Understanding Expression Simplification

Jacques Carette
McMaster University

July 5, 2004
Motivation

What is simpler?

\[0 \quad \mid (x + 3)^3 - x^3 - 9x^2 - 27x - 27 \]
Motivation

What is simpler?
0
1 + \sqrt{2}

\(\frac{(x + 3)^3 - x^3 - 9x^2 - 27x - 27}{\sqrt[3]{7 + 5\sqrt{2}}} \)
Motivation

What is simpler?

<table>
<thead>
<tr>
<th>0</th>
<th>$(x + 3)^3 - x^3 - 9x^2 - 27x - 27$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1 + \sqrt{2}$</td>
<td>$\sqrt[3]{7 + 5\sqrt{2}}$</td>
</tr>
<tr>
<td>9</td>
<td>$4 + 2 + 1 + 1 + 1 + 1$</td>
</tr>
</tbody>
</table>
Motivation

What is simpler?

<table>
<thead>
<tr>
<th>0</th>
<th>((x + 3)^3 - x^3 - 9x^2 - 27x - 27)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 + \sqrt{2})</td>
<td>(\sqrt[3]{7 + 5\sqrt{2}})</td>
</tr>
<tr>
<td>9</td>
<td>(4 + 2 + 1 + 1 + 1)</td>
</tr>
<tr>
<td>(2^{20} - 1)</td>
<td>(\ldots)</td>
</tr>
</tbody>
</table>
Motivation

What is simpler?

<table>
<thead>
<tr>
<th></th>
<th>((x + 3)^3 - x^3 - 9x^2 - 27x - 27)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\sqrt[3]{7 + 5\sqrt{2}})</td>
</tr>
<tr>
<td>(1 + \sqrt{2})</td>
<td>(4 + 2 + 1 + 1 + 1)</td>
</tr>
<tr>
<td>9</td>
<td>...</td>
</tr>
<tr>
<td>(2^{220} - 1)</td>
<td>...</td>
</tr>
<tr>
<td>(\text{ChebyshevT}(10000, x))</td>
<td>...</td>
</tr>
</tbody>
</table>
Motivation

What is simpler?

\[
\begin{align*}
0 & \quad (x + 3)^3 - x^3 - 9x^2 - 27x - 27 \\
1 + \sqrt{2} & \quad \frac{3}{\sqrt[3]{7 + 5\sqrt{2}}} \\
9 & \quad 4 + 2 + 1 + 1 + 1 \\
2^{2^{20}} - 1 & \quad \ldots \\
\text{ChebyshevT}(10000, x) & \quad \ldots \\
\text{ChebyshevT}(5, x) & \quad 16x^5 - 20x^3 + 5x
\end{align*}
\]
Motivation

What is simpler?

0
1 + \sqrt{2}
9
2^{2^{20}} - 1
ChebyshevT(10000, x)
ChebyshevT(5, x)
1

\[(x + 3)^3 - x^3 - 9x^2 - 27x - 27 \]
\[\sqrt[3]{7 + 5\sqrt{2}} \]
\[4 + 2 + 1 + 1 + 1 \]
\[\ldots \]
\[\ldots \]
\[16x^5 - 20x^3 + 5x \]
\[\frac{x-1}{x-1} \]
Informal Definition

Definition 1 An expression A is simpler than an expression B if

- in all contexts where A and B can be used, they mean the same thing, and

- the length of the description of A is shorter than the length of the description of B.
Informal Definition

Definition 1 An expression A is simpler than an expression B if

- in all contexts where A and B can be used, they *mean the same thing*, and
- the length of the description of A is shorter than the length of the description of B.
Informal Definition

Definition 1 An expression A is simpler than an expression B if

- in all contexts where A and B can be used, they mean the same thing, and

- the length of the description of A is shorter than the length of the description of B.
Informal Definition

Definition 1 An expression A is simpler than an expression B if

- in all contexts where A and B can be used, they mean the same thing, and

- the length of the description of A is shorter than the length of the description of B.
Kolmogorov Complexity

Basic idea: the complexity of a string is the length of the shortest Turing machine which writes exactly that string on output and halts.
Kolmogorov Complexity

Basic idea: the complexity of a string is the length of the shortest Turing machine which writes exactly that string on output and halts.

