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Abstract
We present the design and implementation of a generative geomet-
ric kernel1. The kernel generator is generic, type-safe, parametrized
by many design-level choices and extensible. The resulting code
has minimal traces of the design abstractions. We achieve generic-
ity through a layered design deriving concepts from affine geome-
try, linear algebra and abstract algebra. We achieve parametrization
and type-safety by using OCaml’s module system, including higher
order modules. The cost of abstraction is removed by using MetaO-
Caml’s support for code generation coupled with some annotations
atop the code type.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Code generation; D.2.2 [Software Engi-
neering]: Design Tools and Techniques; I.1.3 [Symbolic and Alge-
braic Manipulation]: Languages and Systems—Evaluation strate-
gies

General Terms Code Generation, Geometric Kernel, Methodol-
ogy, Generic Programming

Keywords MetaOCaml, Geometry, Generative, Generic

1. Introduction
Our work developed from a simple observation [12, 39, 40]: mesh
generation and computational geometry software forms a family
of programs. Furthermore, generative programming [6], especially
when coupled with domain-specific simplifications [7], can be an
effective method for “coding” such families. There are however
some well-known drawbacks to the most common implementation
languages, to wit C++ templates [8]. We instead chose a typed
methodology, using MetaOCaml [29, 45] for higher assurance.

More precisely, a past case-study on using typed metaprogram-
ming for capturing a program family of Gaussian Elimination al-
gorithms [2, 4] was rather promising. But there was still a seri-
ous doubt: was Gaussian Elimination somehow especially well-
suited to such an approach? We needed to know if the previously

1 The code is available from http://www.cas.mcmaster.ca/˜carette/ggk/
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developed techniques (from the above papers as well as those
of [5, 24, 44] for example) would really be transferable. Further-
more, we were interested in moving beyond case-studies of fea-
sibility requiring the invention of new techniques, and rather ex-
tend the methodological work of [4] towards a real recipe for typed
metaprogramming, at least in the context of scientific computation
software.

Thus we embarked on another case study, but this time, we were
quite careful to not invent new techniques, but rather to reuse exist-
ing techniques, or at worst to adapt them slightly. Furthermore, we
always tried to use the simplest possible technique for solving each
problem, even when we were aware of more powerful techniques,
which could definitely solve the problem. Throughout the design
and development process we paid close attention to our design de-
cisions and the rationale behind each of them. This has allowed us
to compare the current decisions and their rationale with previous
work, and document the common ideas.

Motivating Example
First we need to establish that geometric computations are indeed
a good topic for such a case study. Consider the following prob-
lem: Let {pi}i∈[1..n] be n points in an n-dimensional Euclidean
space equipped with an orthogonal coordinate system. Let H be
the hyperplane defined by these points. That is, H is a line in 2D,
a plane in 3D, or in general, a subspace of codimension 1. Let the
coordinates of a point pi be (pi1, pi2, · · · , pin). The relative posi-
tion of a point x = (x1, · · · , xn) with regard to H is called the
orientation of x and H . The orientation test is a fundamental geo-
metric primitive in many computational geometry algorithms (such
as computing the convex hull and triangulations [18]). The usual
method for the orientation test relies on computing the following
determinant:

˛̨̨̨
˛̨̨̨
˛̨

p11 p12 · · · p1n 1
p21 p22 · · · p2n 1

...
...

. . .
...

...
pn1 pn2 · · · pnn 1
x1 x2 · · · xn 1

˛̨̨̨
˛̨̨̨
˛̨

From a software point of view, a dimension-generic implemen-
tation of the orientation test requires computing this determinant
at runtime, which is an expensive operation. If the dimension is
known before runtime, then a straightforward optimization is to
use the expanded closed-form expression instead. For example, for
n = 2, the determinant simplifies to

(p22 − x2)p11 − (p12 − x2)p21 + (p12 − p22)x1,



which can be implemented with a fairly small number of arithmetic
operations. For n = 1, this simplifies to a subtraction of two num-
bers p11 − x1. It is also noticeable that the constant (1 in this case)
no longer appears. This is a seemingly trivial difference, but in the
context of larger computations, we cannot assume that all compilers
will be able to reduce to such “trivial” computations. This means
that writing an efficient generic orientation test requires writing and
maintaining n different specialized versions for n different varia-
tions. Our goal is to write and maintain one abstract version, which
can then be specialized optimally for each n.

In other words, in our human-maintained source code, we want
the most mathematically meaningful version of the “orientation
test” to appear, but in the code that we will ultimately compile
(for each dimension), we want the most simplified expression.
Most geometric computations have a similar character, where the
abstract mathematical definition is simple and elegant, but can be
computationally inefficient.

One note on efficiency: our aim is to produce source code
which is comparable to hand-written code for the same task. Our
efficiency goals are that we are no slower than hand-written (but
not micro-optimized) code. Some modern compilers, which do
aggressive inlining, may well produce very efficient code for highly
generic algorithms; our aim is to guarantee this, rather than hope
that the compiler is “sufficiently smart”.

Contribution
We provide the first typed geometric kernel generator. But, more
importantly, we clearly document our design decisions and their
rationale, which allows us to compare to our previous work on
typed generators, and extract some further methodological aspects.
We have explicitly not used “new” techniques, so as to enable a
cleaner extraction of methodological aspects.

We have made a very explicit design decision to encapsulate
“code generation”. This is the key for showing that for high-level
algorithms, “generic” and “generative” can be done with the same
code – and in fact resemble pseudo-code versions of mathematical
algorithms. To achieve this, we need to abstract away all issues
of “code generation”, by localizing all uses of code construction
operations (i.e. the features added by MetaOCaml to OCaml) to a
single module.

In particular, the software architecture for our generator is
mostly driven by mathematical clarity, elegance and generality.
This leads to an unusually modular design, whilst the code we gen-
erate is essentially free of abstraction overheads. In fact, we achieve
more inlining than what is found in many geometric kernels, from
code that is written at a much more generic and abstract level.

