
Noname manuscript No.
(will be inserted by the editor)

Building on the Diamonds between Theories: Theory
Presentation Combinators

Jacques Carette ⋅ Russell O’Connor ⋅ Yasmine
Sharoda

Received: date / Accepted: date

Abstract To build large libraries of mathematics, it seems more promising to take advan-
tage of the inherent structure of mathematical theories. Various theory presentation combi-
nators have been proposed, some have been implemented in specification systems but not
in interactive theorem provers. Even in systems that implement such features, they seem
under-used in their own standard libraries.

Inspired by combinators originating in Clear and Specware and their descendents (both
direct and intellectual), we present variants of these combinators optimized for building
libraries in the setting of interactive theorem provers over dependent type theories. The main
technical contribution is that our combinators draw their power from the inherent structure
already present in the category of contexts associated to a dependently typed language. We
have also implemented the system.

Keywords Mechanized mathematics, theories, combinators, dependent types

1 Introduction

The usefulness of a mechanized mathematics system relies on the availability of a large
library of mathematical knowledge, built on top of sound foundations. While sound foun-
dations contain many interesting intellectual challenges, building a large library seems a
daunting task simply because of its sheer volume. However, as has been documented [14,
18,37], there is a tremendous amount of redundancy in existing libraries. Thus there is some
hope that by designing a good meta-language, we can reduce the effort needed to build a
library of mathematics.

J. Carette
Department of Computing and Software, McMaster University, Hamilton, Ontario, Canada,
E-mail: carette@mcmaster.ca ORCiD: 0000-0001-8993-9804

R. O’Connor
Blockstream.com,
E-mail: roconnor@theorem.ca

Y. Sharoda
Department of Computing and Software, McMaster University, Hamilton, Ontario, Canada,
E-mail: sharodym@mcmaster.ca

2 Jacques Carette et al.

Our aim is to build tools that allow library developers to take advantage of commonali-
ties in mathematics so as to build a large, rich library for end users, whilst expending much
less actual development effort than in the past. Our means are not in themselves new: combi-
nators for combining theories, with a clear categorical semantics. The design space is large
and complex and has been explored for decades. We survey the related work in Section 8.
What is new is that we leverage the surrounding structure already present in dependent type
theories, to help us decide which combinators to focus on as they are, in some sense, already
present. Using combinators in the setting of interactive theorem proving for Martin-Löf Type
Theory is also new. Lastly, we squarely target system developers rather than casual users.

These combinators, as well as creating new theories, also build a graph of theories
connected by theory morphisms. These make it easy to transport results between theories,
thereby increasing automation [30]. This also represents the continuation of our work on
High Level Theories [13] and Biform Theories [15] through building a network of theo-
ries, leveraging what we learned through previous experiments [14]. We have done several
prototype implementations, with three prototypes [19,3,67] that really allowed us to better
understand the design space. We also have a solid version [16] that is publicly available1.

1.1 The Context

Magma

Semigroup

Pointed Semigroup

Monoid

AdditiveMonoid

Fig. 1 Theories

Why would the development of mathematical libraries be differ-
ent than other software, i.e. why would there be effort saving tech-
niques that are generally not worth seeking [9]? Because we know
since Whitehead’s 1898 text “A treatise on universal algebra” [79]
that significant parts of mathematics have a lot of structure, struc-
ture which we can take advantage of. The Jipsen’s [50] list of 342
structures is both impressively large and can still be greatly ex-
tended. Another beautiful source of structure in a theory graph is
that of modal logics; Halleck’s web pages on Logic System Inter-
relationships [40] is quite eye opening.

Figure 1 is a common picture of the situation, where arrows
denote extensions. Strict inclusions at the level of presentations is
only part of the structure: a Ring actually contains two isomorphic
copies of Monoid, where the isomorphism is given by a simple
renaming. There are further commonalities to take advantage of,

which we will explain later. However, the natural structure is not linear but full of diamonds,
as in Figure 2. In Computer Science, this is known as multiple inheritance and the diamonds
in inheritance graphs are much feared, giving rise to The Diamond Problem [7,26,81], or
fork-join inheritance [68]. In our setting, we will find that these diamonds are a blessing
rather than a curse, because they give theory-level sharing information, rather than being
related to dynamic-dispatch. Tom Hales [39, point # 9] is unhappy that Lean does not permit
this (neither do Coq [77], Agda [60] or Idris [8]).

But is there sufficient structure outside of universal algebra, i.e. single-sorted equational
theories, to make it worthwhile to develop significant infrastructure to leverage that struc-
ture? There is: generalized algebraic theories [21] are a rich source, which encompasses
categories, bicategories, functors, etc. as examples.

1 https://github.com/ysharoda/tog

Building on the Diamonds between Theories: Theory Presentation Combinators 3

Pointed0

Carrier Pointed

Magma+ PointedMagma+ RightUnital+

Magma PointedMagma RightUnital

Semigroup+ LeftUnital+ Unital+

Semigroup LeftUnital Unital

Monoid+

Monoid

Fig. 2 Structure of the algebraic hierarchy up to Monoids

We note that in practice, when mathematicians are using theories rather than developing
new ones, they tend to work in a rather “flat” namespace [13]. An analogy: someone working
in Group Theory will unconsciously assume the availability of all concepts from a standard
textbook, with their usual names and meanings. As their goal is to get some work done,
whatever structure system builders have decided to use to construct their system should not
leak into the application domain. They may not be aware of the existence of pointed semi-
groups, nor should that awareness be forced upon them. Thus we need features that “flatten”
a theory hierachy for some classes of end users. On the other hand, some application do-
mains do rely on the “structure of theories”, so we cannot unilaterally hide this structure
from all users either.

1.2 Contributions

This paper is a substantial rewrite of [20], where a variant of the category of contexts was
used as our setting for theory presentations. There we presented a simple term language
for building theories, along with two (compatible) categorical semantics, one in terms of
objects, another in terms of morphisms. By using “tiny theories”, this allowed reuse and
modularity. We emphasized names, as the objects we are dealing with are syntactic and
ultimately meant for human consumption. We also emphasized morphisms: while this is
categorically obvious, nevertheless the current literature is largely object-centric.

We extend the work in multiple ways. We pay much closer attention to the structure
already present in the categorical semantics of dependent type theories. In particular, we ex-
tend our semantics to a fibration of generalized extensions over contexts. This is not straight-
forward: not clobbering users’ names prevents us from having a cloven fibration without a
renaming policy. But once this machinery is in place, this allows us to build presentations
by lifting morphisms over embeddings, a very powerful mechanism for defining new pre-
sentations. There are obstacles to taking the “obvious” categorical solutions: for example,
having all pullbacks would require that the underlying type theory have subset types, which
is something we do not want to force. This is why we insist on having users provide an ex-
plicit renaming, so that they remain in control of the names of their concepts. Furthermore,
equivalence of terms needs to be checked when constructing mediating morphisms, which

4 Jacques Carette et al.

in some settings may have implications for the decidability of typechecking. We also give
complete algorithms as well as a type system.

While we are far from the first to provide such combinators, our requirements are suffi-
ciently different than previous work, that we arrive at a different solution in this large design
space, driven by what we believe to be an elegant semantics.

1.3 Plan of paper

We motivate our requirements through concrete examples in Section 2. Section 3 lays out
the basic (operational) theory, with concrete algorithms. The theoretical foundations of our
work, the fibered category of contexts, is presented in full detail in Section 4, along with
the motivation for why we chose to present our semantics categorically. This allow us in
Section 5 to formalize a language for theory presentation combinators and present a type
system for it. We close with some examples, discussion, related work and conclusions in
Sections 6–9.

2 Motivation

The motivation for combinators is clear and we will not repeat it. As we want slightly dif-
ferent behaviour than other systems, we give a quick introduction to each, informally. Here,
we use an informal syntax which should be understandable to someone with a background
in mathematics and type theory; section 5 will formalize everything. We highlight the is-
sues that arise with the “intuitive” combinators when we try to use them at scale. This helps
to establish our requirements for a sound solution. This coherent semantics (developed in
Sections 3 and 4) will then lead us to rebuild our formal language, including its syntax,
in Section 5. After introducing the combinators, we proceed to present some of our design
decisions.

Our perspective is that of system builders. In particular, it is imperative that we respect
the syntactic choices of users, even when these choices are not necessarily semantically
relevant. In other words, for theory presentations, de Bruijn indices (for example) are unac-
ceptable, but so are generated names.

2.1 Overview of Combinators

Note that we use the term “combinator” where others might have used “construction”. And
indeed, what we present below are algorithmic constructions that take a presentation, per-
haps encoded as an algebraic data type, and produce another presentation in the same lan-
guage.

2.1.1 Extension

The simplest situation is where the presentation of one theory is included, verbatim, in
another. Concretely, consider Monoid and CommutativeMonoid, which differ only by a
commutative axiom. Thus, given Monoid, it would be much more economical to define

CommutativeMonoid ≜ Monoid extended by {commutative ∶ ∀x,y ∶U.x○y = y○x}

Building on the Diamonds between Theories: Theory Presentation Combinators 5

Note that some systems implement this literally, where Monoid is included in CommutativeMonoid.
While this can be implemented by just appending a new axiom, semantic validity requires
checking that the new name is indeed new and that the new type (here the commutativity
axiom) is well-typed in the context of the previous definitions.

2.1.2 Renaming

From an end-user perspective, our CommutativeMonoid has one flaw: these are frequently
written additively rather than multiplicatively. Let us call a commutative monoid written
additively an AdditiveCommMonoid. Thus we would like to say

AdditiveCommMonoid ≜ CommutativeMonoid[○↦ +, e↦ 0]

But how are AdditiveCommMonoid and CommutativeMonoid related? Traditionally, these
are regarded as equal, for semantic reasons. However, since we are dealing with presenta-
tions, we wish to regard them as isomorphic rather than equal2 . While working up to ex-
plicit isomorphism is a minor inconvenience for the semantics, this enables us to respect
user choices in names.

Note that many theorem proving systems do not have a renaming facility and indeed
their libraries often contain both additive and multiplicative monoids that are inequivalent
(for example, Lean’s library does this as of September 2020). This makes using the Little
Theories method [30] less useful.

2.1.3 Combination

Using these features, starting from Group we might write

CommutativeGroup ≜ Group extended by {commutative ∶ ∀x,y ∶U.x○y = y○x}

which is problematic: we lose the relationship that every commutative group is also a com-
mutative monoid, and introduce needless duplication. In other words, we reduce our ability
to transport results “for free” to other theories and must prove that these results transport,
even though the morphism involved is (essentially) the identity. We need a feature to express
sharing. Taking a cue from previous work, we might want to say

CommutativeGroup ≜ combine CommutativeMonoid, Group over Monoid

This can be read as saying that Group and CommutativeMonoid are both “extensions” of
Monoid where CommutativeGroup is formed by the union (amalgamated sum) of those ex-
tensions. In other words, by over, we mean to have a single copy of Monoid, to which we
add the extensions necessary for obtaining CommutativeMonoid and Group. This implicitly
assumes that our two Monoid extensions are meant to be orthogonal, in some suitable sense.

Unfortunately, while this “works” to build a sizeable library (say of the order of 500
concepts), it is nevertheless brittle. By combine, we really mean pushout. But a pushout
is an operation defined on 2 morphisms (and implicitly 3 objects); our syntax gives the 3
objects and leaves the morphisms implicit. Can we infer the morphisms and prove that they
are uniquely determined? Unfortunately not: these morphisms are (in general) impossible to
infer, especially in the presence of renaming. As mentioned previously, there are two distinct
morphisms from Monoid to Ring, with neither being “better” or somehow more canonical

2 Univalent Foundations [78] does not change this, as we can distinguish the two, as presentations.

6 Jacques Carette et al.

than the other. In other words, even though our goal is to produce theory presentations,
using pushouts as a fundamental building block gives us no choice but to take morphisms
seriously.