Definition 2 For a given universal Turing machine ϕ, the complexity C_ϕ of x conditional to y is defined by

$$C_\phi(x|y) = \min\{\text{length}(p) : \phi(\langle y, p \rangle) = x\},$$
Kolmogorov Complexity

Basic idea: the complexity of a string is the length of the shortest Turing machine which writes exactly that string on output and halts.

Definition 2 For a given universal Turing machine ϕ, the complexity C_ϕ of x conditional to y is defined by

$$C_\phi(x|y) = \min\{\text{length}(p) : \phi(\langle y, p \rangle) = x\},$$

This is universal in the following exact sense:

Theorem 1 (Kolmogorov) For all universal Turing machines ψ and ϕ,

$$|C_\psi(y|x) - C_\phi(y|x)| \leq c_{\psi,\phi}$$
Kolmogorov Complexity

We fix a universal Turing machine ϕ, and then

Definition 3 The (unconditional) *Kolmogorov Complexity* $C(x)$ of a string x is $\phi(x|\epsilon)$.
Kolmogorov Complexity

We fix a universal Turing machine ϕ, and then

Definition 3 The (unconditional) *Kolmogorov Complexity* $C(x)$ of a string x is $\phi(x|\epsilon)$.

Problems:

- $C(x)$ is not computable!
Kolmogorov Complexity

We fix a universal Turing machine ϕ, and then

Definition 3 The (unconditional) *Kolmogorov Complexity* $C(x)$ of a string x is $\phi(x|\epsilon)$.

Problems:

- $C(x)$ is not computable! But it is approximable
Kolmogorov Complexity

We fix a universal Turing machine \(\phi \), and then

Definition 3 The (unconditional) *Kolmogorov Complexity* \(C(x) \) of a string \(x \) is \(\phi(x|\epsilon) \).

Problems:

- \(C(x) \) is not computable! But it is approximable
- KC is an asymptotic theory
Minimum Description Length (MDL)

KC can be rewritten as

\[
C(x) = \min_{p,y} \text{length}(p) + \text{length}(y) \quad \text{where} \quad \phi \text{ is a universal interpreter, } p \text{ is a program and } y \text{ is a binary string. } p \text{ is a model for the regularities in } x.
\]
Minimum Description Length (MDL)

KC can be rewritten as

\[C(x) = \min_{p,y \mid \phi(p)(y)=x} \text{length}(p) + \text{length}(y) \]

where \(\phi \) is a universal interpreter, \(p \) is a program and \(y \) is a binary string. \(p \) is a model for the regularities in \(x \).

Instead of minimizing over all programs (models), MDL fixes an effectively enumerable class of models \(\mathcal{M} \) over which to minimize.
Biform Theories

• **A biform theory** is a triple \(T = (K, L, \Gamma) \) where:
 - \(K \) is an admissible background logic
 - \(L \) is a language of \(K \)
 - \(\Gamma \) is a set of formuloids of \(L \) called the **axiomoids** of \(T \)

• The axiomoids are used to specify:
 - The basic objects and concepts of \(T \)
 - The basic deduction and computation rules of \(T \)

• \(T \) can be viewed as being simultaneously an **algorithmic theory** and an **axiomatic theory**. Many more details in the paper and references.
Formuloids

• A **formuloid** is a pair $\theta = (\Pi, M)$ where:
 – Π is a transformer from L to L
 – M is a function that maps each $E \in \text{dom}(\Pi)$ to a formula of L

• M is intended to give the **meaning** of applying Π to an expression E
 – For many formuloids, $M(E)$ is $E = \Pi(E)$
 – The **span** of θ is: $\{M(E) \mid E \in \text{dom}(\Pi)\}$

• The **algorithmic meaning** of θ is its transformer

• The **axiomatic meaning** of θ is its span
Biform Theories for simplification

A biform theory T suitable for simplification satisfies:

- the language L contains the syntactic representation of a Turing complete programming language,
Biform Theories for simplification

A biform theory T suitable for simplification satisfies:

- the language L contains the syntactic representation of a Turing complete programming language,
- there exists a total length function $\text{length} : L \rightarrow \mathbb{N}$ compatible with the subexpression relation,
Biform Theories for simplification

A biform theory T suitable for simplification satisfies:

- the language L contains the syntactic representation of a Turing complete programming language,
- there exists a total length function $\text{length} : L \rightarrow \mathbb{N}$ compatible with the subexpression relation,
- all formuloids $\theta = (\Pi, M)$ are such that the function M is expressible in L,
Biform Theories for simplification

A biform theory T suitable for simplification satisfies:

- the language L contains the syntactic representation of a Turing complete programming language,
- there exists a total length function $\text{length} : L \rightarrow \mathbb{N}$ compatible with the subexpression relation,
- all formuloids $\theta = (\Pi, M)$ are such that the function M is expressible in L,
- Γ is finite, and the domains of the axiomoids of Γ are finitely representable,
Biform Theories for simplification

A biform theory T suitable for simplification satisfies:

- the language L contains the syntactic representation of a Turing complete programming language,
- there exists a total length function $\text{length} : L \rightarrow \mathbb{N}$ compatible with the subexpression relation,
- all formuloids $\theta = (\Pi, M)$ are such that the function M is expressible in L,
- Γ is finite, and the domains of the axiomoids of Γ are finitely representable,
- Γ always contains at least the axiomoid corresponding to the identity transformer,
Biform Theories for simplification

A biform theory T suitable for simplification satisfies:

- the language L contains the syntactic representation of a Turing complete programming language,
- there exists a total length function $\text{length} : L \rightarrow \mathbb{N}$ compatible with the subexpression relation,
- all formuloids $\theta = (\Pi, M)$ are such that the function M is expressible in L,
- Γ is finite, and the domains of the axiomoids of Γ are finitely representable,
- Γ always contains at least the axiomoid corresponding to the identity transformer,
- we are given an equivalence relation \sim on L, which is interpreted as a means the same thing as relation.

Such theories are called reflexive.
Consider a lattice \mathcal{T} of reflexive theories, where meet and join are given by intersection and union of sets of axiomoids, with the additional restriction that if $\Gamma_i \subseteq \Gamma_j$ then T_j must be a conservative extension of T_i.
Length in context

Consider a lattice \mathcal{I} of reflexive theories, where meet and join are given by intersection and union of sets of axiomoids, with the additional restriction that if $\Gamma_i \subseteq \Gamma_j$ then T_j must be a conservative extension of T_i.

Given an expression e of L, let theory(e) be the smallest theory T_i of \mathcal{I} such that $e \equiv e$ is a theorem of T_i. This is not trivial – $\frac{1}{0} = \frac{1}{0}$ is usually not a theorem!
Length in context

Consider a lattice \mathfrak{T} of reflexive theories, where meet and join are given by intersection and union of sets of axiomoids, with the additional restriction that if $\Gamma_i \subseteq \Gamma_j$ then T_j must be a conservative extension of T_i.

Given an expression e of L, let $\text{theory}(e)$ be the smallest theory T_i of \mathfrak{T} such that $e = e$ is a theorem of T_i. This is not trivial – $\frac{1}{0} = \frac{1}{0}$ is usually not a theorem!

Given a transformer $\Theta = (\Pi, M)$ such that $e \sim M(e)$, $\text{theory}(e, \Pi)$ is the smallest theory such that $e = \Pi(e)$ is a theorem.
Consider a lattice \mathcal{I} of reflexive theories, where meet and join are given by intersection and union of sets of axiomoids, with the additional restriction that if $\Gamma_i \subseteq \Gamma_j$ then T_j must be a conservative extension of T_i.

Given an expression e of L, let $\text{theory}(e)$ be the smallest theory T_i of \mathcal{I} such that $e \equiv e$ is a theorem of T_i. This is not trivial – $\frac{1}{0} = \frac{1}{0}$ is usually not a theorem!

Given a transformer $\Theta = (\Pi, M)$ such that $e \sim M(e)$, $\text{theory}(e, \Pi)$ is the smallest theory such that $e \equiv \Pi(e)$ is a theorem.

$$\text{length}_{\mathcal{I}}(e) = \text{length}(e) + \text{length}(\text{theory}(e))$$
Simplifying

Given a reflexive theory lattice \mathcal{T} and a recursively enumerable sequence of transformers $\langle \Pi_1, \Pi_2, \ldots \rangle$ which are all known to preserve equivalence, then simplify$(e) = e_i$ such that length$_\mathcal{T}(e_i)$ is minimal amongst all $e_j = \Pi_j(e)$.
Simplifying

Given a reflexive theory lattice \mathcal{T} and a recursively enumerable sequence of transformers $\langle \Pi_1, \Pi_2, \ldots \rangle$ which are all known to preserve equivalence, then $\text{simplify}(e) = e_i$ such that $\text{length}_{\mathcal{T}}(e_i)$ is minimal amongst all $e_j = \Pi_j(e)$.

Intuitively, this means that an expression is considered short only if it itself is relatively short, but that also the description of the theory behind that expression is also short.
Simplifying

Given a reflexive theory lattice \mathcal{F} and a recursively enumerable sequence of transformers $\langle \Pi_1, \Pi_2, \ldots \rangle$ which are all known to preserve equivalence, then $\text{simplify}(e) = e_i$ such that $\text{length}_{\mathcal{F}}(e_i)$ is minimal amongst all $e_j = \Pi_j(e)$.

Intuitively, this means that an expression is considered short only if it itself is relatively short, but that also the description of the theory behind that expression is also short.

More concretely, this says that if your base theory is that of expanded polynomials, but you also have a theory of terminating hypergeometrics built on top of that, then you will prefer expanded polynomials for “small” degrees, and eventually will prefer to see a hypergeometric expression instead.
Examples and magic numbers

Example 1 When is the expression 2^n (for $n > 0$ integer) simpler than the integer 2^n?
Examples and magic numbers

Example 1 *When is the expression* 2^n *for* $n > 0$ *integer* *simpler than the integer* 2^n?
Using a self-delimiting binary encoding, then in the same theory, whenever $n > 7$.

Examples and magic numbers

Example 1 When is the expression 2^n (for $n > 0$ integer) simpler than the integer 2^n?
Using a self-delimiting binary encoding, then in the same theory, whenever $n > 7$.

Example 2 When is the expression $\text{ChebyshevT}(n, x)$ simpler than the corresponding expanded polynomial, where T consists of the theory T_1 of expanded polynomials and the conservative extension T_2 defining Chebyshev polynomials?
Examples and magic numbers

Example 1 When is the expression 2^n (for $n > 0$ integer) simpler than the integer 2^n?
Using a self-delimiting binary encoding, then in the same theory, whenever $n > 7$.

Example 2 When is the expression ChebyshevT(n, x) simpler than the corresponding expanded polynomial, where \mathcal{Y} consists of the theory T_1 of expanded polynomials and the conservative extension T_2 defining Chebyshev polynomials?
Using a self-delimiting binary encoding, then whenever $n > C$ where

$$C = \frac{1}{2} \sqrt{2ba} \sqrt{W_{-1}(\frac{2a}{b} \exp -2c/b)} \tag{1}$$

and a depends on the encoding of constants in T_1, b on the difference of encoding constants in T_1 and T_2, and c is essentially length$_{\mathcal{Y}}(T_2) -$ length$_{\mathcal{Y}}(T_1)$.
Implementation

This is not quite how it is done in Maple...
Implementation

This is not quite how it is done in Maple... but it is not incompatible!
Implementation

This is not quite how it is done in Maple... but it is not incompatible!

compSeq, constants, infinity, @@, @, limit, Limit, max, min, polar, conjugate, D, diff, Diff, int, Int, sum, Sum, product, Product, RootOf, hypergeom, pochhammer, Si, Ci, LerchPhi, Ei, erf, erfc, LambertW, BesselJ, BesselY, BesselK, BesselI, polylog, dilog, GAMMA, WhittakerM, WhittakerW, LegendreP, LegendreQ, InverseJacobi, Jacobi, JacobiTheta, JacobiZeta, Weierstrass, trig, arctrig, ln, radical, sqrt, power, exp, Dirac, Heaviside, piecewise, abs, csgn, signum, rtable, constant
Further work

Two conjectures:

- LLL is a global MDL minimizer
Further work

Two conjectures:

- LLL is a global MDL minimizer
- PSQL and Hermite-Pade are local MDL minimizers.