Plan of the paper
We start with some necessary background, covering some of the
basic techniques we need. Then in section 3, we cover the global
design of the geometric kernel generator, in a top-down manner.
Sections 4–8 then give more details of each layer, in a bottom-
up manner. In section 9, we first give an illustrative example of
our methodology, before providing a higher-level description of
the steps we successfully followed. After this we provide further
general discussion, which also covers future work. In section 11, we
cover some of the related work that is not otherwise covered in the
main text, before wrapping up with some conclusions in section 12.

2. Background
We give a quick overview of the basic tools that we use for all of our
work. Throughout we assume the reader is familiar with Objective
Caml [21].

2.1 Metaprogramming
Meta-programming involves writing programs that manipulate pro-
grams [36]. The programs being manipulated are called object-
programs. Our use is of the simplest kind: we want to write pro-
gram generators. Our generators are parametrized by design de-
cisions, in the context of program families [32, 48]. Since this is
a difficult task at the best of times, we wanted to have as many
“free” correctness guarantees as possible. Currently, this means us-
ing MetaOCaml, the only language in which a type-safe code gen-
erator also guarantees that all object-programs will also be type-
safe (as well as being syntactically well-formed) [42].

2.2 Programming in MetaOCaml
MetaOCaml is an extension of Objective Caml [21] (henceforth
abbreviated to OCaml). It provides mechanisms for constructing
and combining code expressions, which can be executed in future
stages. MetaOCaml extends OCaml’s syntax with three new con-
cepts: Bracket, Escape, and Run. It also extends the type system by
an additional type: code. Although MetaOCaml allows arbitrarily
many stages, we only use 2, which we will sometimes refer to as
the generation stage and the run-time stage.

The Bracket operator (syntax: .<e>.) delays the computation of
an expression e, which is referred to as a future-stage computation.
If e is an OCaml expression of type t, then .<e>. has type (’a,
t) code2. The execution of this expression is delayed to a future
stage. However, both the syntax and the type of this expression
are checked at the current stage (generation stage in our case).
This gives a static guarantee that the generated code will have the
appropriate type when executed at a future stage. This means that
well-typed code generators will produce only syntactically well-
formed and well-typed code.

The Escape operator (syntax: .~e) allows running of code-
producing expressions in the current stage, in the context of a
(future) stage code expression. When evaluating .~e, MetaOCaml
first evaluates e in the current stage, then splices the resulting code
expression inside a later stage expression. The power of the Escape
operator lies in the fact that the expression e gets evaluated before
splicing. This allows arbitrary computations over code expressions
at generation time.

The Run operator (syntax: .!e) forces the execution of a code
expression in the current stage; in other words, if e has type (’a,
t) code, .!e has type t. This is very useful for run-time code
generation – which is a feature we do not in fact need here. For
our purposes, it would be sufficient for there to be a perfect printer
from (’a, t) code to strings or files, albeit with the guarantee
that the results are syntactically well-formed, type-safe OCaml
programs. In practice, we end up using Run on code values that
always evaluate to functions (at generation time).

As MetaOCaml is a strict superset of OCaml, this gives us an
extremely powerful language to use at generation time. If we are
careful which language features we use inside future-stage (gener-
ated) code, we insure that most abstraction costs are at generation
time [4].

2.3 Annotations
By design, MetaOCaml treats values of type code as black boxes,
i.e., they cannot be examined3. Naı̈ve code generation will pro-
duce sub-optimal code, which we want to avoid. As we cannot
optimize code post facto, we need to make sure that we gener-

2 The polymorphic type parameter ’a is called the environment classifier.
The reasons and details behind environment classifiers are outside the scope
of this paper. Interested readers are advised to consult [43] for more details.
3 This is a mechanism that helps preserve the type-safety of generated code
in the presence of effects, see [41] for details.
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ate optimal code on the first (and only) pass. Kiselyov et al. [24]
tackle this problem by using abstract interpretation. We use sim-
ple annotations (via algebraic types) that capture enough informa-
tion about future-stage computations to allow us to perform some
computations at generation time, so that we may generate the code
“just right”. Optimizations such as algebraic simplification, con-
stant folding, let insertion and constant propagation are all per-
formed before any code is generated. More precisely, we guarantee
that expressions like x+0 will never be generated [47].

In fact, we indeed use abstract interpretations for this purpose,
but since the lattices involved are quite trivial, we prefer to refer to
them simply as “annotations” here.

2.4 Modules and Functors
Our main goal is to realize a program family of geometric com-
putations with a high degree of parametricity. Following [4], we
use OCaml’s module system for encoding the domain concepts and
the parametrizations. The abstract concepts are encoded as module
types (interfaces), with modules being instances of those concepts.
The type checker can then reject invalid implementations of these
concepts. To express variabilities, we use Functors. Functors are
parametrized modules. By adding appropriate type constraints, we
can enforce that certain relations must hold between parameters of
Functors. This allows us to encode certain domain information into
the type system, and leverage the type checker’s ability to inform
us of improper compositions of variabilities.

3. The Design of the Geometric Kernel
Our original motivation was to be able to experiment with differing
meshing algorithms, in the context of solving partial differential
equations. All meshing algorithms rely on a core foundation of ge-
ometric objects and computations [27]. To be able to conduct such
experiments, we need a whole family of (implementations of) geo-
metric objects and computations. The abstraction cost of making all
of these choices at run-time, through whatever dispatching mecha-
nism we may choose, is simply too high – we could never hope to
be competitive with existing meshing software.

It thus seemed reasonable for us to design a geometric kernel
that was both parametric and efficient; previous work told us that
this could be achieved via code generation. We also knew that we
needed to find “the right abstractions” to be able to be properly
modular and achieve the desired parametricity.

The problem of finding a proper set of abstractions that allows
expressing geometric computations independently of the underly-
ing coordinate space and its dimensions is a thorny one, but study of
the literature made it clear that this was key. If this can be achieved,
then a family of geometric computations can be expressed using
essentially the same abstract code. As a positive side-effect, this
would also scale to higher dimensions. In other words, if we can
find a proper interface for the lower-level implementation details,
we could then provide different implementations (aka variabilities)
for those details. It is important to remember that we have put our-
selves in a generative context, so we need to make choices that
allow us to specialize the generator, rather than directly specializ-
ing the program. However, the partial evaluation literature tells us
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that, through staging, we can turn programs directly into their own
generating extensions [22] by hand-writing a cogen.

We first sought to proceed as in [2], and “reverse engineer” the
commonalities and variabilities from a sample set of geometric
kernels, which embodied different design choices. This did not
work. These kernels where much too highly optimized, thereby
completely obscuring the abstract structures involved. The choice
of Gaussian Elimination in [2] was lucky in that the mathematical
structure was still visible in the code.

We thus turned away from the literature describing implemen-
tations of geometric algorithms, and started exploring abstract geo-
metric computations instead. Mann et al. [26] propose using a geo-
metric algebra as a basis for geometric abstractions. This approach
results in generic higher-dimensional geometric kernels [28], and
coordinate-free computations [20]. A comparison of the different
types of geometric algebras can be found in [14, 19]. Among these
different geometric algebras, affine geometry treats n-dimensional
spaces through the same set of abstract concepts. In effect, geomet-
ric primitives that are based on affine geometry scale to higher di-
mensions. However, the affine geometry does not allow a straight-
forward extension to different coordinate systems other than the
orthogonal coordinate systems [10]. A promising alternative geo-
metric algebra can be found in [14] that can address this problem.
For simplicity, we chose to follow the route of basing our geometric
kernel on affine algebra.

Once we decided that we would not worry about non-Cartesian
coordinate systems, the rest of the design became simpler. The final
design (see figure 1) was completely motivated by top-down func-
tionality requirements, in other words the implementation needs of
the upper-layers drove the requirements for the lower layers.

Briefly, our geometric objects are encoded in terms of concepts
from affine spaces, which are encoded using linear algebra (and
containers), which itself is parametric over the underlying “number
types” of the entries of matrices. And, at the bottom, the very
representation of the programming language primitives (data-types
and functions) are themselves abstracted into staged versions –
which we will detail later.

Each layer is designed to be generic and parametric, however
our current implementation only covers those parts that are neces-
sary to implement variations on our geometric kernel.

Details of the Layers
The layers’ contents are further detailed in Figure 2. The purpose
and functionality of each of the layers is described as follows:

• The geometric objects layer: Geometric objects and computa-
tions are exposed in sufficient detail to allow writing geometric
algorithms independently from the underlying geometric space



representations. Choices such as the coordinate system, the co-
ordinate number types, or dimensions are not exposed. Exam-
ples of objects at this layer are hyperplanes, hyperspheres, and
operations on them.

• The affine space layer provides the basic functionality for com-
puting with geometric primitives of affine spaces. The concepts
here are those for points, vectors, orientation, sidedness and
general affine transforms.

• The linear algebra layer: A straightforward implementation of
affine geometric primitives uses linear algebra. The scope of
this layer is motivated by the needs of the affine geometry, not
by the general scope of linear algebra. We only require a (repre-
sentation of) vectors, which we call tuple, a (representation of)
linear transformation – matrices, and the computation of deter-
minants. However, obtaining “good” code for this was challeng-
ing, and drove a lot of our design for facilities in lower layers.

• The number types layer: Proper abstractions in geometric com-
putation include identifying a “number type” for the underlying
coordinate system. Traditionally this has been seen in a nar-
row fashion as being entirely determined by the carrier type
– but here when we speak of “number type”, we really mean
an algebraic approach to these. So this layer exposes algebraic
structures in their entirety, rather than leaving this implicit. This
in turn allows us to place certain simplifications in the “right”
place (i.e. in this layer) instead of being ad hoc; for example,
constant folding can be done here, as can simplifications based
on algebraic properties.

• The code layer provides code generation facilities. It provides
abstractions for “staging” values and functions, as well as some
code combinators.

In the next sections, we will describe, from the bottom up, each one
of these layers in more detail.

4. The Code Layer
The code layer offers abstractions for building and manipulating
staged types, as well as code generation combinators.

We have made a very explicit design decision to encapsulate
“code generation”. Our goal is to provide the “right” primitives so
that, at the higher levels, generic algorithms and generative algo-
rithms are identical – and in fact resemble pseudo-code versions of
mathematical algorithms. To achieve this, we need to abstract away
all issues of “code generation”, by localizing all uses of Escape and
Bracket to a single module in the code layer.

4.1 Abstracting code
We could proceed by simply abstracting the code type and the op-
erations on it. However, we noticed that a fair amount of informa-
tion is available statically, as generation-time values. We want to be
able to take advantage of this to simplify the generated code (e.g.
by constant folding), yet still have the higher layers of our code be
unaware of such issues. We now explain how we provide a unified
view of code and values.

Code Expressions
As is by now well-understood [4, 24], it is important not to du-
plicate computations. To facilitate let insertion, we need to know
if a code value can be duplicated or not; rather than encoding at
the type-level like the maybeValue type of [24], we use the value-
level at generation time. This is naturally isomorphic, but allows
for more elegant code. We define the type code expr as

type ( ’ a , ’ b ) c o d e e x p r =
{ c : ( ’ a , ’ b ) code ; a : boo l }

where the boolean represents whether the code expression can be
duplicated or not (we call such expressions atomic). An expression
e is atomic if and only if it is either an immediate value or (the code
for) a variable.

Staged Expressions
Expressions can be classified in terms of evaluation time into two
categories:

1. Now expressions. This category comprises immediate values
and constants. The value of a Now expression is known at code
generation time.

2. Later expressions. Values in this category are known at run-
time. At generation time, the values in this category are rep-
resented by code expressions whose execution is delayed to a
further stage, i.e., run-time.

As we want to abstract away from these considerations, we com-
bine these into a single type of staged values:

type ( ’ a , ’ b ) s t a g e d =
| Now of ’ b
| L a t e r of ( ’ a , ’ b ) c o d e e x p r

4.2 Staging Functions
Once we have staged values, we need to build functions over these,
which we will naturally call staged functions. Our mechanism is
general, and only depends on the arity of the function.

4.2.1 Staging Unary Functions
A straightforward way to lift a function of type ’b -> ’c to a
staged one would be

l e t l i f t u n a r y f = f u n c t i o n
| Now x −> Now ( f x )
| L a t e r x −> L a t e r { a = f a l s e ;

c = .< f . ˜ ( x . c ) >. }

but this inlining could cause code duplication. This can be im-
proved to

l e t l i f t u n a r y ’ f = f u n c t i o n
| Now x −> Now ( f x )
| L a t e r x −> L a t e r ({ a = f a l s e ; c =

i f x . a then .< f . ˜ ( x . c ) >.
e l s e .< l e t t = . ˜ ( x . c ) in f t >. } )

This solution is still not entirely satisfactory, as function compo-
sition now generates rather unnatural code. Furthermore, we are
residualising a call to f, even though we might possess a version
of f that does inlining. The problem is that we do not have enough
contextual information at hand to deal with this case properly.

A better solution then is to delegate the handling of the Later
case to the caller. That is, rather than asking for a single function f
working on values as input, we rather ask for fn working on values
and fl which works on code expressions. We bundle these up into a
record, and a straightforward implementation of the application for
these generalized unary functions is

type ( ’ a , ’ b , ’ c ) una ry = {
unow : ’ b −> ’ c ;
u l a t e r : ( ’ a , ’ b ) c o d e e x p r −> ( ’ a , ’ c ) c o d e e x p r

}
l e t mk unary f = f u n c t i o n

| Now x −> Now ( f . unow x )
| L a t e r x −> L a t e r ( f . u l a t e r x )



4.2.2 Staging Binary Functions
If we apply the above scheme to binary functions in a naı̈ve manner,
we would require 4 cases for a generalized binary functions, which
does not seem quite “right”. What we would prefer would be to
give only 2 cases, and use lifting for the other cases.

To achieve this, we need a simple auxiliary function to lift
atomic values (in this case, constants). Then we can define a type
for generalized binary functions and its application function.

l e t l i f t c o n s t x = {c = .<x > . ; a = t r u e }
type ( ’ a , ’ b , ’ c , ’ d ) b i n a r y = {

bnow : ’ b −> ’ c −> ’ d ;
b l a t e r : ( ’ a , ’ b ) c o d e e x p r −>

( ’ a , ’ c ) c o d e e x p r −>
( ’ a , ’ d ) c o d e e x p r

}
l e t mk bina ry bop = fun x y −> match x , y with
| (Now x ) , (Now y ) −> Now ( bop . bnow x y )
| (Now x ) , ( L a t e r y ) −>

L a t e r ( bop . b l a t e r ( l i f t c o n s t x ) y )
| ( L a t e r x ) , (Now y ) −>

L a t e r ( bop . b l a t e r x ( l i f t c o n s t y ) )
| ( L a t e r x ) , ( L a t e r y ) −> L a t e r ( bop . b l a t e r x y )

It is important to note that the above is still sub-optimal: the knowl-
edge of one of the static arguments could sometimes be useful for
simplifications, but is not used. We will rectify this in section 5.1.

4.3 Generating Let Statements
Straightforward inlining can easily result in code duplication. The
usual solution [3, 24] involves writing the generator in continuation
passing style (CPS). However, in the cases we treat here, we do not
need to use such high-powered tools. We can instead use a simpler
let generator.

The principal usage is to express sharing in non-linear expres-
sions, which are expressions where a value is used more than once
(for example, in the expression x+(x+y), x is used non-linearly).
We want to rewrite this as let v=x in v+(v+y). To achieve this,
we need the “body” v+(v+y) to be expressed as a function (of v).
This can be done in two ways, either as a staged function, or as a
generalized unary function. In each case, we can write a let genera-
tor over staged values – which we call let for the staged case and
letp for the generalized unary function case.

l e t l i f t a t o m x = {c=x ; a= t r u e }
l e t l e t ce exp = match ce with

| Now −> exp ce
| L a t e r c when c . a −> exp ce
| L a t e r c −>

of comp .< l e t v = . ˜ ( c . c ) in
. ˜ ( t o c o d e ( exp ( l i f t a t o m .<v > . ) ) ) >.

l e t l e t p ce exp = match ce with
| Now v −> Now ( exp . unow v )
| L a t e r c when c . a −>

L a t e r ( exp . u l a t e r ( l i f t a t o m c . c ) )
| L a t e r c −> L a t e r

{ c = .< l e t v = . ˜ ( c . c ) in
. ˜ ( ( exp . u l a t e r ( l i f t a t o m .<v > . ) ) . c ) > . ;

a = f a l s e }

In practice, we frequently use let as it gives us the same be-
haviour as letp in simple situations.

4.4 Base Types and code combinators
We also provide some simple facilities for generating code involv-
ing boolean predicates (as well as for String, but it is not used).
Some code combinators (like sequencing and choice) are likewise
provided.

5. The Number Types Layer
The number types layer provides generic abstractions of the num-
ber types. It is probably misnamed: it should properly be called
the “single-sorted universal algebra” layer. But as that is rather a
mouthful, and our uses are largely for algebras of “numbers”, we
have decided to remain with our early name. Its purpose remains
the same: encapsulating the right properties so that we may imple-
ment a family of algorithms with the number type as a variability.
Thus we introduce a hierarchy of abstractions based on traditional
algebraic structures, such as rings and fields. However, we do not
strive for completeness, but rather only define those structures that
naturally appear in our algorithms.

In retrospect, this layer really should be divided into two layers:
we have a first part that directly uses the low-level code layer ob-
jects (like unary and binary) for building simplifiers for algebraic
structures, encoded using records. The second part uses the staged
types to create “staged” versions of algebraic structures – encoded
using module types.

5.1 Building Simplifiers
Monoids Although monoids, as a mathematical structure, are
rather uninteresting (they support very few theorems), they are a
pervasive structure in computer science. We recall that a monoid
consists of a carrier set M , an associative binary operation ? over
M , and a special element u ∈ M such that u is a left and right unit
for ?. We can take advantage of staging and build better staged op-
erators that respect the identity laws of the base operators. That is,
the resulting staged operator can generate code that does not con-
tain unnecessary operations, for all “types” that support a monoidal
structure. In particular, we can generically simplify x+0 and 1 ∗x
to x in the monoids (B, +, 0) and (Q, ∗, 1), respectively.

Concretely, we can create a type for monoids, and then create
a special evaluator for the monoid’s binary operation that takes ad-
vantage of the monoidal structure to perform simplification when-
ever possible. When no simplification applies, we just dispatch to
the generic case of staged binary operations, covered in the previ-
ous section.

type ( ’ a , ’ b ) monoid = {
bop : ( ’ a , ’b , ’b , ’ b ) b i n a r y ;
uelem : ’ b

}
l e t mk monoid mon x y = match x , y with

| (Now x ) , y when x = ( mon . uelem ) −> y
| x , (Now y ) when y = ( mon . uelem ) −> x
| x , y −> mk bina ry mon . bop x y

Rings Mathematically, a ring consists of a carrier set R, a commu-
tative associative binary operator + with two-sided unit 0 ∈ R, and
an associative binary operator ∗ with two-sided unit 1 ∈ R, where
∗ distributes over + and 0 acts as an annihilator for ∗. Seen another
way, a ring consists of 2 monoidal structures over the same carrier
set R which satisfy some compatibility laws. As with a monoid, we
can make a type ring and a simplifier:

type ( ’ a , ’ b ) r i n g = {
monp : ( ’ a , ’ b ) monoid ;
mont : ( ’ a , ’ b ) monoid ;

}
l e t m u l t r i n g rng x y = match x , y with

| (Now x ) , ( L a t e r y ) when
x = ( rng . monp . uelem ) −> Now rng . monp . uelem

| ( L a t e r x ) , (Now y ) when
y = ( rng . monp . uelem ) −> Now rng . monp . uelem

| x , y −> mk monoid rng . mont x y



Note how we take definite advantage of the multiplicative monoid
structure when simplifying the multiplicative aspect of a ring. The
additive aspect is exactly covered by the additive monoid structure.

5.2 Staged Structures
We use Ocaml’s module types to encode concepts such as sets,
orderings, monoid, normed set, ring, field and real field. Each
interface (aka module type) specifies a minimal set of (typed)
operations for each concept. To minimize duplication of code at
this level as well, we use OCaml’s module inclusion for extension
among types. The following types are ordered by the inclusion
relation (A v B if module B includes module A):

SET v RING v FIELD v REALFIELD.

By writing generators that are independent of the choice of
representation, we obtain genericity. However, since we are in a
generative context, the code generated is specific to the choices
made. The principal reason for using modules (rather than records)
here is sub-typing.

6. The Linear Algebra Layer
An abstract implementation of affine geometry uses matrices. But
since we will always be generating code for fixed, usually very
small, dimensions, the overhead associated with matrices (both in
terms of time and space) are prohibitive. But this is not a problem:
our linear algebra layer uses matrices at generation time only.
We have made sure that all linear algebra operations are always
computed strictly at generation time.

On the other hand, linear algebra provides an extremely useful,
and generic, formalism for expressing all the important operations
in affine geometry. We thus use this formalism, in the generator, as
a convenient abstraction between the affine geometry layer and the
“algebra” layer.

The most important function in this layer is the computation
of determinants. Most of the affine geometry operations which
we are interested in, are defined in terms of special determinants.
However, these determinants are performed on structured matrices,
with many statically known entries, many of which are in fact 0
and 1. By doing a careful expansion of the determinant used in
the definition of each concept at generation-time, we can produce
“efficient” computation sequences for them.

7. The Affine Space Layer
This layer encapsulates the concepts from affine geometry, and
drawn from both the literature on the mathematics of geometry as
well as computational geometry [1, 9, 17, 34]. We selected concepts
that were n-dimensional, abstract but specializable, and that were
required for mesh generation computations [15, 18].

Our design follows the mathematical abstraction in the affine
geometry domain. For example, an affine space is defined as a triple
(D,V,P), where D is a division ring, V is a set of free vectors
over D, and P is a set of points (also over D). In a sense, an affine
space is a vector space without a marked “origin”. This abstract
definition says little about the dimension of the space or the coor-
dinate systems. However, certain concepts can be extracted from
the definition such as number types, vectors, and points. At this
level, the interfaces corresponding to those objects should make
no assumptions about dimensions or coordinate system. In other
terms, the API for these module types should be dimensionless and
coordinate-free.

Matrix Representation of Affine Transforms
An affine transform T on a vector x can be represented as Tx =
Ax + b where A is an n by n matrix, and b and x are both n-

dimensional vectors. A is called the linear transformation matrix.
x is the column vector representing the affine coordinates of the
object subject to transformation. b is the additive part of the trans-
formation, normally called the translation part. If we denote by a
bold font symbol (such as a) an n-dimensional column vector, then
Tx = y = Ax + b can equivalently be written as„

y
1

«
=

„
A b
0T 1

« „
x
1

«
The expressive power that we get from the linear algebra layer

allows us to implement the affine transforms following the formu-
lation above.

8. The Geometric Objects Layer
Here we finally get geometric computations, with our selection
driven by the prevalence of the objects and computations in mesh
generation systems. There are challenges in designing such a layer:
in typical texts on mesh generation, as well as on computational
geometry, most primitive operations are given in special forms for
2 and 3 dimensions only. For example, a 2D in-circle test is usually
defined as testing whether a point x is inside the circle circumscrib-
ing a particular triangle t, while in 3D the circle becomes a sphere
and the triangle, a tetrahedron. All too frequently, 2 separate ex-
pressions are given for each of these computations, with no formal
link between them. More abstract presentations define the in-circle
test as testing whether a point is inside a hypersphere circumscrib-
ing a simplex – and then proceed to give a general constructive defi-
nition via the computation of the determinant of a particular matrix
built in terms of the coordinates of the point x and simplex t. At
this point, all our work on the lower layers pays off immediately:
this abstract definition can directly be used in our generator, and
furthermore the code it generates in special cases is identical to the
special form found in textbooks. Note that we do not have to spe-
cialize the dimension – our generator can also produce dimension-
generic forms of the in-circle test.

We give a quick overview of the fundamental geometric objects
we have implemented.

Hyperplanes A hyperplane is an n-dimensional generalization
of a point in 1D, a line in 2D, and a plane 3D. More specifically,
it is a codimension 1 linear subspace of an n-dimensional space.
It is frequently defined by giving n − 1 non-colinear points that
lie on the hyperplane. The implementation of a hyperplane is free
to choose whatever “container” representation it wishes for storing
those points. The interface for hyperplanes leaves the representa-
tion completely abstract. Hyperplanes are parametrized by (repre-
sentations for) a normed set, a vector and a point and some compat-
ibility constraints. All of these are dimensionless and coordinate-
free.

The interface to hyperplanes exposes functions for their con-
struction, extracting the dimension, the normal vector and offset,
as well as operations for ‘frames’ and local coordinates. Above
this, one can then generically build functions for computing the dis-
tance between a point and hyperplane, computing whether a point
is “above” or “below” (or on) a hyperplane, as well as projecting a
point onto a hyperplane.

For example, given a hyperplane implementation H, we can
compute the distance between a point p and a hyperplane h, as
n̂ · (p − o), where n̂ is a vector normal to h and o is an arbitrary
point on h. In code, this is

l e t d i s t h p =
H.V. d o t (H. normal h ) (H. P . sub p (H. o r i g h ) )

v a l d i s t : ’ a H. h −>’a H. P . p o i n t −>’a H.V.N. n=<fun>



We can see the delegation of duties – we ask the underlying vector
space representation for the computation of a dot product, and the
point presentation for the computation of “subtraction” of 2 points
(which returns a vector).

Hyperspheres A hypersphere is a generalization of circle and
sphere to any dimension. The implementation of a hypersphere is
quite similar to that of a hyperplane – both are defined in terms
of points, as we are interested in circumscribing spheres defined
by points on the circumference, rather than general spheres de-
fined by radius-center. Currently, the interface for hyperspheres is
less extensive than that for a hyperplane, but they have a number
of commonalities, as they are both orientable surface that can be
closed (hypersphere) or open (hyperplane). The interface exposes
functions for construction, and getting an arbitrary point on the hy-
persphere. From this one can provide generic implementations of
getting the center point, the content (volume), the “surface”, and
defining an in-sphere predicate. The formulas are much more com-
plicated than the formula for distance seen above, but nevertheless
all reduce to operations from layers below this one.

Simplex A simplex is a generalization of the concept of a tri-
angle to any dimension. The interface SIMPLEX provides function-
ality for construction of simplices, retrieval of vertices and faces,
and accessing neighbourhood information. Then one can generi-
cally build an is-inside predicate for testing whether a point is in-
side a simplex.

9. Methodology
We first demonstrate the bottom-up part of our methodology for
building code generators through a simple example. Although we
were sorely tempted to use the power function for this purpose (as
it actually demonstrates many of our ideas rather well), we will use
`1 vector norm instead.

9.1 Example: `1 norm
The simplest implementation is for a list of floats:

l e t rec norm = f u n c t i o n
| [ ] −> 0 .
| x : : xs −> a b s f l o a t x + . norm xs

v a l norm : f l o a t l i s t −> f l o a t = <fun>

We achieve the task of building a generator for the above func-
tion via the following six steps:

(1) Generalize the type of numbers. What we really need is
a ‘normed set’. Our “numbers” can come from an arbitrary set as
long as we have a function from that set into a commutative additive
monoid as the ’target’ of the norm function. Let us use NS for a
normed set, over a normed commutative monoid R. Then we can
write

l e t rec norm = f u n c t i o n
| [ ] −> NS . R . z e r o
| x : : xs −> NS . R . p l u s (NS . norm x ) ( norm xs )

v a l norm : NS . n l i s t −> NS . R . n = <fun>

(2) Staging norm. We now lift from the normed set type NS to a
staged version

l e t rec norm = f u n c t i o n
| [ ] −> St ag ed . o f i m m e d i a t e NS . R . z e r o
| x : : xs −> NS . R . p l u s s (NS . norm s x ) ( norm xs )

v a l norm : ’ a NS . ns l i s t −> ’ a NS . R . ns = <fun>

where we use the staged version of NS.R.plus and NS.norm.
(3) Parametrizing norm. The function norm is parametric in R.

By using a Functor, we can better express this parametricity. So we
can lift this to use a Functor:

module GenericNorm (NS : NORMED SET) =
s t r u c t

l e t rec norm = f u n c t i o n
| [ ] −> St ag ed . o f i m m e d i a t e NS . R . z e r o
| x : : xs −> NS . R . p l u s s (NS . norm s x ) ( norm xs )

end

(4) Abstracting the container. Vectors do not have to be repre-
sented by lists - any container which implements a fold will do. We
can repeat steps (1)-(3) above, but for the type of lists generalized
to any type with a fold. Since it is frequent to first do a ‘map’ then
a ‘fold’, an optimized version is provided. The most general code
would then be

module GenericNorm (NS : NORMED SET)
(C : FOLDABLE with t = R . n ) =

s t r u c t
l e t norm = C . mapfold (NS . norm s ) ( NS . R . p l u s s )

( S t ag ed . o f i m m e d i a t e NS . R . z e r o )
end

(5) Collecting variabilities. The generator GenericNorm has
two variabilities: the normed set, and the container. These variabil-
ities can be collected in the (module) type:

module type NORM VAR =
s i g

module NS : NORMED SET
module C : FOLDABLE with t = NS . n

end

which becomes the input for the generator.
(6) Building the generator. The generator, GenNorm, is defined

as:

module GenNorm (NV : NORM VAR) =
s t r u c t

l e t gen norm ( ) =
l e t module GP = GenericNorm (NV. NS ) (NV. C) in
.< fun x −> . ˜ ( S t a ge d . t o c o d e

(GP . norm ( S t ag ed . o f a t o m .<x > . ) ) ) >.
end

module GenNorm :
f u n c t o r (NV : NORM VAR) −>

s i g
v a l gen norm :

u n i t −> ( ’ a , NV. NS . n NV. C . t −> NV. NS . R . n ) code
end

The generator gen norm is put in a functor which takes as
input the module NV of variabilities. In other words, NV is the
configuration for the generator.

In fact, all of our containers are fixed-length. This is another
variability which can be exposed (but we have chosen not to do so
in this example to try to keep things relatively simple).

We can instantiate our norm function with different number type
implementations as well as different containers. If we choose say
Float Ring as our instantiation of a normed set (where floats are
elements of the set and floats are also used as the commutative
monoid), and a 2-tuple for the container, the result is:

.< fun x 1 −> a b s f l o a t ( f s t x 1 ) + .
( a b s f l o a t ( snd x 1 )) > .

Choosing IntegerRing and a 1 dimensional container represented
using a record (with single entry x), we get:

.< fun x 1 −> abs ( x 1 . x ) >.



The code has no traces of norm or mapfold. Furthermore, there
are no traces of the “zero” of the monoid, since it always occurs
statically and operations with it can always be optimized out at
generation time.

9.2 Aspects of the Methodology
The bottom-up aspects of our methodology are well-known in the
generic programming [30, 37] world. From pieces of working code,
one finds the minimal assumptions necessary for ensuring the oper-
ational semantics and the correctness properties, and then abstracts
out every other aspect. As shown above, this can frequently be done
incrementally. There are two difficult aspects of this task: recogniz-
ing the minimal assumptions, and abstracting out “the rest”. Rec-
ognizing minimal assumptions is a very mathematical endeavour,
which requires a thorough knowledge of abstract algebra, geome-
try, topology, etc. The abstracting step on the other hand is diffi-
cult because one must use the facilities available for abstraction in
the host programming language. Finding appropriate encodings of
structures to enable parametrization can be quite challenging in a
typed environment.

The top-down aspects were somewhat counter-intuitive to us,
when we first encountered them:

1. The code generation aspects need to be abstracted out first, and
integrated at the very base of the hierarchy.

2. Very abstract mathematical formulations help produce the best
code. Our reasoning here is that the abstract formulation cap-
tures the core knowledge of each concept. Once this is captured,
then it becomes quite clear where to put in particular optimiza-
tions (like algebraic simplifications), which are otherwise done
in an ad hoc manner.

3. More layers produces better code than fewer layers. In nor-
mal code, more layers produces slower programs – although it
does improve modularity. In the generative setting, more layers
helps expose more opportunities for attaching meta-knowledge
(in other words, static invariants), and they are then used for
generating better code.

4. Separating out operational concepts (like arrays) from mathe-
matical concepts (like matrices) is crucial. An array is really a
memory arrangement, while a matrix is a representation of a
linear operator with respect to a certain basis. The “natural” op-
erations on matrices have completely different interfaces than
those of arrays.

5. Separating out concepts (like points and vectors) that are usu-
ally stored the same way, but whose semantics is quite different.

There is a real tension between the bottom-up and the top-down
aspects of the methodology. For example, when we first attempted
what amounts to a pure bottom-up approach to “reverse engineer”
abstract mathematical structures from a collection of existing ge-
ometry kernels, we failed. This is because we did not, at that point,
know about geometric algebra. This was the key abstraction we
were missing to proceed. From that point on, we actively looked
for more such abstractions, and used them as appropriate.

10. Discussion
Here we discuss a few more items we learned while performing this
work.

10.1 Infrastructure
At first, the additional infrastructure seems rather heavyweight.
However the most complex parts are actually the bottom 3 layers,
and the upper layers end up actually being much simpler than
“normal”. This is because the code in the upper layers is essentially

identical to the abstract mathematical formulation of the concepts.
Furthermore, as more variabilities are added, the payoff becomes
increasingly clear, as the amount of extra effort necessary is very
small. And since these lower layers are quite generic, they should
be shared amongst any program families of scientific computation
software, thus lowering the overall development costs.

10.2 Linear algebra
We want to remark again that our linear algebra layer performs
all of its computations at generation-time. The computations per-
formed here are the generation of simplified closed-form expres-
sions for determinant expansions. This hints that other computa-
tions that are essentially symbolic computer algebra may become
an important part of code generators.

10.3 Eliminating Code Duplication
We already covered the generation of let bindings in section 4.3.
But it is easy to get the impression that this is a feature only used
in the lower layers, which is not at all the case. For example,
consider the function length for computing the Euclidean length
of a vector. For N a REALFIELD, a naive implementation of length
is:

l e t l e n g t h v = N. s q r t s ( d o t v v )

However, if v is an non-atomic expression, the resulting code will
contain duplications. We can do this via

l e t l e n g t h v = N. s q r t s ( l e t v ( fun x−>d o t x x ) )

which avoids the duplication.

10.4 Optimizations
By leveraging techniques originally developed for partial evalua-
tion, we are able to write a code generator that performs both con-
stant folding and constant propagation. By tracking which (code)
values are non-atomic, we can use known let-insertion techniques
to make sure that these computations are not duplicated. We do this
not only for “base” values, but also for compound data-structures
(like vectors), where the gain is even more noticeable4.

While many have implemented algebraic simplifications before
us, we believe that we have exploited the underlying mathematical
structures in a novel manner. In other words, rather than using
the mathematical structures only in (generally paper) proofs of the
correctness of our algebraic simplifications, we use the structures
directly in the code. This also serves to structure our own code, as
well as making these simplifications generic.

10.5 Future Work
While we achieved our goals with respect to what we set out to
learn, based on that knowledge, there are a number of items we
would like to do.

1. Expand the staging layer. Many refinements can be done in the
staging layer.

(a) Modifying the type staged to accommodate more complex
types such as staged pairs and records. In particular, apply
the techniques from [11].

(b) Employing the monadic techniques from [4], to improve the
generation of control structures, and let-bindings.

(c) Implementing more code optimizations such as loop un-
rolling and other code transformations from [5].

4 At the source code level. We encourage the reader to run the tests included
(directory ctest) in our distribution, and to inspect the generated code.



2. Expand the abstract algebra layer. For example, the current ab-
stractions do not differentiate between concepts such as divi-
sion rings and commutative rings. Such a finer set of abstrac-
tions will allow expressing the geometric algorithms in terms
as close as possible to the domain concepts and hence, reduce
the gap between program code and domain concepts. This will
also be reusable for many other projects.

3. Experiment with different geometric algebras. Affine algebra
is not the only choice of “geometric algebra.” Other algebras
should also be considered in future experiments. For example,
the algebra in [14] looks promising for handling different coor-
dinate systems.

4. Rework our implementation of mesh generation (not presented
here) to use our geometric kernel.

5. Determine how to best encode domain-specific constraints.
Some of these are implemented via types, while others are
done via generation-time values. The advantage of encoding
this information in the type system is that the compiler will
automatically track this for us; the disadvantage is that the re-
sulting error messages can be generously described as cryptic.
Using generation-time values requires more initial effort from
the generator-writer, but the benefit to the user of the generator
is that we can output precise, domain-specific error messages.

11. Related Work
Previous work on the geometric core of mesh generation and com-
putational geometry has focused on obtaining genericity, flexibility,
or performance, but rarely attempting all three simultaneously.

Simpson [38] presents an attempt to decouple mesh genera-
tors from the underlying geometry by using object-oriented pro-
gramming techniques to dynamically bind computations to dif-
ferent local coordinate representations. However, object-oriented
programming can introduce run-time overhead because of dy-
namic dispatch. XYZ GeoBench [35] offers a programming en-
vironment for implementing geometric algorithms by relying on
object-oriented programming and virtual functions to implement
genericity – for example their geometric algorithms are imple-
mented in an arithmetic-independent manner. However, here again,
the use of dynamic binding for achieving flexibility can result in
performance penalties. By avoiding dynamic dispatch, we believe
we can achieve the same level of genericity as these libraries, but
better performance.

LEDA [28] is a comprehensive library of data types and algo-
rithms focused on geometry. LEDA makes use of C++ templates to
achieve genericity. The library has a layered design that decouples
geometric algorithms from number types. The independence from
coordinate systems is achieved by having two sets of geometric
kernels: one for Cartesian coordinates, and another for the homo-
geneous coordinates. This duplication is a challenge to the exten-
sibility and maintainability of the overall library. Our current work
covers but a small fraction of their extensive library; however, we
believe our design will scale better than theirs. We also have the ad-
vantage of the stronger abstraction mechanisms available in OCaml
over those of C++.

Another large C++ library for geometry, also using templates
is CGAL [13]. They achieve extensibility by parametrizing each
geometric object by the geometric kernel type and the number
type. For vector mathematics, Blitz++ [46] pioneered many of the
C++ template meta-programming technologies used in LEDA and
CGAL. As with LEDA, we believe that our design and use of
OCaml’s abstraction mechanisms will allow us to scale further.

The work on using MetaOCaml for scientific computation has
already been cited several times throughout this paper.

Generative programming in the context of numeric computa-
tion has a very long history: the 1953 work of Kahrimanian [23] on
what is now called automatic differentiation is a personal favourite.
By 1972 (see for example the beautiful work of A. Norman [31] on
code generation for the solution of ODEs), the techniques were al-
ready quite advanced. Outside the C++ libraries already mentioned,
modern work would include FFTW [16] and Spiral [33].

12. Conclusion
Our eventual goal is to have a rich program family of mesh gen-
erators, implemented as a generator. Here we report on the foun-
dations of this, which is the implementation and design of a pro-
gram family of geometric kernels, implemented generatively, us-
ing typed meta-programming. By cleanly separating run-time from
generation-time, we are able to create a much more modular pro-
gram family (for geometry) than has previously been done, without
paying the abstraction cost associated with traditional modularity
mechanisms. More precisely, the source code which we obtain from
our generator is comparable to the human-written source code for
the same specialized situation.

We believe that typed generative programming is relatively suc-
cessful for the implementation of program families because it al-
lows extremely modular code as well as the use of advanced ab-
straction techniques (in the generator) without sacrificing efficiency
of the generated code. It does impose an extra burden on the gen-
erator writer: being conversant with a level of abstract mathematics
that is not commonly seen in computer science education. There
is also an extra design effort consisting in capturing some invari-
ants (like being either “atomic” or a computation) which are only
obvious post-facto. But, in the end, since the generator’s higher lay-
ers are based on abstractions that are natural to the domain itself,
we believe this makes correctness much easier to verify, as well as
improving maintainability.

Furthermore, for well-understood domains, we have developed
a methodology for writing (typed) generators based on leveraging
the most abstract mathematical formalization of that domain for
structuring modules. As this methodology is compatible with the
successive generalization of existing code, it can be applied to
existing (OCaml) codes.
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