2.1.4 Mixin

There is one last annoying situation:

LeftUnital ≜ PointedMagma extended by {leftIdentity ∶ ∀x ∶U.e○x = x}

RightUnital ≜ PointedMagma extended by {rightIdentity ∶ ∀x ∶U.x○e = x}

Unital ≜ combine LeftUnital, RightUnital over PointedMagma

The type of rightIdentity arises from flipping the arguments to ○. Can we capture this
transformation and automate it? We will call this “mixin” as this construction bears a strong
resemblance to that of mixins in programming languages with traits.

2.2 Morphisms

Our constructions also describe how the symbols of the source theory can be mapped into
expressions of the target theory. For extensions, this is an injective map. In other words,

CommutativeMonoid ≜ Monoid extended by {commutative ∶ ∀x,y ∶U.x○y = y○x}

lets us see a Monoid inside a CommutativeMonoid. More explicitly, this means a definition
of all symbols all symbols of Monoid in terms of those in CommutativeMonoid:

MtoCM ≜[U↦ U,○↦ ○,e↦ e,

right identity↦ right identity,left identity↦ left identity,

associative↦ associative] ∶ Monoid⇒ CommutativeMonoid

which is a tedious way of writing out the identity morphism. Display maps [48] express the
same idea but focus on what is to be dropped: MtoCM ≜ δcommutative.

A renaming is a bijection on names.

{V ∶ Type} { ? ∶ Type}

{U ∶ Type} {W ∶ Type}

[V ↦ ?]

[U ↦V]

[U ↦W]

[W ↦ ?]

Fig. 3 The need for choosing names when combin-
ing theories.

Combine Combinations create morphisms
too but unfortunately choosing names for
symbols in the resulting theory (when there
are clashes) can be a problem: there are
simple situations where there is no canon-
ical name for some of the objects in the
result. For example, take the presentation
of Carrier, aka {U ∶ Type} and the mor-
phisms induced by the renamings U ↦ V
and U ↦W ; while the result will necessar-
ily be isomorphic to Carrier, there is no
canonical choice of name for the end result.
This is one problem we must solve. Fig-
ure 3 illustrates the issue. Thus we need to

Building on the Diamonds between Theories: Theory Presentation Combinators 7

compute amalgamated sums and not sim-
ply syntactic union. As the names U , V and
W are assumed to be meaningful to the user, we do not wish to gensym a fresh name to
replace the ? in Figure 3. This would give a valid pushout but it is not a good idea to in-
vent names for concepts that ought be be both meaningful and allow further compositional
extensions.

These 3 combinators suffice to build a fairly sizable library [14]. Extensions are used to
introduce new symbols and concepts, renames to ensure the “usual” name is used in context,
and then larger theories are built up using combine. For instance, our library defines a binary
operator only once, and renamed to the usual names used in context in mathematics.

General morphisms We can give morphisms explicitly as well. These can be written as
a sequence of assignments of valid terms of Q for each symbol of P, of the right type. For
example, one can witness that the additive naturals numbers form a monoid (i.e. a morphism
from Monoid to Nat) by showing how to define the symbols of Monoid in terms of those of
Nat:

view Nat as Monoid via [U ↦N,○↦ +N,e↦ 0, ...] (1)

where we elide the proofs. Note that while the above looks like a rename, it is not as the
right hand sides are defined, well-typed terms. When a general morphism is valid in the
empty context, it is akin to instances in Haskell, where a Haskell class is akin to a theory
presentation. A similar analogy holds for signatures and structures in Ocaml and Standard
ML, as well as traits and instances in Scala.

General morphisms do not have to be to the empty context. For example, we can have a
morphism from Magma to itself which maps the binary operation to its opposite:

{
U ∶ Type

○ ∶ U →U →U } {
U ∶ Type

○ ∶ U →U →U }
[U ↦ U,○↦ λxy ⋅y○x] (2)

2.3 Little Theories

An important observation is that contexts of a type theory (or a logic) contain the same
information as a theory presentation. Given a context, theorems about specific structures
can be constructed by transport along theory morphisms [30]. For example, in the context
of the definition of Monoid, we can prove that the identity element, e, is unique:

∀e′ ∶U.((∀x.e′ ○x = x)∨(∀x.x○e′ = x))→ e′ = e

In order to apply this theorem in other contexts, we can provide a theory morphism from
one presentation to another. There are two natural morphisms from Monoid to Semiring,
induced by the renamings [○↦ +, e↦ 0] and [○↦ ×, e↦ 0]. Both of these can be used
to transport our example theorem to prove that 0 and 1 are the unique identities of their
respective associated binary operations.

There are also many more morphisms; for example, we could send (○) to λx,y ∶U.y○x.
Thus, in general, we cannot infer morphisms as there are simply too many non-canonical
choices. We also do not want to have to write out all morphisms in explicit detail, as the
example of δcommutative shows.

8 Jacques Carette et al.

2.4 Tiny Theories

Previous experiments [14] convinced us that for scaling it was best to use tiny theories,
i.e. adding a single concept in at a time. This is useful both for defining pure signatures
(presentations with no axioms) as well as when defining properties such as commutativity.
First, one defines the smallest typing context in which the property can be stated, then use
combine (and appropriate renames) to insert it into larger theories. Figure 2 is representative
of the actual kinds of graphs we get when using tiny theories systematically.

Note that we did not need general morphisms: the ones we needed were combinations
of morphisms induced by extensions and renamings.

Nevertheless, whether tiny theories are used or not, when we want to work with a Group,
we do not really care about the details of how the library developers constructed it. In par-
ticular, we might never have heard of Monoid or Semigroup, never mind Magma, yet the user
should still be able to use and understand Group. This is not the case for other approaches,
such as the hierarchy in Agda [1], Lean [25] or Coq [34,72]. Furthermore, if library de-
velopers change their mind, this should not cause any downstream problems. When one of
the authors added Magma to the Algebra hierarchy of Agda, this caused incompatibilities
between versions of the standard library. Similar problems happened in the Haskell ecosys-
tem when the Functor-Applicative-Monad proposal [80] was adopted, which introduced
Applicative in between Functor and Monad.

2.5 Induced Requirements

We assemble the issues documented above into a set of requirements for combinators.
First, we need to have a setting in which extensions, renamings and combinations make

sense. We will need to pay close attention to names, both to allow user control of names and
prevent accidental collisions. To be able to maintain human-readable names for all concepts,
we will put the burden on the library developers to come up with a reasonable naming
scheme, rather than to necessarily push that issue onto end users. Symbol choice carries
a lot of intentional and contextual information which is commonly used in mathematical
practice.

As different kinds of morphisms induced by name permutations, extenstions, etc have
different properties, tracking these can greatly simplify their use and re-use. We need a
lightweight syntax where easily inferred information can be omitted in common usage. For
example, we earlier tried to provide an explicit base theory over which combine can work;
this works whenever there is a unique injection from the base theory into the extensions.
While this is frequently the case, this is not always so. Thus we need to be able to be explicit
about which injection we mean. A common workaround [65,66] is to use long and/or qual-
ified names that “induce” injections more often, but this still does not scale. Much worse,
this has the effect of leaking the details of how a presentation was constructed into the
names of the symbols of the new presentation, which prevents later refinements, as all these
names would change. As far as we can tell, any automatic naming policy will suffer from
this problem, which is why we insist on having the library developers explicitly deal with
name clashes. In practice few renamings are needed, so if we have special syntax for “no
renaming needed” consistent with the renaming case, the resulting system should not be too
burdensome to use.

We can summarize our requirements as follows:

– Names and symbols associated to concepts should all be user-disambiguated,

Building on the Diamonds between Theories: Theory Presentation Combinators 9

– It should be possible to use the usual mathematical symbols for concepts,
– Concepts should be defined once in the minimal context necessary for their definition

and transported to their use site,
– Identical concepts with different names (because of change of context) should be auto-

matically recognized as “the same” concept,
– The choices made by library developers of the means of construction of theory presen-

tations should be invisible to end-users,
– Changing the means of construction of a theory should remain invisible,
– Constructions should be re-usable (whenever possible),
– Meta-properties of morphisms should not be forgotten by the system.

3 Basic Semantics

We present needed definitions from dependent type theory and start to develop the cate-
gorical semantics of theory presentation combinators. The principal reason to use category
theory is that previous work on categorical semantics of dependent type theory has essen-
tially established that the structure we need for our combinators to “work” is already present
there. More precisely, that the category of contexts has enough pullbacks and supports suit-
able fibrations [48,75].

Recall the basic observation first made in Section 2.3, that theory presentations and
contexts of a dependent type theory are the same: a list of symbol-type pairs, where the
types of latter symbols may depend on earlier symbols to be well-defined. In this section,
we will use “presentation” and “context” interchangeably.

Presentations depend on a background dependent type theory but are agnostic as to many
of the internal details of that theory. We outline what we require, which is standard for such
type theories:

– An infinite set of variable names V.
– A typing judgement for terms s of type σ in a context Γ which we write Γ ⊢ s ∶ σ .
– A kinding judgement for types σ of kind κ in a context Γ which we write

Γ ⊢ σ ∶ κ ∶ ◻.
– A definitional equality (a.k.a. convertibility) judgement of terms s1 of type σ1 and s2 of

type σ2 in a context Γ , which we write Γ ⊢ s1 ∶ σ1 ≡ s2 ∶ σ2. We will write Γ ⊢ s1 ≡ s2 ∶ σ

to denote Γ ⊢ s1 ∶ σ ≡ s2 ∶ σ .
– A notion of substitution on terms. Given a list of variable assignments *xi ↦ si+i<n and

an expression e we write e[xi ↦ si]i<n for the term e after simultaneous substitution of
variables {xi}i<n by the corresponding term in the assignment.

We use the meta-variable v and w to denote lists of assignments and its application to a term
e by e[v].

3.1 Theory Presentations

A theory presentation is a well-typed list of declarations. Figure 4 gives the formation rules.
We use ∣Γ ∣ to denote the set of variables names of a well-formed context Γ :

∣∅∣ =∅ ∣Γ ; x ∶ σ ∣ = ∣Γ ∣∪{x}

10 Jacques Carette et al.

∅ ctx

Γ ctx σ ∉ ∣Γ ∣ Γ ⊢ κ ∶ ◻

(Γ ; σ ∶ κ) ctx

Γ ctx x ∉ ∣Γ ∣ Γ ⊢ σ ∶ κ ∶ ◻

(Γ ; x ∶ σ) ctx

Fig. 4 Formation rules for contexts

3.2 Morphisms (Views)

As outlined in Section 2.2, a morphism from a theory presentation Γ to a theory presenta-
tion ∆ is an assignment of well-typed ∆ -expression to each declaration of Γ . The assigments
transport well-typed terms in the context Γ to well-typed terms in ∆ , by substitution. Fig-
ure 5 gives the formation rules.

∆ ctx

[] ∶ ∅→ ∆

(Γ ; x ∶ σ) ctx [v] ∶ Γ → ∆ ∆ ⊢ r ∶ σ[v]

[v,x↦ r] ∶ (Γ ; x ∶ σ)→ ∆

Fig. 5 Formation rules for morphisms (substitutions).

There is a subtle but important distinction between assignments *v+ and morphisms,
[v] ∶ Γ → ∆ : morphisms are typed and thus Γ and ∆ are integral to the definition, while the
same assignment may occur in different morphisms.

Since most morphisms allow us to “view” one presentation inside another, we will fre-
quently refer to the morphisms as views.

3.2.1 Inclusions, Renames and Embeddings

In Section 2.1.1, we define a construction to extend a presentation with new fields and in
Section 2.1.2, renamings were defined. Section 2.2, details how these correspond to mor-
phisms acting solely on names, being respectively an inclusion and a bijection.

We thus define an embedding to be a special kind of morphism, which we denote

π̃ ∶Γ → ∆

where we require that π̃ is the morphism induced by π ∶V→V where:

– π ∶V→V has finite support (i.e. outside of a finite subset of V, π (v) = v).
– π is a bijection,
– π

−1 restricts to an injective function π
−1
∶ ∣∆ ∣→ ∣Γ ∣.

The ˜ on π̃ is a reminder that while π is function on names, π̃ is a morphism with special
properties. Note that inclusions are embeddings, with empty support [64]. Embeddings thus
include both inclusions and renamings.

We make a further, important assumption about the host type system: the types involved
must be intensionally equal, after the renaming has been applied. These morphisms are
“extremely syntactic” and require no normalization beyond α-equivalence.

As we have mentioned previously, Ring is an extension of Monoid in two different ways
and hence both embeddings cannot be inclusions. Inclusions will not be special in our for-
malism, other than being a case of an embedding. We draw attention to them here as many
other systems make inclusions play a very special role. As we will see later, it is instead
display maps which here hold that special role.

Building on the Diamonds between Theories: Theory Presentation Combinators 11

3.2.2 Composition

Given two morphisms [v] ∶Γ →∆ and [w] ∶∆ →Φ , we can compose them [v];[w] ∶Γ →Φ .
If v ≜ [a↦ ra]a∈∣Γ ∣ then the composite morphism is

[v];[w] ≜ [a↦ ra[w]]a∈∣Γ ∣

That this gives a well-defined notion of composition and is associative is standard [21,
48,75].

3.2.3 Equivalence of Morphisms

Two morphisms with the same domain and codomain, [u],[v] ∶Γ → ∆ are equivalent if
∆ ⊢ ra ∶ (σa[u]) ≡ sa ∶ (σa[v]) where

Γ ≜ [a ∶ σa]a∈∣Γ ∣

u ≜ [a ∶= ra]a∈∣Γ ∣

v ≜ [a ∶= sa]a∈∣Γ ∣

We work in the setting of Setoid-enriched categories, as these are constructively simpler
to deal with [46]. The above are used to define the equivalence relation on morphism in the
definition of our category.

3.2.4 The category of theory presentations

The preceeding gives the necessary ingredients to define the category of theory presentations
P, with theory presentations as objects and views as morphisms. The identity inclusions are
the identity morphisms.

Note that in [20], we worked with C = Pop, which is traditionally called the category of
contexts, and is more often used in categorical logic [21,48,75,63]. In our setting and as is
common in the context of specifications (see for example [11,70,24] amongst many others),
we prefer to take our intuition from textual inclusion rather than models. Nevertheless, for
the semantics, we too will use C, as this not only simplifies certain arguments, it also makes
our work easier to compare to that in categorical logic.

3.3 Combinators

Given theory presentations, embedding and views, we can can now define presentation and
view combinators. In fact, all combinators in this section will end up working in tandem on
presentations and views. They allow us to create new presentations/views from old ones, in
a more convenient manner than building everything by hand.

The constructions (operational semantics) will be spelled out in full detail, and are di-
rectly implementable. In the next section, we will give them a categorical semantics; we
make a few inline remarks here to help the reader understand why we choose a particular
construction.

12 Jacques Carette et al.

3.3.1 Renaming

Given a presentation Γ and an injective renaming function π ∶ ∣Γ ∣→ V we can construct a
new theory presentation ∆ by renaming Γ ’s symbols: we will denote this action of π on Γ

by π ⋅Γ . We also construct an embedding π̃ ∶Γ → π ⋅Γ which provides a translation from Γ

to the constructed presentation π ⋅Γ . For this construction as a whole, we use the notation

R(Γ ,π ∶ ∣Γ ∣→V) ≜ {
pres = π ⋅Γ

embed = π̃ ∶Γ → π ⋅Γ
}

The rename function used in Section 2.1.2, produces the presentation AdditiveCommMonoid

and the embedding π̃ : CommutativeMonoid→ AdditiveCommMonoid

3.3.2 Extend

Given a theory presentation Γ , a name a that does not occur in Γ and a well formed type σ

of some kind κ , (i.e. Γ ⊢ σ ∶ κ ∶ ◻) we can construct a new theory presentation ∆ ≜ Γ ;a ∶ σ
and the embedding ˜id ∶ Γ → ∆ . More generally, given sequences of fresh names, types and
kinds, {ai}i<n, {σi}i<n and {κi}i<n we can define a sequence of theory presentations Γ0 ≜Γ

and Γi+1 ≜ Γi;ai ∶ σi so long as Γi ⊢ σi ∶ κi ∶ ◻. Given such a sequence we construct a new
theory presentation ∆ ≜Γn with the embedding ˜id ∶Γ → ∆ .

As ∆ is the concatenation of Γ with {ai ∶ σi ∶ κi}i<n, we will use Γ ⋊∆
+ to denote the

target of this view whenever the components of ∆
+ are clear from context. ∆

+ is rarely a
valid presentation, as it usually depends on Γ . This is why we use an asymmetric symbol
⋊. Nevertheless, there is an obvious extension of renamings to these presentation fragments,
and we use the same notation for these.

Note that general embeddings π̃ ∶ Γ → ∆ as defined in §3.2.1 can be decomposed into
a renaming composed with an ⋊, in other words π̃ ∶ Γ → ∆ = ũ; ˜id where ũ ∶ Γ → π ⋅Γ and
˜id ∶ π ⋅Γ → π ⋅Γ ⋊∆

+. We will also write these as Γ [u]∆ when we do not wish to focus on
the pieces of the embedding.

Embeddings which are inclusions are traditionally called display maps in C = Pop and
our ˜id ∶Γ → (Γ ;a ∶ σ) in P is denoted by â ∶ (Γ ;a ∶ σ) _ Γ in C [75] and δa in [48].

For notational convenience, we encode the construction above as an explicit function to
a record containing two fields, pres (for presentation) and embed (for embedding).

E(Γ ,∆+
) ≜

⎧⎪⎪
⎨
⎪⎪⎩

pres =Γ ⋊∆
+

embed = ˜id ∶Γ →Γ ⋊∆
+

⎫⎪⎪
⎬
⎪⎪⎭

where ∆
+
= {ai ∶ σi ∶ κi}i<n. Section 2.1.1 gives an example of an extension with Γ = Monoid

and ∆
+ being the declaration of the commutative axiom.

3.3.3 Combine

To combine two embeddings [u∆] ∶ Γ → ∆ and [uΦ] ∶ Γ →Φ to give a presentation Ξ , we
need to make sure the results agree on Γ (to avoid cases like the one in Figure 3). To insure
this, we ask that two injective renaming functions π∆ ∶ ∣∆ ∣→V and πΦ ∶ ∣Φ ∣→V satisfying

π∆ (x) = πΦ (y)⇔ ∃z ∈ ∣Γ ∣ . x = z[u∆]∧y = z[uΦ] (3)

Building on the Diamonds between Theories: Theory Presentation Combinators 13

are also provided. π∆ and πΦ will be used to give a unique name to the components of Γ ,
for example the carrier U in Figure 3.

Suppose that the two embeddings decompose as ∆ =Γ [u∆]⋊∆
+ and Φ =Γ [uΦ]⋊Φ

+.
Denote by u∆ the action on ∣Γ ∣ of [u∆] ∶Γ →∆ , and by uΦ the action on ∣Γ ∣ of [uΦ] ∶Γ →Φ .
Define

Ξ ≜ Ξ0⋊(Ξ∆ ∪ΞΦ)

where

Ξ0 ≜ (u∆ ;π∆) ⋅Γ

Ξ∆ ≜ π∆ ⋅∆
+

ΞΦ ≜ πΦ ⋅Φ
+

Condition 3 is defined to ensure that Ξ0 ≡ (uΦ ;πΦ) ⋅Γ is also true. Similarly, by construction,
Ξ0⋊(Ξ∆ ⋊ΞΦ) is equivalent to Ξ0⋊(ΞΦ ⋊Ξ∆); we denote this equivalence class3 of views
by Ξ0⋊(Ξ∆ ∪ΞΦ).

The combination operation also provides embeddings [v∆] ∶ ∆ → Ξ and [vΦ] ∶ Φ → Ξ

where [v∆] ≜ π̃∆ and [vΦ] ≜ π̃Φ . A calculation shows that [u∆];[v∆] is equal to [uΦ];[vΦ]

(and not just equivalent); we denote this joint morphism [uv] ∶Γ →Ξ . Furthermore, combine
provides a set of mediating views from the constructed theory presentation Ξ . Suppose
we are given views [w∆] ∶ ∆ → Ω and [wΦ] ∶ Φ → Ω such that the the composed views
[u∆];[w∆] ∶ Γ → Ω and [uΦ];[wΦ] ∶ Γ → Ω are equivalent. We can combine [w∆] and
[wΦ] into a mediating view [wΞ] ∶ Ξ →Ω where

[wΞ] ≜ [π∆(x) ∶= x[w∆]]x∈∣∆ ∣∪ [πΦ(y) ∶= y[wΦ]]y∈∣Φ ∣.

This union is well defined since if π∆ (x) = πΦ (y) then there exists z such that x = z[u∆] and
y = z[uΦ], in which case x[w∆] = z[u∆][w∆] and y[wΦ] = z[uΦ][wΦ] are equivalent since
by assumption [u∆];[w∆] and [uΦ];[wΦ] are equivalent. It is also worthwhile noticing that
this construction is symmetric in ∆ and Φ .

For this construction, we use the following notation, where we use the symbols as de-
fined above (omitting type information for notational clarity), and λ is from the meta-theory.

C(u∆ ,uΦ ,π∆ ,πΦ) ≜

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pres = Ξ0⋊(Ξ∆ ∪ΞΦ)

embed∆ = [v∆] ∶ ∆ → Ξ

embedΦ = [vΦ] ∶Φ → Ξ

diag = [uv] ∶Γ → Ξ

mediate = λ w∆ wΦ . wΞ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The attentive reader will have noticed that we have painstakingly constructed an explicit
pushout in P. There are two reasons to do this: first, we need to be this explicit if we wish to
be able to implement such an operation. And second, we do not want an arbitrary pushout,
because we do not wish to work up to isomorphism as that would “mess up” the names. This
is why we need user-provided injective renamings π∆ and πΦ to deal with potential name
clashes. If we worked up to isomorphism, these renamings would not be needed, as they can

3 In practice, theory presentations are rendered (printed, serialized) using a topological sort where ties are
broken alphabetically, so as to be construction-order indedepent.

14 Jacques Carette et al.

always be manufactured by the system but then these are no longer necessarily related to
the users’ names. Alternatively, if we use long names based on the (names of the) views, the
method used to construct the presentations and views “leaks” into the names of the results,
which we also consider undesirable.

Example Consider combining the two embeddings
[u∆] ∶ Magma→ Semigroup = ˜id and [uΦ] ∶ Magma→ AddMagma = [U↦ U,○↦+]; in the above,
this makes Γ = Magma, ∆ = Semigroup and Φ = AddMagma. Choosing π∆ = πφ = id does not
satisfy condition 3. The problem is that the two embeddings [u∆] and [uΦ] disagree on
the name of the binary operation. Thus the user must provide a renaming; for example, the
user might choose + and define AddSemigroup, by using π∆ = [○↦ +,associativity ○↦

associativity +]; πφ can remain id. (We would prefer for the user to only need to specify
[○→ +] and for the system to infer [associativity ○↦ associativity +] but we leave
this for future work). The algorithm then proceeds to compute the expected AddSemigroup

and accompanying embeddings.

3.3.4 Mixin

Given a view [u∆] ∶ Γ → ∆ , an embedding [uΦ] ∶ Γ → Φ and two disjoint injective re-
naming functions π∆ ∶ ∣∆ ∣→ V and πΦ ∶ ∣Φ ∣→ V, where the embedding Φ decomposes as
Φ = Γ [uΦ] ⋊Φ

+, we can mixin the view into the embedding, constructing a new theory
presentation Ξ . We define Ξ ≜ Ξ1⋊Ξ2 where we need a new renaming π

′
Φ :

π
′
Φ+ (y) ≜ {

z[u∆][x↦ π∆ (x)]x∈∣∆ ∣ when there is a z ∈ ∣Γ ∣such that z[uΦ] = y
πΦ+ (y) when y ∈ ∣Φ+

∣

Ξ1 ≜ π∆ ⋅∆

Ξ2 ≜ π
′
Φ ⋅Φ

+

The mixin also provides an embedding [v∆] ∶ ∆ → Ξ and a view [vΦ] ∶Φ → Ξ , defined as

[v∆] ≜ π̃∆

[vΦ] ≜ π̃
′
Φ

By definition of embedding, there is no z ∈ ∣Γ ∣ that is mapped into Φ
+ by [uΦ]. The definition

of π
′
Φ is arranged such that [u∆];[v∆] is equal to [uΦ];[vΦ] (and not just equivalent); so we

can denote this joint morphism by [uv] ∶Γ →Ξ . In other words, in a mixin, by only allowing
renaming of the new components in Φ

+, we insure commutativity on the nose rather than
just up to isomorphism.

Mixins also provide a set of mediating views from the constructed theory presentation
Ξ . Suppose we are given the views [w∆] ∶ ∆ →Ω and[wΦ] ∶Φ →Ω such that the composed
views [u∆];[w∆] ∶ Γ → Ω and [uΦ];[wΦ] ∶ Γ → Ω are equivalent. We can combine [w∆]

and [wΦ] into the mediating view [wΞ] ∶ Ξ →Ω defined as

[wΞ] ≜ [π∆(x)↦ x[w∆]]x∈∣∆ ∣∪ [π
′
Φ(y)↦ y[wΦ]]y∈∣Φ+∣.

Building on the Diamonds between Theories: Theory Presentation Combinators 15

For mixin, again using the symbols as above, we denote the construction results as

M(u∆ ,uΦ ,π∆ ,πΦ) ≜

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pres = Ξ1⋊Ξ2

embed∆ = [v∆] ∶ ∆ → Ξ

viewΦ = [vΦ] ∶Φ → Ξ

diag = [uv] ∶Γ → Ξ

mediate = λ w∆ wΦ . wΞ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Symbolically the above is very similar to what was done in combine and indeed we are
constructing all of the data for a specific pushout. However in this case the results are not
symmetric, as seen from the details of the construction of Ξ1 and Ξ2, which stems from the
fact that in this case [vΦ] is an arbitrary view rather than an embedding. The Flip view of
Section 2.2 is an example.

4 Categorical Semantics

We delve more deeply into the semantics of combine and mixin. The categorical inter-
pretation (in C) of combine is unsurprising: pullback. But mixin is more complex: it is a
Cartesian lifting in a suitable fibration. But we also obtain that our semantics is total, even
for mixin. Key is that the algorithm for mixin in the previous section produces a unique
syntactic representation of the results. Many combinators with well-defined categorical se-
mantics (such as unrestricted mixin) do not have this property: while they have models,
these models cannot be written down.

At first glance, the definitions of combine and mixin may appear ad hoc and overly
complicated. This is because, in practice, the renaming functions π∆ and πΦ are frequently
the identity. The main reason for this is that mathematical vernacular uses a lot of rigid
conventions, such as usually naming an associative, commutative, invertible operator which
possesses a unit +, the unit is named 0, backward composition is ○, forward composition is
;, and so on. But the usual notation of lattices is different than that of semirings, even though
they share a similar ancestry, so that renamings are clearly necessary at some point.

While our primary interest is in theory presentations, the bulk of the categorical work
in this area has been done on the category of contexts, which is the opposite category. To
be consistent with the existing literature, we will give our categorical semantics in terms of
C=Pop. Thus if [v] ∶Γ →∆ is a view, then a corresponding morphism, v, exists from context
∆ to context Γ . We will write such morphisms as v ∶ ∆ _ Γ when we are considering the
category of contexts, with composition as before.

4.1 Semantics

The category of contexts forms the base category for a fibration. The fibered category E is
the category of context extensions. The objects of E are embeddings of contexts. We write
such objects as u ∶ ∆ ⇀Γ where Γ is the base and ∆ is the extended context. The notation is
to remind the reader that the morphisms are display maps (i.e. that Γ is a strict prefix of ∆).

A morphism between two embeddings is a pair of views forming a commutative square
with the embeddings. Thus given embeddings u2 ∶ ∆2 ⇀ Γ2 and u1 ∶ ∆1 ⇀ Γ1, a morphism
between these consists of two morphisms v∆ ∶ ∆2 _ ∆1 and vΓ ∶ Γ2 _ Γ1 from C such that
vΓ ;u1 = u2;v∆ ∶ Γ2 _ ∆1. When we need to be very precise, we write such a morphism as

16 Jacques Carette et al.

u2

v∆

∆2 _ ∆1
⇂ ⇂

Γ2 _ Γ1
vΓ

u1. We will write v∆
Γ ∶ u2 Z⇒ u1 whenever the rest of the information can be

inferred from context. When given a specific morphism in E, we will use the notation eZ⇒.
A fibration of E over C is defined by giving a suitable functor from E to C. Our “base”

functor sends an embedding e ∶ ∆ ⇀ Γ to Γ and sends a morphism v∆
Γ ∶ u2 Z⇒ u1 to its base

morphism vΓ ∶Γ2 _ Γ1.

Theorem 1 This base fibration is a Cartesian fibration.

This theorem, in slightly different form, can be found in [48] and [75]. We give a full
proof here because we want to make the link with our mixin construction explicit. We use
the results of §3.3 directly.

Proof Suppose u∆ ∶ ∆ _ Γ is a morphism in C, and uΦ ∶ Φ ⇀ Γ is an object of E in the
fiber of Γ (i.e. an embedding). We need to construct a Cartesian lifting of u∆ , which is a
Cartesian morphism of E over u∆ . The components of the mixin construction are exactly
the ingredients we need to create this Cartesian lifting. Let π∆ ∶ ∣∆ ∣→V and π

′
Φ ∶ ∣Φ

+
∣→V

be two disjoint injective renaming functions. Note that such π∆ and πΦ always exist because
V is infinite while ∣∆ ∣ and ∣Φ

+
∣ are finite. Let

M(u∆ ,uΦ ,π∆ ,πΦ) ≜

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pres = Ξ

embed∆ = v∆ ∶ Ξ → ∆

viewΦ = vΦ ∶ Ξ →Φ

diag = uv ∶ Ξ →Φ

mediate = λ w∆ wΦ . wΞ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

where we recall that we are now working in C, the opposite of P and thus the direction of

the morphisms is flipped. Then eZ⇒
≜ v∆

vΦ

Ξ _ Φ

⇂ ⇂

∆ _ Γ

u∆

uΦ is a morphism of E which is a Cartesian

lift of u∆ .
Firstly, to see that eZ⇒ is in fact a morphism of E, we note that [v∆] ∶ ∆ → Ξ is an

embedding, so v∆ ∶ Ξ ⇀ ∆ is an object of E. Next we need to show that v∆ ;u∆ = vΦ ;uΦ .
Let z ∈ ∣Γ ∣. Then z[u∆][v∆] = z[u∆][x↦ π∆ (x)] by definition of v∆ . On the other hand,
z[uΦ][vΦ]= z[uΦ][y↦ π

′
Φ (y)]y∈∣Φ ∣ by definition of vΦ . However, z[uΦ] is a variable since

uΦ is an embedding and by definition π
′
Φ (z[uΦ]) = z[u∆][x↦ π∆ (x)]x∈∣∆ ∣ so that we have

z[u∆][v∆] = z[uΦ][vΦ] as required.
Secondly we need to see that eZ⇒ is a Cartesian lift of u∆ ∶ ∆ _ Γ . We need to show that

for any morphism f Z⇒
≜ wΨ

wΦ

Ω _ Φ

⇂ ⇂

Ψ _ Γ

wΓ

uΦ from E and any arrow w0 ∶Ψ _ ∆ from C such

Building on the Diamonds between Theories: Theory Presentation Combinators 17

that wΓ =w0;u∆ ∶Ψ _ Γ , there is a unique mediating morphism hZ⇒
≜wΨ

wΞ

Ω _ Ξ

⇂ ⇂

Ψ _ ∆

w0

v∆ from

E such that
hZ⇒ ; eZ⇒

= f Z⇒ (4)

To show that such an h Z⇒ exists, we only need to construct wΞ ∶ Ω _ Ξ and show that it
has the required properties. We will show that the mediating morphism w from the mixin

construction given wΦ ∶Ω _ Φ and w∆ ≜ wΨ ;w0 ∶Ω _ ∆ is the required morphism.
First we note that w∆ ;u∆ = wΦ ;uΦ as required by the mixin construction for the me-

diating morphism since w∆ ;u∆ = wΨ ;w0;u∆ = wΞ ;vΦ ;uΦ = wΦ ;uΦ by chasing around the
diagram of the equality hZ⇒ ; eZ⇒

= f Z⇒. Now taking wΞ ≜ w we need to show that hZ⇒ is
a well defined morphism in E by showing it forms a commutative square. Suppose x ∈ ∣∆ ∣.
Then x[v∆][wΞ] = π∆ (x)[wΞ] = x[w∆] = x[w0][wΨ] as required. Next we need to show
that equation (4) holds. It suffices to show that wΞ ;vΦ = wΦ since it is already required that
w0;u∆ = wΓ . Suppose y ∈ ∣Φ ∣. There are two possiblities, either y = z[uΦ] for some z ∈ ∣Γ ∣,
or y ∈ ∣Φ+

∣ where Φ = Γ [uΦ]⋊Φ
+. If y ∈ ∣Φ+

∣ then y[vΦ][wΞ] = πΦ+ (y)[wΞ] = y[wΦ]

as requried. In case y = z[uΦ], then y[vΦ][wΞ] = z[uΦ][vΦ][wΞ] = z[u∆][v∆][wΞ] =

z[u∆][w0][wΨ] = z[wΓ][wΨ] = z[uΦ][wΦ] = y[wΦ] as requiried.
Lastly we need to show that the mediating morphism h Z⇒ is the unique morphism satis-

fying equation (4). Let j Z⇒ be another morphism of E, where j Z⇒ must have the same shape
as hZ⇒ but with wΞ replaced with w′Ξ . Suppose that

j Z⇒ ; f Z⇒
= eZ⇒

We need to show that w′Ξ = wΞ . Suppose z ∈ ∣Ξ ∣. There are two possiblities. Either z =
x[v∆] for some x ∈ ∣∆ ∣ or z = y[vΦ] for some y ∈ ∣Φ+

∣. Suppose z = x[v∆]. Then z[w′Ξ] =

x[v∆][w
′
Ξ] = x[w0][wΨ] = x[v∆][wΞ] = z[wΞ] as required. On the other hand, suppose

z = y[vΦ]. Then z[w′Ξ] = y[vΦ][w′Ξ] = y[wΦ] = y[vΦ][wΞ] = z[wΞ] as required. So w′Ξ =

wΞ and hence j Z⇒ = hZ⇒, as required. ⊓⊔

The above proof illustrates that the mixin operation is characterized by the properties
of a Cartesian lifting in the fibration of embeddings. Notice that a Cartesian lift is only
characterised up to isomorphism. Thus there are potentially many isomorphic choices for a
Cartesian lift and hence there are many possible choices for how to mixin an embedding
into a view. This is the underlying reason why the mixin construction requires a pair of
renaming functions. The renaming functions pick out a particular choice of mixin from the
many possibilities. This ability to specify which mixin to construct is quite important as
one cannot simply define a mixin to be “the” Cartesian lift, since “the” Cartesian lift is only
defined up to isomorphism. It is important to remember that for user syntax, we cannot work
up to isomorphism!

Next we will see that combine is a special case of mixin.

Theorem 2 Given two embeddings u∆ ∶ Γ ↪ ∆ and uΦ ∶ Γ ↪ Φ and renaming functions
π∆ ∶ ∣∆ ∣→V and πΦ ∶ ∣Φ ∣→V sastifiying the requirement of the combine construction, then

M(u∆ ,uΦ ,π∆ ,πΦ+) = C(u∆ ,uΦ ,π∆ ,πΦ) (5)

where Φ =Γ [uΦ]⋊Φ
+ and πΦ+ = [x↦πΦ]x∈∣Φ+∣, and equation 5 is interpreted component-

wise.

18 Jacques Carette et al.

Proof Suppose that

C(u∆ ,uΦ ,π∆ ,πΦ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pres = Ξ0⋊(Ξ∆ ∪ΞΦ)

embed∆ = v∆ ∶ Ξ → ∆

embedΦ = vΦ ∶ Ξ →Φ

diag = uv ∶ Ξ →Γ

mediate = λ w∆ wΦ . wΞ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

and

M(u∆ ,uΦ ,π∆ ,πΦ+) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pres = Ξ
′

embed∆ = v′∆ ∶ Ξ
′
→ ∆

viewΦ = v′Φ ∶ Ξ
′
→Φ

diag = uv′ ∶ Ξ ′
→Γ

mediate = λ w∆ wΦ . wΞ ′

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Recall that Ξ = Ξ0⋊(Ξ∆ ∪ΞΦ) = Ξ0⋊(Ξ∆)⋊ΞΦ where
Ξ0 ≜ Γ [z↦ π∆ (z[v∆])]z∈∣Γ ∣, Ξ∆ ≜ ∆

+
[x↦ π∆ (x)]x∈∣∆ ∣ and ΞΦ ≜ Φ

+
[y↦ πΦ (y)]y∈∣Φ ∣. In

particular note that Ξ0 =Γ [v∆][z[v∆]↦ π∆ (z[v∆])]z∈∣Γ ∣. Since ∆ =Γ [v∆]⋊∆
+, we have

that

Ξ0⋊Ξ∆ = Γ [v∆][z[v∆]↦ π∆ (z[v∆])]z∈∣Γ ∣⋊∆
+
[x↦ π∆ (x)]x∈∣∆ ∣

= (Γ [v∆]⋊∆
+
)[x↦ π∆ (x)]x∈∣∆ ∣

= ∆ [x↦ π∆ (x)]x∈∣∆ ∣

Recall also that Ξ
′
=Ξ

′
1⋊Ξ

′
2 where Ξ

′
1 ≜∆ [x↦ π∆ (x)]x∈∣∆ ∣ and Ξ

′
2 ≜Φ

+
[y↦ π

′
Φ+ (y)]y∈∣Φ ∣.

So we see that Ξ
′
1 = Ξ0⋊Ξ∆ .

Next we show that π
′
Φ = πΦ . If y ∈ ∣Φ ∣ then either y ∈ ∣Φ

+
∣ or there is some z ∈ Γ

such that y = z[vΦ]. If y ∈ ∣Φ+
∣ then π

′
Φ (y) = πΦ (y) = πΦ (y). If y = z[vΦ], then π

′
Φ (y) =

z[u∆][x↦ π∆ (x)]x∈∣∆ ∣ = π∆ (z[u∆]) = πΦ (z[uΦ]) = πΦ (y). Therefore Ξ
′
2 = ΞΦ and hence

Ξ
′
= Ξ .
Next we need to show that v′∆ = v∆ and v′Φ = vΦ . First we see that v′∆ and v∆ are

both defined to be [x↦ π∆ (x)]x∈∣∆ ∣, so clearly they are equal. Next we see that vΦ ≜

[y↦ πΦ (y)]y∈∣Φ ∣ and v′Φ ≜ [y↦ π
′
Φ (y)]y∈∣Φ ∣ are equal because π

′
Φ = πΦ . This also gives

that uv = uv′.
Lastly we show that the mediating morphism of the combine is the same as the mediating

morphism of the mixin. Suppose we are given w∆ ∶ ∆ → Ω and wΦ ∶ Φ → Ω such that
u∆ ;w∆ = uΦ ;wΦ ∶Γ →Ω . To show that the mediating morphism produced by combine, wΞ ∶

Ξ →Ω is the same as the medating morphism produced by the mixin, it suffices to prove
that the mediating morphism satifies the universal property of the Cartesian lift, since such
a morphism is unique. Thus it suffices to show that vΦ ;wΞ =wΦ ∶Φ →Ω and v∆ ;wΞ =w∆ ∶

∆ →Ω . Let y ∈ ∣Φ ∣. Then y[vΦ][wΞ]=πΦ (y)[wΞ]= y[wΦ]. Let x ∈ ∣∆ ∣. Then x[v∆][wΞ]=

π∆ (x)[wΞ] = x[w∆] as required.

Combine is rather well-behaved. In particular,

Proposition 1 C(u∆ ,uΦ ,π∆ ,πΦ) = C(uΦ ,u∆ ,πΦ ,π∆), i.e. combine is commutative.

It turns out that combine also satisfies an appropriate notion of associativity. In other
words, we can compute limits of cones of embeddings.

Building on the Diamonds between Theories: Theory Presentation Combinators 19

4.2 No Lifting Views over Views

Why do we restrict ourselves to the fibration of embeddings? Why not allow mixins of
arbitrary views over arbitrary views? If such mixin s were allowed, then the notion of a
Cartesian lifting reduces to that of pullback. But to demand that the category of contexts and
views be closed under all pullbacks would require too much from our type theory: we would
need to have all equalizers (as we already have all products). In particular, at the type level,
this would force us to have subset types, which is something we are not willing to impose.
Thus a restriction is needed and our proposed restriction of only mixing in embeddings
into views appears to be practical. Taylor [75] is a good source of further reasons for the
naturality of restricting to this case.

5 Presentation Combinators

We can now give a set of combinators that are well-suited to the semantics described above.

5.1 Grammar

In the definition of the grammar, we use A,B to denote theories and/or views, x and y to
denote symbols, t for terms of the underlying type theory and l for (raw) contexts from the
underlying type theory. Recall that we are parametric in the type theory, and so we do not
give a grammar for types and terms, i.e. the exact syntax of l and t below.

tpc ∶∶= Theory {l}

∣ extend A {l}

∣ rename A r

∣ combine A r1 B r2

∣ mixin A r1 B r2

∣ view A as B via v

∣ A ; B

r ∶∶= {ren}

v ∶∶= {assign}

ren ∶∶= x to y

∣ ren, x to y

assign ∶∶= x to t

∣ assign, x to t

Informally, these forms correspond to an explicit theory, a theory extension, a renaming,
combining two extensions, mixing in a view and an extension, explicit view, and sequencing
views. The empty theory is Theory {}.

What might be surprising is that we do not have a separate language for presentations
and views. This is because our language does not have a single semantics in terms of presen-
tations, embeddings or views but rather has several compatible semantics. In other words,
our syntax will yield objects of C, objects of E (i.e. embeddings) and morphisms of C
(views).

The semantics is given by defining three partial maps, J−KB ∶ tpc⇀ ∣C∣, J−KE ∶ tpc⇀ ∣E∣,
J−KB→ ∶ tpc⇀ HomC. We also use J−Kπ for the straightforward semantics in V→ V of a
renaming. As we define J−KB and J−KE in terms of J−KB→ , we define the latter first.

20 Jacques Carette et al.

Morphisms of C are views:

J−KB→ ∶ tpc⇀HomC

JTheory {l}KB→ = !l ∶ []→ JlKB
Jextend A by {l}KB→ = E(JAKB, l) .embed

Jrename A rKB→ = R(JAKB,JrKπ) .embed

Jcombine A1 r1 A2 r2KB→ = C(JA1KE,JA2KE,Jr1Kπ ,Jr2Kπ) .diag

Jmixin A1r1,A2r2KB→ =M(JA1KB→ ,JA2KE,Jr1Kπ ,Jr2Kπ) .diag

Jview A as B via vKB→ = [v] ∶ JAKB→ JBKB
JA;BKB→ = JAKB→ ;JBKB→

We then define

J−KB ∶ tpc⇀ ∣C∣

Jview A as B via vKB = �

JXKB = cod JXKB→

J−KE ∶ tpc⇀ ∣E∣
Jmixin A1r1,A2r2KE = �

Jview A as B via vKE = �

JXKE = JXKB→

We thus get 3 elaborators, as the members of ∣C∣, ∣E∣ and ∣HomC∣ can all be represented
syntactically in the underlying type theory.

Note that we could have interpreted Jview A as B via vKB as codJview A as B via vKB→ ,
rather than as � but this is not actually helpful, since this is just JBKB, which is not actually
what we want. What we would really want is the result of doing the substitution v into
A but the resulting presentation may no longer be well-formed. So we chose to interpret
the attempt to take the object component of a view as a specification error. Similarly, even
though we can give an interpretation as an embedding for mixin when A1 turns out to be an
embedding and also for an embedding r in a view context (i.e. view A as B via r), we also
choose to make these specification errors as well.

We should also note here that in our implementation, we allow raw renamings ({ren})
and assignments ({assign}) to be named, for easier reuse. While renamings can be given a
simple categorical semantics (they induce a natural transformation on C), assignments really
need to be interpreted contextually since this requires checking that terms t are well-typed.

5.2 Type System

We build a type system, whose purpose is to ensure that well-typed expressions are de-
noting. Note that although we require that the underlying system have kinds, to enable the
declaration of new types, we omit this below for clarity. Adding this is straightforward.

Building on the Diamonds between Theories: Theory Presentation Combinators 21

∅ ⊆ T

[] ∶ Perm T

P ∶ Perm S S∩{x,y} =∅ S∪{x,y} ⊂ T

P,[x↔ y] ∶ Perm T

A ∶ Th B ∶ Th B ctx ⊢ xi ∶ σi[x1,⋯,xi−1] A ctx ⊢ yi ∶ σi[y1/x1,⋯,yi−1/xi−1]

[xi ↦ yi]i≤n ∶ Assign A B

Fig. 6 Types for permutations and assignments

⊢ ` ctx

Theory {`} ∶ Emb ∅ `

A ∶ Th r ∶ Perm ∣A∣

rename A r ∶ Emb A (A[r])

A ∶ Th

extend A by {} ∶ Emb A A

B = extend A by {`} B ∶ Th x ∉ ∣B∣ B ctx ⊢ t:type

extend A by {`, x : t} ∶ Emb A (B,x:t)

C,A′,B′ ∶ Th A′ =C[A]⋊A+ B′ =C[B]⋊B+

A ∶ Emb C A′ B ∶ Emb C B′ r1,r2 ∶ Perm ∅ ∀x ∈ ∣A′∣,y ∈ ∣B′∣.r1 (x) = r2 (y)⇔ ∃z ∈ ∣C∣ . x = z[A] ∧y = z[B]

combine A r1 B r2 ∶ Emb C (C[A]⋊r1 ⋅A
+ ⋊r2 ⋅B

+)

Fig. 7 Types for core combinators

First, we need a couple of preliminary types, shown in Figure 6. We use S and T to
denote finite sets of variable from V and A ctx means the well-formed context that theory A
elaborates to. The rule for assignments is otherwise the standard one for morphisms of the
category of contexts (p.602 of [48]).

We need to define 3 sets of typing rules, one for each semantic. The rules are extremely
similar to each other for most of the combinators and thus we give a lighter presentation
by grouping the similar ones together. More specifically, we introduce judgement for 3 new
types: Th for theory presentations, Emb A B for embeddings from presentation A to presen-
tation B and View A B for views from presentation A to presentation B. Also, recall that
embeddings Emb A B can be factored as a renaming (bijection) of the symbols of A to a sub-
set of those of B, followed by the addition of new symbols. We denote this factoring of
View A B as A[B]⋊B+. The renaming thus induced on symbols z of A will be denoted z[B],
i.e. z as viewed inside B.

Figure 7 shows the judgements for Emb A B for all combinators except for mixin, view
and sequential composition ;. The judgements for Th are obtained from these by replacing
the final ∶ Emb A B with ∶ Th. The judgements are defined by mutual recursion: a combine,
even elaborated as a theory, does take two views as arguments. The judgements for Emb A B

are obtained by replacing the final ∶ Emb A B with ∶ View A B (recall that all embeddings are
views).

A,B,C ∶ Th X ∶ View A B Y ∶ View B C

X ;Y ∶ Th

A,B,C ∶ Th X ∶ Emb A B Y ∶ Emb B C

X ;Y ∶ Emb A C

A,B,C ∶ Th X ∶ View A B Y ∶ View B C

X ;Y ∶ View A C

Fig. 8 Types for composition (;)

22 Jacques Carette et al.

Figure 8 shows the 3 judgements for ;. These are also mutually recursive but in a non-
uniform pattern. Also, in light of Proposition 4 below, the first and third rules really stand
for 4 rules each.

C,A′,B′ ∶ Th A′ =C[A]⋊A+ B′ =C[B]⋊B+

A ∶ View C A′ B ∶ Emb C B′ r1,r2 ∶ Perm ∅ ∀x ∈ ∣A′∣,y ∈ ∣B′∣.r1 (x) = r2 (y)⇔ ∃z ∈ ∣C∣ . x = z[A] ∧y = z[B]
mixin A r1 B r2 ∶ Th

C,A′,B′ ∶ Th A′ =C[A]⋊A+ B′ =C[B]⋊B+

A ∶ View C A′ B ∶ Emb C B′ r1,r2 ∶ Perm ∅ ∀x ∈ ∣A′∣,y ∈ ∣B′∣.r1 (x) = r2 (y)⇔ ∃z ∈ ∣C∣ . x = z[A] ∧y = z[B]

mixin A r1 B r2 ∶ View C (C[A]⋊r1 ⋅A
+ ⋊r2 ⋅B

+)

A ∶ Th B ∶ Th v ∶ Assign A B

view A as B as v ∶ View A B

Fig. 9 Types for mixin and view

The rules for mixin (in Figure 9) are very similar to those for combine, except the first
argument A is now a view and the result is either a presentation or a view. A view of course
just elaborates to a view but from an assignment.

Of course, we then have a basic soundness result:

Theorem 3 The following hold:

– If C ∶ Th then JCKB is defined.
– If C ∶ Emb A B then JCKE is defined.
– If C ∶ View A B then JCKB→ is defined.

The proofs all proceed by induction on the derivations. As they completely mirror the
proofs from the previous section and no new ideas are needed, so these are omitted.

As can be seen both in the algorithms and in the rules above, the interpretation as a
presentation of an embedding or a view are the target theories themselves:

Proposition 2 If C ∶ Emb A B then JCKB = JBKB.

Proposition 3 If C ∶ View A B then JCKB = JBKB.

Proposition 4 If C ∶ Emb A B then C ∶ View A B.

Again, these proceed by induction on the derivations. The type system was created by
reverse-engineering these properties and so the results follow the reasoning embedded in the
proofs in the previous section.

6 Examples

We show some progressively more complex examples, drawn from our library [19]. These
are chosen to illustrate the power of the combinators and how they solve the various prob-
lems we highlighted in §2.

The simplest use of combine comes very quickly in a hierarchy built using tiny theories,
namely when we construct a pointed magma from a magma and (the theory of) a point.

Building on the Diamonds between Theories: Theory Presentation Combinators 23

Empty := Theory { }
C a r r i e r := e x t end Empty {U : S e t }
Magma := e x t end C a r r i e r {* : U → U → U}
P o i n t e d := e x t end C a r r i e r { e : U}
PointedMagma := combine Magma {} P o i n t e d {}

The definition of PointedMagma can alternatively be written as (Magma ∣∣ Pointed), where
∣∣ is used as sugar for combine.
If we want a theory of two points, we need to rename one of them:

TwoPointed := combine P o i n t e d {} P o i n t e d { e ↦ e ′}

We can also extend by properties:

L e f t U n i t a l := e x t end PointedMagma
{ l e f t I d e n t i t y : {x : U} → e * x = x}

This illustrates a design principle: properties should be defined as extensions of their
minimal theory. Such minimal theories are most often signatures, in other words property-
free theories. By the results of the previous section, this maximizes reusability. Even though
signatures have no specific status in our framework, they arise very naturally as “universal
base points” for theory development.

LeftUnital has a natural dual, RightUnital. While RightUnital is straightforward to
define explicitly, this should nevertheless give pause, as this is really duplicating information
which already exists. We can use the following self-view to capture that information:

F l i p := v i ew Magma as Magma v i a {* ↦ λ x y ⋅ y * x}

Note that there is no interpretation for JFlipKB as a theory or as an embedding; if we were
to perform the substitution directly, we would obtain

Theory { U : t ype ; fun (x , y) . y * x : (U,U) → U }

which is ill-defined since it has a non-symbol on the left-hand-side and it contains the unde-
fined symbol ∗.

One could be tempted to write

R i g h t U n i t a l := mixin F l i p {} L e f t U n i t a l {}

but this is also incorrect since LeftUnital is an extension from PointedMagma, not Magma.
The solution is to write

R i g h t U n i t a l := mixin F l i p {} , (PointedMagma ; L e f t U n i t a l) {}

which gives a correct result but with an axiom still called leftIdentity; the better solution
is to write

R i g h t U n i t a l := mixin F l i p {}
(rename (PointedMagma ; L e f t U n i t a l)

{ l e f t I d e n t i t y to r i g h t I d e n t i t y })

which is the RightUnital we want. The construction also makes available an embedding
from Magma (as if we had done the construction manually) as well as views from LeftUnital

and Magma.
The syntax used above is sub-optimal: the path PointedMagma;LeftUnital may well

be needed again and should be named. In other words,

24 Jacques Carette et al.

RightUnital LeftUnital

Magma Magma

LeftUnital

Magma

FlipRU

JRightUnitalKE

JFlipKB→

JLeftUnitalKE

JLeftUnitalKE

JidKE

FlipLU

JFlipKB→

Fig. 10 Construction of LeftUnital and RightUnital. See the text for the interpretation.

L e f t U n i t := PointedMagma ; L e f t U n i t a l

is a useful intermediate definition.
The previous examples reinforce the importance of signatures and of morphisms from

signatures to “interesting” theories as important, separate entities. For example, Monoid as
an embedding is most usefully seen as a morphism from PointedMagma.

Our machinery also allows one to construct the inverse view, from LeftUnital to
RightUnital. Consider the view Flip;LeftUnital and the identity view from LeftUnital

to itself. These are exactly the inputs for mediate, which returns a (unique) view from
LeftUnital to RightUnital. Furthermore, we obtain (from the construction of the mediat-
ing view) that this view composes with that from RightUnital to LeftUnital to give the
identity. This is illustrated in Figure 6 where the J−KB→ annotations on nodes are omitted;
note that the morphisms are in C, not P. Let

RU = C(JFlipKB→ ,JLeftUnitalKE,JidKπ ,J[leftIdentity↦ rightIdentity]Kπ)

then FlipRU = RU.viewLeftUnital and

FlipLU = RU.mediateLeftUnital (JLeftUnitalKE;JFlipKB→ ,JidKE)

The constrution of mediate insures that FlipLU ;FlipRU = JidKE, provided that we know
that

JFlipKB→ ;JFlipKB→ = JidKB→ ∶ JMagmaKB→ JMagmaKB.

The above identity is not, however, structural, it properly belongs to the underlying type
theory: it boils down to asking if

∀x ∶U.flip(flip x) =βηδ x

or, to use the notation of §3.1,

[U ∶ Type,x ∶U] ⊢ flip(flip x) ≡ x ∶U.

Building on the Diamonds between Theories: Theory Presentation Combinators 25

7 Discussion

We comment on the applicability of our work, the use of definitions in theories, an imple-
mentation and drawbacks of our choices.

7.1 Applicability

We have tried to be parametric in the underlying dependently typed theory (DTT). From
a categorical point of view, contextual categories [21] as a model of DTT informs us that
this is feasible. A numbers of features can be added to the type theory, at no harm to the
combinators themselves – see Jacobs [48] and Taylor [75] for many such features. We do
make full use of the fact that we target dependent type theories and so are not sure if our
approach can be adapted, or even well suited, to weaker type theories.

7.2 Definitional extensions

One of the features that we initially built in was to allow definitions in our theory presen-
tations. This restriction is only for presentations, general morphisms are also definitions.
Definitions in theory presentations are useful when transporting theorems from one setting
to another, as is done when using the “Little Theories” method [30]. It is beneficial to first
build up towers of conservative extensions above each of the theories, so as to build up a
more convenient common vocabulary, which then makes interpretations easier to build (and
use) [17]. However, this complicates the meta-theory, and that feature has been removed
from the current version. We hope to use ideas from [58] towards this goal. A referee help-
fully pointed out that we can likely regain this feature by restricting embeddings so that they
necessarily map undefined symbols to undefined symbols but we have not been had the time
to verify this.

7.3 Implementation

We have implemented a “flattener” for our semantics, which turns a presentation A given in
our language into a flat presentation Theory{ l} by computing cod(JAKE). We have been
very careful to ensure that all our constructions leave no trace of the construction method
in the resulting flattened theory. We strongly believe that users of theories do not wish to be
burdened by such details. Tom Hales [39, point # 7] makes this point convincingly.

Furthermore, we want developers to have maximal freedom in designing a modular,
reusable and maintainable hierarchy without worrying about backwards compatibility of the
hierarchy, only the end results: the theory presentations.

Three prototypes have been created : a stand-alone version [20,19], one as emacs macros
aimed at Agda [3], another [67] in MMT [65]. Unfortunately, although useful, none of these
are entirely faithful to the semantics presented here. We have a full on atop tog [54], an
implementation of Martin-Löf Type Theory. Here we focus on the tog implementation.

We keep an explicit theory graph, as well as a list of named renamings (so that they are
easier to reuse). For example

Map p lus − z e r o = {op t o + ; e t o 0}

26 Jacques Carette et al.

is then used in the definition of AdditiveMonoid

Addi t iveMonoid =
combine A d d i t i v e P o i n t e d S e m i g r o u p {} Monoid p lus − z e r o

ove r P o i n t e d S e m i g r o u p

In the syntax above, we use an explicit over clause, which is not in §5.1. This is redundant
information but it seems to make the overall expression much easier to understand, as it
documents the common source of the morphisms. We use this pervasively in our combine
expressions.

Every theory expression adds both theories and morphisms to the graph. Currently, the-
ories are given names by the user and morphisms get system-derived names (prefixed by
“To” for views, prefixed by “To” and suffixed by “1”, “2” and “D” for the left, right and
diagonal morphism for mixins). We are looking at improving the usability of this aspect.
Generally we have found that we can refer to most morphisms implicitly.

Our rebuilt library consists of 230 theories, up to Ring and BoundedDistributiveLattice,
using the tiny theories approach. Figure 11 shows how AdditiveMonoid is described in the
library, capturing most of the structure described in Figure 2.

The flattener gives the following presentation for AdditiveMonoid, a dependent record
parameterized over the carrier, which is type checked by Tog:

r e c o r d Addi t iveMonoid (A : S e t) : S e t where
c o n s t r u c t o r Addi t iveMonoidC
f i e l d

+ : A −> A −> A
a s s o c i a t i v e + :

(x : A) (y : A) (z : A) −> + (+ x y) z == + x (+ y z)
0 : A
l u n i t 0 : (x : A) −> + 0 x == x
r u n i t 0 : (x : A) −> + x 0 == x

Because of technical issues with how Tog works4, it turns out that having the carrier auto-
matically extracted into a parameter scales better. The two definitions are isomorphic and
can be proven so in Agda (and Coq and Idris).

7.4 Drawbacks

While our work shows that these combinators work very well for building a substantial li-
brary of theories, it is not particularly beginner friendly. To use it well requires understanding
the full graph structure of theories.

If one were to draw the graph of derived morphisms for AdditiveMonoid, the resulting
picture is not quite the one introduced in Figure 2. Consider for example the following three
morphisms.

– AdditiveUnitalÐ→ AdditiveMonoid

– AdditiveSemigroupÐ→ AdditiveMonoid

– MonoidÐ→ AdditiveMonoid

4 i.e. because it lacks universes

Building on the Diamonds between Theories: Theory Presentation Combinators 27

Map p l u s = {op t o +}
Map z e r o = {e t o 0}
Map p lus − z e r o = {op t o + ; e t o 0}

Theory Empty = {}
C a r r i e r = extend Empty {A : S e t }
P o i n t e d = extend C a r r i e r {e : A}
P o i n t e d Z e r o = rename P o i n t e d z e r o
Magma = extend C a r r i e r {op : A → A → A}
AdditiveMagma = rename Magma p l u s

PointedMagma = combine P o i n t e d {} Magma {} ove r C a r r i e r
Pointed0Magma = combine P o i n t e d Z e r o {} PointedMagma z e r o

ove r P o i n t e d
PointedPlusMagma =

combine AdditiveMagma {} PointedMagma p l u s ove r Magma
Addi t ivePoin tedMagma =

combine Pointed0Magma p l u s PointedPlusMagma z e r o
ove r PointedMagma

Semigroup =
extend Magma

{ a s s o c i a t i v e o p : {x y z : A} → op (op x y) z == op x (op y z)}
A d d i t i v e S e m i g r o u p =

combine AdditiveMagma {} Semigroup p l u s ove r Magma
P o i n t e d S e m i g r o u p = combine Semigroup {} PointedMagma {} ove r Magma
A d d i t i v e P o i n t e d S e m i g r o u p =

combine Addi t ivePoin tedMagma {} P o i n t e d S e m i g r o u p p lus − z e r o
ove r PointedMagma

L e f t U n i t a l = extend PointedMagma { l u n i t e : {x : A} → op e x == x}
R i g h t U n i t a l = extend PointedMagma { r u n i t e : {x : A} → op x e == x}
U n i t a l = combine L e f t U n i t a l {} R i g h t U n i t a l {} ove r PointedMagma
A d d i t i v e U n i t a l =

combine Addi t ivePoin tedMagma {} U n i t a l p lu s − z e r o
ove r PointedMagma

Monoid = combine U n i t a l {} P o i n t e d S e m i g r o u p {} ove r PointedMagma
Addi t iveMonoid =

combine A d d i t i v e P o i n t e d S e m i g r o u p {} Monoid p lus − z e r o
ove r P o i n t e d S e m i g r o u p

Fig. 11 Definitions of a theory graph up to AdditiveMonoid.

Only the last two of these can be naturally inferred from the resulting graph. Of course,
using explicit calls to view and diag lets one see the necessary components. Nevertheless,
getting at them is not easy.

Unfortunately, computing general colimits, or using diagram-level combinators [67] is
not necessarily a solution, as these make the naming problem considerably worse.

We believe that, because pushouts are associative and commutative, providing syntax
for chaining them would make getting at all induced morphisms easy. Unfortunately, this is
not the case.

8 Related Work

Building large formal libraries while leveraging the structure of the domain is not new and
has been tackled by theoreticians and system builders alike. We have been particularly in-

28 Jacques Carette et al.

spired by the early work of Goguen and Brustall on Clear [11,12] and OBJ [35]. The se-
mantics of their combinators is given in the category of specifications and specification
morphisms. ASL [82] and Tecton [52,51] are also systems that embraced the idea of theory
expressions early on. The Specware [70,71] system focuses on using the structure of theory
and theory morphisms to compose specifications via applying refinement combinators and
in the end to generate software that is correct-by-construction. The idea of defining combi-
nators over theories has also been used in Maude[28] and Larch [38]. These systems gave
us basic operational ideas and some of the semantic tools we needed.

However, note that the systems above are largely specification systems, whereas our
interests lie largely in interactive theorem proving (ITP) systems. This explains some dif-
ferences in requirements. In ITP, instantiating theories, in the same system, is a crucial
operation and so we need to be able to “see” the theories, i.e. they need to have a syntactic
representation.

Institutions might appear to be an ideal setting for our work. The relation to categorical
logic has been worked out [36]. However, the issues with names remains. Also, it is unclear
if the fibrations, crucial for mixin, are present in this setting.

A successor of ASL, CASL [24] and its current implementation Hets [56] offers many
more combinators than we do for structuring specifications, as well as a documented cate-
gorical semantics. To compare with our combine, CASL has a sum operation (on a “same
name, same thing” basis [6, p. 17]) that builds a colimit, similar to what is also done in
Specware. However the use of “same name, same thing” is problematic when combining
theories developed independently that might (accidentally) use the same name for differ-
ent purposes, as we show below in the example that combines specifications S1 and S2 over
Carrier. CASL structured specifications offer additional features: they allow a user to spec-
ify that a model of a specification should be free, or to derive a specification from a previous
one via hiding certain fields. Unfortunately, as the CASL manual also points out [24, p. 36]
“The interpretation is essentially based on model classes – a ‘flattening’ reduction to sets of
sentences is not possible, in general (due to the presence of constructs such as hiding and
freeness).” In other words, one cannot provide a constructive instantiation of these, which is
incompatible with the ITPs we target.

For concreteness, we conducted some experiments using the CASL online tool [76]
based on HETS [56]. Note that the definition of Ring below is not the one in the CASL
library, which is much more disciplined than this.

1. Suppose we define Ring by combining Monoid and AbelianGroup, where each is de-
fined independently, without extending a common theory.

spec Monoid =

sort Elem

ops e: Elem;

__ * __: Elem * Elem -> Elem, assoc, unit e

end

spec AbelianGroup =

sort Elem

ops e: Elem;

__ * __: Elem * Elem -> Elem, assoc, unit e, comm

forall x: Elem

. exists x’: Elem . x’ * x = e %(inv_Group)%

Building on the Diamonds between Theories: Theory Presentation Combinators 29

spec Ring =

AbelianGroup with sort Elem,

ops __ * __ |-> __ + __,

e |-> 0

and

Monoid with ops e, __*__

then

forall x,y,z:Elem

. (x + y) * z = (x * z) + (y * z) %(distr1_Ring)%

. z * (x + y) = (z * x) + (z * y) %(distr2_Ring)%

end

This definition is accepted and the correct definition of Ring is computed. Understanding
exactly what pushout this is supposed to denote is not obvious. Note that the CASL
library includes the following definition of a view from AbelianGroup to Ring

view AbelianGroup_in_Ring_add :

AbelianGroup to Ring =

ops e |-> 0,

__ * __ |-> __ + __

end

and uses a verbatim copy of it in the definition of Ring. Our approach eliminates this
redundancy.

2. Defining the following sum operation

spec Carrier =

sort Elem

spec S1 =

Carrier

then

ops e : Elem

__*__ : Elem * Elem -> Elem, unit e

spec S2 =

Carrier

then

ops e : Elem

__+__ : Elem * Elem -> Elem, unit e

spec S3 = S1 and S2

the computed S3 has a carrier, two operations, and one point that acts as the unit of both
operations. A proper pushout over Carrier should contain two points, each being the
unit for one of the operations.

We also ran the same examples in Isabelle/HOL, with similar results. We have not been
able to find a clear explanation of how Specware or Maude handle name clash problems.
Recently, [23] gives alternatives for choosing names when a clash happen. Our choice to
ask library developers to resolve the issue does put an extra burden on them, but also gives
them the perfect opportunity to choose tradional notations.

30 Jacques Carette et al.

Limitations of “same name, same thing” were already recognized in [62], which focuses
on composing specifications and checking for isomorphism. There is no clear exposition on
how name clashes are dealt with in this approach. [62] shares with us the desire for extreme
modularity, taking a different route to get there. As far as we know, no implementation of
this work survives.

More abstractly, Universal algebra [79,10], specifically its constructions, has introduced
the idea of manipulating theory presentations as algebraic objects. The generalization from
the single-sorted equational approach to the dependently typed setting is discussed by Cart-
mell [21] and Taylor [75]. As we eschew all matters dealing with models, the syntactic
manipulation aspects of universal algebra generalize quite readily. The syntactic concerns
are also why Lawvere theories [53] are not as important to us. Sketches [5] certainly could
have been used but would have led us too far away from directly using structures already
present in the λ -calculus (namely contexts).

The Harper-Mitchell-Moggi work on Higher-order Modules [41] covers some of the
same themes we do: a set of constructions (at the semantic level) similar to ours is de-
veloped for ML-style modules. However, it does not provide external syntax and does not
address the application to structuring a large library of theories (or modules). Also, they do
not use fibrations, since they avoided such issues “by construction”. Moggi returned to this
topic [55] and did make use of fibrations as well as categories with attributes, a categorical
version of contexts. Post-facto, it is possible to recognize some of our ideas as being present
in Section 6 of that work; the emphasis is however completely different. In that same vein
Structured theory presentations and logic representations [42] does have a set of combina-
tors. However, some parts of the semantics are unclear: Definition 3.3 of the signature of
a presentation requires that both parts of a union must have the same signature (to be well
formed) and yet their Example 3.6 on the next page is not well formed. That being said,
many parts of the theory-level semantics is the same.

A 1997 Ph.D. thesis by Sherri Shulman [69] presents combinators to combine, gener-
alize, extend, and instantiate theory presentations. It shares some of our ideas on extreme
modularity. However, the semantics are unclear at some points, especially in cases where
theories have parts in common; there are heavy restrictions on naming and no renaming,
which makes the building of large hierarchies fragile.

Taylor’s magnificent “Practical Foundations of Mathematics” [75] does concern itself
with syntax. Although the semantic component is there, there are no algorithms and no
notion of building up a library. The categorical tools are presented too but not in a way
to make the connection sufficiently clear so as to lead to an implementable design. That
work did lead us to investigate aspects of Categorical Logic and Type Theory, as exposed
by Jacobs [48]. This work and the vast literature on categorical approaches to dependent
type theory [61,33,47,45,44,43,29,2,22,74,32,31] reveal that the needed structure really
is already present and just needs to be reflected back into syntax.

MMT [65] shares the same motivation of building theories modularly with morphisms
connecting them. It is foundation independent and possesses some rather nice web-based
tools for pretty display. Its prototype theory expressions are built based on our work, which
we shared with the authors. However, apart from inclusions, all morphisms need to be given
manually — [27] shows some examples. Many of the scaling problems that we have identi-
fied are still present. Also, the extend operation (named include) is theory-internal and its
semantics is not given through flattening. The result is that their theory hierarchies explicitly
suffer from the “bundling” problem, as lucidly explained in [73], who introduce type classes
in Coq to help alleviate this problem.

Building on the Diamonds between Theories: Theory Presentation Combinators 31

Coq has both Canonical Structures and type classes [73] but no combinators to make
new ones out of old. Similarly, Lean [57] has some (still evolving) structuring mechanisms
but not combinators to form new theories from old.

Isabelle’s locales support locale expressions[4], which are also reminiscent of ours.
However, we are unaware of a denotational semantics for them; furthermore, neither com-
bine nor mixin are supported; their merge operation uses a same-name-same-thing seman-
tics. Axiom [49] does support theory formation operations but these are quite restricted, as
well as defined purely operationally. They were meant to mimic what mathematicians do
informally when operating on theories. To the best of our knowledge, no semantics for them
has ever been published.

9 Conclusion

There has been a lot of work done in mathematics to give structure to mathematical theories,
first via universal algebra, then via category theory. But even though a lot of this work started
out being syntactic, very quickly it became mostly semantic within a non-constructive meta-
theory and thus largely useless for the purposes of concrete implementations and full au-
tomation.

Here we make the observation that, for dependent type theories in common use, the
category of theory presentations coincides with the opposite of the category of contexts.
This allows us to draw freely from developments in categorical logic, as well as to continue
to be inspired by algebraic specifications. Interestingly, key here is to make the opposite
choice as Goguen’s (as the main inspiration for the family of OBJ languages) in two ways:
our base language is firmly higher-order, as well as dependently typed, while our “module”
language is first-order and we work in the opposite category.

We provide a variant of “theory expression combinators” inspired by this semantics from
categorical logic. We carefully outline the target audience for these combinators (system
builders) and the requirements we feel they must fulfill. Our implementation shows that we
seem to have succeeded in doing so. We can capture mathematical structure quite efficiently,
while still allowing full flattening.

The design was firmly driven by its main application: to build a large library of math-
ematical theories, while capturing the inherent structure known to be present in such a de-
velopment. To reflect mathematical practice, it is crucial to take names seriously. Thus re-
namings are fundamental, as they are in specification languages, but rather unlike today’s
interactive theorem provers. Categorical semantics and the desire to capture structure inex-
orably lead us towards considering theory morphisms as the primary notion of study — even
though our original goal was grounded in the theories themselves. The drawback is that the
resulting system requires more knowledge of theory graphs than most users really want to
learn. This is one reason we aim this work at system builders.

Paying close attention to the “conventional wisdom” of category logic and categorical
treatments of dependent type theory led to taking both cartesian liftings and mediating mor-
phisms as important concepts. Doing so immediately improved the compositionality of our
combinators. Noticing that this puts the focus on fibrations was also helpful. Unfortunately,
taking names seriously means that the fibrations are not cloven; we turn this into an oppor-
tunity for users to retain control of their names, rather than to force some kind of “naming
policy”.

A careful reader will have noticed that our combinators are “external”, in the sense that
they take and produce theories (or morphisms or ...). Current programming languages tend

32 Jacques Carette et al.

to provide “internal” combinators, such as include, potentially with post facto qualifiers
(such as ocaml’s with for signatures) to “glue” together items that would have been iden-
tified in a setting where morphisms, rather than theories, are primary. Furthermore, we are
unaware of any system that guarantees that their equivalent to our combine is commutative
(Proposition 1). Lastly, this enables future features, such as limits of diagrams, rather then
just binary combinations/mixins.

We used our first prototype [19] to capture the knowledge for most of the theories on
Jipsen’s list [50] as well as many others from Wikipedia, most of the modal logics on Hal-
leck’s list [40], as well as two formalizations of basic category theory, once dependently-
typed and another following Lawvere’s ETCS approach as presented on the nLab [59]. To-
tally slightly over 1000 theories in slightly over 2000 lines of code, this demonstrates that
our combinators, coupled with the tiny theories approach, does seem to work. Our current
implementation [16] atop Tog is rebuilding this library and seems to get there with even
fewer lines of code.

Even more promising, our use of standard categorical constructions points the way to
simple generalizations which should allow us to capture even more structure, without having
to rewrite our library. Furthermore, as we are largely independent of the details of the type
theory, this structure seems very robust and our combinators should thus port easily to other
systems. We are currently actively investigating this for Agda and Lean.

Acknowledgements We warmly thank one referee for their very detailed comments and who clearly went
above and beyond to help us. We also wish to thank the editor, who was both patient with us and agreed to
our unusual request of relaying a few extra question to the referee for us.

Thanks also to Michael Kohlhase, Florian Rabe and William M. Farmer for many fruitful conversations
on this topic. thankful to them. Also, thanks to the participants of the Dagstuhl Seminar 18341 “Formalization
of Mathematics in Type Theory” whose interest in this topic helped insure that this paper got finished.

References

1. Agda Standard Library. https://github.com/agda/agda-stdlib
2. Ahrens, B., Lumsdaine, P.L.: Displayed categories. arXiv preprint arXiv:1705.04296 (2017)
3. Al-hassy, M.: next-700-module-systems. https://github.com/alhassy/

next-700-module-systems. Accessed: 2019-11-20
4. Ballarin, C.: Locales and locale expressions in isabelle/isar. In: International Workshop on Types for

Proofs and Programs, pp. 34–50. Springer (2003)
5. Barr, M., Wells, C.: Category theory for computing science, vol. 49. Prentice Hall New York (1990)
6. Bidoit, M., Mosses, P.D.: CASL User Manual: Introduction to Using the Common Algebraic Specifica-

tion Language, vol. 2900. Springer (2003)
7. Bracha, G.: The programming language jigsaw: Mixins, modularity and multiple inheritance. Ph.D.

thesis, The University of Utah (March 1992)
8. Brady, E.C.: IDRIS — systems programming meets full dependent types. In: Proceedings of the 5th

ACM workshop on Programming languages meets program verification, PLPV ’11, pp. 43–54. ACM,
New York, NY, USA (2011). DOI http://doi.acm.org/10.1145/1929529.1929536. URL http://doi.
acm.org/10.1145/1929529.1929536

9. Brooks, F.P.: The Mythical Man-Month: Essays on Software Engineering, Anniversary Edition (2nd
Edition), anniversary edn. Addison-Wesley Professional (1995). URL http://www.worldcat.org/
isbn/0201835959

10. Burris, S., Sankappanavar, H.: A course in universal algebra. Graduate texts in mathematics. Springer-
Verlag (1981). Available free at http://www.math.uwaterloo.ca/~snburris/htdocs/ualg.
html

11. Burstall, R.M., Goguen, J.A.: Putting theories together to make specifications. In: IJCAI, pp. 1045–1058
(1977)

Building on the Diamonds between Theories: Theory Presentation Combinators 33

12. Burstall, R.M., Goguen, J.A.: The semantics of clear, a specification language. In: D. Bjørner (ed.)
Abstract Software Specifications, Lecture Notes in Computer Science, vol. 86, pp. 292–332. Springer
(1979)

13. Carette, J., Farmer, W.M.: High-level theories. In: A.e.a. Autexier (ed.) Intelligent Computer Mathemat-
ics, Lecture Notes in Computer Science, vol. 5144, pp. 232–245. Springer-Verlag (2008)

14. Carette, J., Farmer, W.M., Jeremic, F., Maccio, V., O’Connor, R., Tran, Q.: The mathscheme library:
Some preliminary experiments. Tech. rep., University of Bologna, Italy (2011). UBLCS-2011-04

15. Carette, J., Farmer, W.M., Sharoda, Y.: Biform theories: Project description. In: International Conference
on Intelligent Computer Mathematics, pp. 76–86. Springer (2018)

16. Carette, J., Farmer, W.M., Sharoda, Y.: Leveraging the information contained in theory presentations.
In: C. Benzmüller, B. Miller (eds.) Intelligent Computer Mathematics, pp. 55–70. Springer International
Publishing, Cham (2020)

17. Carette, J., Farmer, W.M., Wajs, J.: Trustable communication between mathematical systems. In:
T. Hardin, R. Rioboo (eds.) Proceedings of Calculemus 2003, pp. 58–68. Aracne, Rome (2003)

18. Carette, J., Kiselyov, O.: Multi-stage programming with functors and monads: Eliminating abstraction
overhead from generic code. Sci. Comput. Program. 76(5), 349–375 (2011)

19. Carette, J., O’Connor, R.: Prototype of Mathscheme Combinators. https://github.com/
JacquesCarette/MathScheme/tree/master/prototype

20. Carette, J., O’Connor, R.: Theory presentation combinators. In: J. Jeuring, J.a. Campbell, J. Carette,
G. Reis, P. Sojka, M. Wenzel, V. Sorge (eds.) Intelligent Computer Mathematics, Lecture Notes
in Computer Science, vol. 7362, pp. 202–215. Springer Berlin Heidelberg (2012). DOI 10.1007/
978-3-642-31374-5 14. URL http://dx.doi.org/10.1007/978-3-642-31374-5_14

21. Cartmell, J.: Generalised algebraic theories and contextual categories. Annals of Pure and Applied Logic
32, 209 – 243 (1986). DOI 10.1016/0168-0072(86)90053-9. URL http://www.sciencedirect.
com/science/article/pii/0168007286900539

22. Clairambault, P., Dybjer, P.: The biequivalence of locally cartesian closed categories and martin-löf type
theories. Mathematical Structures in Computer Science 24(6) (2014)

23. Codescu, M., Mossakowski, T., Rabe, F.: Canonical Selection of Colimits. In: P. James, M. Roggenbach
(eds.) Recent Trends in Algebraic Development Techniques, pp. 170–188. Springer (2017)

24. CoFI (The Common Framework Initiative): CASL Reference Manual. LNCS Vol. 2960 (IFIP Series).
Springer-Verlag (2004)

25. mathlib Community, T.: The lean mathematical library (2019)
26. Ducasse, S., Nierstrasz, O., Schärli, N., Wuyts, R., Black, A.P.: Traits: A mechanism for fine-grained

reuse. ACM Trans. Program. Lang. Syst. 28(2), 331–388 (2006). DOI 10.1145/1119479.1119483. URL
http://doi.acm.org/10.1145/1119479.1119483

27. Dumbrava, S., