite dimension mapping |0⟩ to some |E⟩ (of norm 1)
can be constructed using the Gram-Schmidt process.

7 Canonicity and �antum Computational Universality

This section proves the main result of the paper. So far, we have built a particular model of ⟨Π Π⟩
in Contraction and proved that by imposing q = c/8, we get a computationally universal quantum
programming language. In fact, it turns out that we have a much stronger result. Any model of
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⟨Π Π⟩ in Contraction satisfying the equations for classical structures and their execution laws defined

in Prop. 6.5 as well as the complementarity equation in Def. 7.1 is computationally universal!

Definition 7.1 (Complementarity). Using the same lifting notation as before, the complementarity
law requires the following identity:

id = (copy/ ∗∗∗ id)≫ assocr× ≫

(id ∗∗∗ (inv copy- ))≫ (id ∗∗∗ copy- )≫ assocl× ≫

((inv copy/ ) ∗∗∗ id)

Recall that the complementarity law is equivalent to the two bases being mutually unbiased. In
particular, it holds in SymMonAmalg(Unitary,Aut'q (Unitary))�⊕� if and only if q = ±c/8.

To show the canonicity theorem, we rely on the following characterisation of orthonormal bases
complementary to the / -basis where the unitary change of basis is involutive:

Proposition 7.2. Every orthonormal basis {|11⟩ , |12⟩} on C2 which is complementary to the

/ -basis, and for which the associated change of basis unitary is involutive, is either of the form

|11⟩ = 1√
2

(
1

4−8\

)
, |12⟩ = 1√

2

(
48\

−1

)
or of the form |11⟩ = 1√

2

(
−1
4−8\

)
|12⟩ = 1√

2

(
48\

1

)
where \ ∈ [0, 2c).

The proof is obtained via a straightforward matrix computation and is omitted for space (but
can be found in the extended version of the paper.)

Theorem 7.3 (Canonicity). If a categorical semantics J−K for ⟨Π Π⟩ in Contraction satisfies the

classical structure laws and the execution laws (defined in Prop. 6.5) and the complementarity law

(Def. 7.1), then it is computationally universal. Specifically, it must be the semantics of Sec. 6.3 with the

semantics of xq being the Hadamard gate (up to conjugation by - and / ) and: Jcopy/ K : |8⟩ ↦→ |88⟩,
JzeroK = |0⟩, Jcopy- K : |±⟩ ↦→ |±±⟩, and JassertZeroK = ⟨0| up to a global unitary.

Proof. Observe that J� + �K = C2 must be the qubit. Without loss of generality, we may assume
that Π/ has the usual semantics in the computational (/ ) basis—this is the freedom that the global
unitary affords.
The execution equations ensure that {JzeroK, JoneK} and {JplusK, JminusK} are copyable

by Jcopy/ K and Jcopy- K respectively. The complementarity equations further ensure that
{JzeroK, JoneK} and {JplusK, JminusK} form complementarity orthonormal bases for C2. By
assumption JzeroK and JoneK form the / -basis, so the only possibility for {JplusK, JminusK} is
as an orthonormal basis complementary to the / -basis.
Since Jarrq swap+K is the symmetry of a symmetric monoidal category it is involutive, and by

the complementarity equations it is the change of basis unitary between orthonormal bases. It
follows then by Proposition 7.2 that

Jarrq swap+K =
1
√
2

(
1 48\

4−8\ −1

)
or Jarrq swap+K =

1
√
2

(
−1 48\

4−8\ 1

)

for some \ ∈ [0, 2c). The execution equation zero ≫ xq ≫ assertOne = one ≫ xq ≫ assertZero

translates to the requirement that 48\ = ⟨0| Jarrq swap+K |1⟩ = ⟨1| Jarrq swap+K |0⟩ = 4−8\ in turn

implying 48\ = ±1. This leaves:
1
√
2

(
1 1

1 −1

)
,

1
√
2

(
1 −1
−1 −1

)
,

1
√
2

(
−1 1

1 1

)
, and

1
√
2

(
−1 −1
−1 1

)

as the only possibilities for Jarrq swap+K, which are precisely Hadamard up to conjugation by /
and/or- . Either way, this is a real basis-changing single-qubit unitary, so computationally universal
in conjunction with the Toffoli gate (which is expressible in Π/ ) by Thm. 2.1. □
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Observe that the Hadamard gate could already be expressed in Π Π with the appropriate choice
of q , without states and effects. The latter were only needed to impose equations on Π Π which
essentially forces q to be c/8.

8 QuantumΠ: Examples and Reasoning

Having shown that quantum behaviour emerges from two copies of a classical reversible
programming language mediated by the complementarity equation, we now illustrate that
developing quantum programs similarly only needs classical principles augmented with the
complementarity equation, and some forms of reasoning can similarly be expressed. Before we
proceed however, we present a sanitised version of ⟨Π Π⟩ that fixes q = c/8, that hides some of
the constructs that were only needed for the intermediate steps, and that uses Agda syntax for ease
of experimentation and for providing machine-checked proofs of equivalences. The code shown
elides some of the routine definitions which will be made publicly available.

8.1 QuantumΠ: Syntax and Terms

The public interface of QuantumΠ consists of two layers: the core reversible classical language Π (of
Fig. 2) and the arrow layer. We reproduce these below using the notation in our Agda specification.
The QuantumΠ types are directly collected in an Agda datatype:

data U : Set where

O : U

I : U

_+D_ : U → U → U

_×D_ : U → U → U

Since commutative monoids are used multiple times, their definition is abstracted in a structure
CMon that is instantiated twice as M× and M+. The Π-combinators are encoded in a type family:

data _↔_ : U → U → Set where

id↔ : t ↔ t

add : t1 M+.⇔ t2 → t1 ↔ t2

mult : t1 M×.⇔ t2 → t1 ↔ t2

dist : (t1 +D t2) ×D t3 ↔ (t1 ×D t3) +D (t2 ×D t3)

factor : {t1 t2 t3 : U} → (t1 ×D t3) +D (t2 ×D t3) ↔ (t1 +D t2) ×D t3

absorbl : t ×D O ↔ O

factorzr : O ↔ t ×D O

_#_ : (t1 ↔ t2) → (t2 ↔ t3) → (t1 ↔ t3)

_⊕_ : (t1 ↔ t3) → (t2 ↔ t4) → (t1 +D t2 ↔ t3 +D t4)

_⊗_ : (t1 ↔ t3) → (t2 ↔ t4) → (t1 ×D t2 ↔ t3 ×D t4)

Finally, the syntax and types of the QuantumΠ combinators are encoded in another type family
that uses another instance M of our commutative monoid.

data _⇔_ : U → U → Set where

arrZ : (t1 ↔ t2) → (t1 ⇔ t2)

arrq : (t1 ↔ t2) → (t1 ⇔ t2)

mult : t1 M.⇔ t2 → t1 ⇔ t2

id⇔ : t ⇔ t

_>>>_ : (t1 ⇔ t2) → (t2 ⇔ t3) → (t1 ⇔ t3)

_***_ : (t1 ⇔ t3) → (t2 ⇔ t4) → (t1 ×D t2 ⇔ t3 ×D t4)

zero : I ⇔ 2

assertZero : 2 ⇔ I

In the following, we will refer to common gates and states which we collect here. The definitions
are a straightforward transcription into Agda of the ones in previous sections. Below Π refers to
the module that (abstractly) defines Π-combinators.
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X H Z : 2 ⇔ 2

X = arrZ Π.swap+
H = arrq Π.swap+
Z = H >>> X >>> H

one plus minus : I ⇔ 2

one = zero >>> X

plus = zero >>> H

minus = plus >>> Z

ctrlZ : (t ↔ t) → 2 ×D t ⇔ 2 ×D t

ctrlZ c = arrZ (ΠT.ctrl c)

cx cz : 2 ×D 2 ⇔ 2 ×D 2

cx = ctrlZ Π.swap+
cz = id⇔ *** H >>> cx >>> id⇔ *** H

ccx : 2 ×D 2 ×D 2 ⇔ 2 ×D 2 ×D 2

ccx = arrZ ΠT.ccx
And so, as expected, the X gate and the H gate are both lifted versions of swap+ from the underlying
definition of Π. The classical gates of Π and their controlled versions are lifted using arrZ. Evidently
QuantumΠ does not include complex numbers. However, the language, being computationally
universal, can express them by encoding 0 + 81 as ( 0 −11 0 ) [3] where an extra qubit distinguishes the
real part from the imaginary part. Under this encoding, we can express the controlled-( gate as:

ctrlS : 2 ×D 2 ×D 2 ⇔ 2 ×D 2 ×D 2

ctrlS = (id⇔ *** id⇔ *** H) >>>

ccx >>>

(id⇔ *** id⇔ *** H) >>>

ccx

8.2 Proving Simple Equivalences

The laws of classical structures, the execution equations, and the complementarity law, combined
with the conventional laws for arrows and monoidal and rig categories, allow us to reason about
QuantumΠ programs at an abstract extensional level that eschews complex numbers, vectors, and
matrices. As a first demonstration, we can prove that the X and H gates are both involutive:

xInv : (X >>> X) ≡ id⇔
xInv =

begin

(X >>> X) ≡〈 arrZR 〉

(arrZ (Π.swap+ # Π.swap+)) ≡〈 classicalZ linv#l 〉

(arrZ id↔) ≡〈 arrZidL 〉

id⇔ ■

hadInv : (H >>> H) ≡ id⇔
hadInv = arrqR ⊙ classicalq linv#l ⊙ arrqidL

The first proof uses Agda’s equational style where each step is justified by one of the QuantumΠ

equivalences (see full code). The proof starts by moving “under the arrow” exposing the underlying
swap+ gate, using the fact that swap+ is an involution, and then lifting the equivalence back through
the arrow. The proof for H, presented as a sequence of equivalences, applies the same strategy to
the other arrow. In later examples, we also use some additional reasoning combinators that help
manage congruences, associativity and sequencing. For a more interesting example, we prove that
the z gate sends JminusK to JplusK:

minusZ≡plus : (minus >>> Z) ≡ plus

minusZ≡plus =

begin

(minus >>> Z)

≡〈 id≡ 〉

((plus >>> H >>> X >>> H) >>> H >>> X >>> H)

≡〈 ((assoc>>>l ⊙ assoc>>>l) 〉#〈id ) ⊙ pullA assoc>>>l 〉

(((plus >>> H) >>> X) >>> (H >>> H) >>> X >>> H)

≡〈 id〉#〈 ((hadInv 〉#〈id) ⊙ idl>>>l) 〉

(((plus >>> H) >>> X) >>> X >>> H)

≡〈 pullA assoc>>>l 〉
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((plus >>> H) >>> (X >>> X) >>> H)

≡〈 id〉#〈 (xInv 〉#〈id ⊙ idl>>>l) 〉

((plus >>> H) >>> H)

≡〈 cancelA hadInv 〉

plus ■

The execution equations allow us to extend this reasoning to programs involving control, e.g.:

oneMinusPlus : ((one *** minus) >>> cz) ≡ (one *** plus)

oneMinusPlus = begin

(one *** minus) >>> (id⇔ *** H) >>> cx >>> (id⇔ *** H)

≡〈 assoc>>>l ⊙ (homL*** 〉#〈id) 〉

((one >>> id⇔) *** (minus >>> H)) >>> cx >>> (id⇔ *** H)

≡〈 idr>>>l 〉⊗〈id 〉#〈id 〉

(one *** (minus >>> H))>>> cx >>> (id⇔ *** H)

≡〈 idl>>>r 〉⊗〈 idr>>>r 〉#〈id 〉

((id⇔ >>> one) *** ((minus >>> H) >>> id⇔)) >>> cx >>> (id⇔ *** H)

≡〈 homR*** 〉#〈id ⊙ assoc>>>r 〉

(id⇔ *** (minus >>> H)) >>> (one *** id⇔) >>> cx >>> (id⇔ *** H)

≡〈 id〉#〈 (assoc>>>l ⊙ e3L 〉#〈id) 〉

(id⇔ *** (minus >>> H)) >>> (one *** X) >>> (id⇔ *** H)

≡〈 id〉#〈 (homL*** ⊙ (idr>>>l 〉⊗〈id)) 〉

(id⇔ *** (minus >>> H)) >>> (one *** (X >>> H))

≡〈 homL*** ⊙ (idl>>>l 〉⊗〈 assoc>>>r ) 〉

one *** (minus >>> H >>> X >>> H)

≡〈 id〉⊗〈 minusZ≡plus 〉

(one *** plus) ■

We can string together more involved proofs to establish more involved identities.

/ �
=

/ �

xcxA : id⇔ *** X >>> cx ≡ cx >>> id⇔ *** X

xcxA = begin

id⇔ *** X >>> cx ≡〈 arrZidR 〉⊗〈id 〉#〈id ⊙ class*>R 〉

arrZ ((id↔ Π.⊗ Π.swap+) Π.# ΠT.cx) ≡〈 classicalZ xcx 〉

arrZ (ΠT.cx Π.# (id↔ Π.⊗ Π.swap+)) ≡〈 class>*L ⊙ id〉#〈 arrZidL 〉⊗〈id 〉

cx >>> id⇔ *** X ■

zhcx : (id⇔ *** Z) >>> (id⇔ *** H) >>> cx ≡ cz >>> (id⇔ *** H) >>> (id⇔ *** X)

zhcx = begin

(id⇔ *** Z) >>> (id⇔ *** H) >>> cx

≡〈 id≡ 〉

(id⇔ *** (H >>> X >>> H)) >>> (id⇔ *** H) >>> cx

≡〈 assoc>>>l ⊙ (homL*** ⊙ (idl>>>l 〉⊗〈id)) 〉#〈id 〉

(id⇔ *** ((H >>> X >>> H) >>> H)) >>> cx

≡〈 id〉⊗〈 pullA (cancelA hadInv) 〉#〈id 〉

id⇔ *** (H >>> X) >>> cx

≡〈 (idl>>>r 〉⊗〈id ⊙ homR***) 〉#〈id ⊙ assoc>>>r 〉

(id⇔ *** H) >>> (id⇔ *** X) >>> cx

≡〈 id〉#〈 xcxA 〉

(id⇔ *** H) >>> cx >>> (id⇔ *** X)

≡〈 id〉#〈 id〉#〈 insert; 1*HInv 〉

(id⇔ *** H) >>> cx >>> (id⇔ *** H) >>> (id⇔ *** H) >>> (id⇔ *** X)

≡〈 assoc>>>l ⊙ assoc>>>l ⊙ assoc>>>r 〉#〈id 〉

(id⇔ *** H >>> cx >>> id⇔ *** H) >>> (id⇔ *** H) >>> (id⇔ *** X)

≡〈 id≡ 〉

cz >>> (id⇔ *** H) >>> (id⇔ *** X) ■
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8.3 Postulating Measurement

Heunen and Kaarsgaard [25] derive quantum measurement as a computational effect layered on
top of a language of unitaries, by extending the language with effects for classical cloning and
hiding. Since QuantumΠ already has notions of classical cloning given by the copy/ and copy-
combinators, we only need to extend it with hiding to obtain measurement of qubit systems.

We can extend QuantumΠ with hiding using the exact same arrow construction as the one used
to introduce hiding inUΠ

j
0 by Heunen and Kaarsgaard [25], with two subtle differences. The first

difference is that, since the model of QuantumΠ is a (dagger) symmetric monoidal category and
not a rig category, this will yield a mere arrow over QuantumΠ, and not an arrow with choice:

2 : 11 ↭ 12 × 13 13 inhabited

li� 2 : 11 { 12

All available arrow combinators, including the crucial discard : 1 { 1 and the derived projections
fst :11×12 { 11 and snd :11×12 { 12, are defined precisely as Heunen and Kaarsgaard [25] define
them. The second difference concerns partiality of the model. Since the model of QuantumΠ is one
of partial maps (whereas the model ofUΠ0 is one of total maps), we need to accommodate for this
in the categorical model. This is precisely what is done by the !C⊗-construction of Andrés-Martínez
et al. [5]. In short, the resulting model will not satisfy J2 ≫ discardK = JdiscardK for all programs
2 , though it will satisfy it those 2 for which J2 ≫ inv 2K = JidK.

With this notion of hiding, we can derive measurement in the two bases as

measure/ = copy/ ≫ fst and measureq = copy- ≫ fst (12)

exactly as done in previous work [18, 25]. Note that, by commutativity of copying, we could
equivalently have chosen the second projection snd instead of fst. This can all be expressed in the
Agda formalisation as follows:

postulate

discard : t ⇔ I

discardL : (d : t1 ⇔ t2) → d >>> discard ≡ discard

This postulate is dangerous, as it does not enforce that it is only applied to total maps (though
we are careful to only do so in the examples here). We hope to patch this loophole in future work.

fst : (t1 ×D t2) ⇔ t1

fst = (id⇔ *** discard) >>> unite★r

snd : (t1 ×D t2) ⇔ t2

snd = swap★ >>> fst

measureZ measureq : 2 ⇔ 2

measureZ = copyZ >>> fst

measureq = copyq >>> fst

From this observation, measurements in the q-basis are nothing more than measurement in the
/ -basis conjugated by h. Following the same principle, we can define measurement in more exotic
bases. For example, measurement in the 2-qubit Bell basis can be defined by conjugating a pair of
/ -measurements by the unitary cx ≫ h ∗∗∗ id.
measure : measureq ≡ (H >>> measureZ >>> H)

measure = begin

measureq ≡〈 id≡ 〉 -- definition

copyq >>> fst ≡〈 id≡ 〉 -- definitions

(H >>> copyZ >>> (H *** H)) >>> (id⇔ *** discard) >>> unite★r

≡〈 assoc>>>l 〉#〈id ⊙ assoc>>>r ⊙ id〉#〈 assoc>>>l 〉

(H >>> copyZ) >>> ((H *** H) >>> (id⇔ *** discard)) >>> unite★r

≡〈 id〉#〈 homL*** 〉#〈id 〉

(H >>> copyZ) >>> ((H >>> id⇔) *** (H >>> discard)) >>> unite★r

≡〈 id〉#〈 idr>>>l 〉⊗〈 discardL H 〉#〈id 〉

(H >>> copyZ) >>> H *** discard >>> unite★r
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≡〈 id〉#〈 seq21*** 〉#〈id 〉

(H >>> copyZ) >>> (id⇔ *** discard >>> H *** id⇔) >>> unite★r

≡〈 assoc>>>r ⊙ id〉#〈 (assoc>>>l ⊙ assoc>>>l 〉#〈id ⊙ assoc>>>r) 〉

H >>> (copyZ >>> id⇔ *** discard) >>> (H *** id⇔) >>> unite★r

≡〈 id〉#〈 id〉#〈 uniter★≡r 〉

H >>> (copyZ >>> id⇔ *** discard) >>> (unite★r >>> H)

≡〈 id〉#〈 (assoc>>>l ⊙ assoc>>>r 〉#〈id) 〉

H >>> (copyZ >>> id⇔ *** discard >>> unite★r) >>> H

≡〈 id≡ 〉

(H >>> measureZ >>> H) ■

8.4 �antum Algorithms: Simon and Grover

The language QuantumΠ can easily model textbook quantum algorithms. The circuit on the right
solves an instance of Simon’s problem; it can be directly transliterated as shown:

simon : I ×D I ×D I ×D I ⇔ 2 ×D 2 ×D 2 ×D 2

simon = map4 zero >>>

H *** H *** id⇔ *** id⇔ >>>

arrZ cxGroup >>>

H *** H *** id⇔ *** id⇔

00 = |0⟩
01 = |0⟩
10 = |0⟩
11 = |0⟩

�

�

�

�

<0

<1

A0
A1

The four cx-gates, and more generally an arbitrary quantum oracle consisting of classical gates,
can be implemented in the underlying classical language and lifted to QuantumΠ.

Having access to measurement allows us to express end-to-end algorithms as we illustrate with
an implementation of a small instance of Grover’s search [22], which, with high probability, is
able to find a particular element G0 in an unstructured data store of size = by probing it only
$ (
√
=) times. The algorithm works by preparing a particular quantum state, and then repeating

a subprogram—the Grover iteration, consisting of an oracle stage and an amplification stage—a
fixed number of times proportional to

√
=, before finally measuring the output. The data store of

size = is implemented as a unitary * : [2=] → [2=] such that * |G⟩ = − |G⟩ if |G⟩ is the element
|G0⟩ being searched for, and * |G⟩ = |G⟩ otherwise. Though this uses nontrivial phases, it is still
a classical program in disguise, and one could also use a classical function instead (though this
presentation is slightly more economical). We assume that this unitary is given to us in the form
of a QuantumΠ program. The final part of the algorithm is the amplification stage, which guides
the search towards |G0⟩. This part is the same for every oracle, depending only on the number of
qubits. On three qubits, the amplifier is given by the circuit on the right. Using the fact that the /
gate is actually negation conjugated by Hadamard, we see that this 3-qubit amplifier is expressible
as the QuantumΠ program on the left:

amp : 2 ×D 2 ×D 2 ⇔ 2 ×D 2 ×D 2

amp = map3 H >>>

map3 X >>>

id⇔ *** id⇔ *** H >>>

ccx >>>

id⇔ *** id⇔ *** H >>>

map3 X >>>

map3 H

�

�

� /

�

�

�

To complete the implementation, suppose that we are given a unitary of the form D : 23 ↭/q 23

described above. The initial state before iteration should be |+ + +⟩, and we need to repeat the

Grover iteration ⌈c
4

√
23⌉ = 3 times before measuring the output in the computational basis.
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All together, this yields the following QuantumΠ program implementing 3-qubit Grover search:

grover3 : I ×D I ×D I ⇔ 2 ×D 2 ×D 2

grover3 = map3 plus >>>

repeat 3 (u >>> amp) >>>

map3 measureZ

8.5 The Formalization

Figure 5 and Theorem 3.1 were previously formalized [12, 15]. We additionally formalized [9]
everything shown in Figures 2–4, and 6–11, Definitions 4.4–5.1, Proposition 5.2, the arrows of
Proposition 5.9, the construction of Definitions 4.5 and 6.1 as well as all examples and proofs in
this section.
We have not formalized the Aharonov-Shi Theorem 2.1, nor Proposition 6.5, Theorem 5.11,

Theorem 7.3, although all the constructions used in theorems have been implemented.

9 Future Work

The more Π, the better precision. We have shown that two copies of a classical language, when
aligned just right, are sufficient to yield computationally universal quantum computation. However,
encoding general rotation gates, such as the ones needed for the quantum Fourier transform, is
awkward and inefficient using just Toffoli and Hadamard. Can additional copies of the classical
base language, when aligned carefully, improve this—and, if so, by how much?

Completeness. An equational theory is sound and complete when any two objects in the semantic
domain are equal iff they are provably equal using the rules of the equational theory. While it is
clear that reasoning in QuantumΠ is sound, completeness is wholly unclear. A complete equational
theory for the Clifford+T gate set beyond 2 qubits is already unknown.
Formal quantum experiments. Programming languages have served as tools in thought

experiments about physical theories [2, 42]. (An extension of) QuantumΠ could be used similarly,
to formulate contextuality scenarios or quantum protocols, and use the reasoning capabilities of
QuantumΠ to answer questions about them.

Approximate reasoning. The categorical semantics of QuantumΠ only give a way to prove that two
programs are exactly equal. How can we extend the model of QuantumΠ to account for reasoning
that two programs are equal not on the nose, but up to a given error?
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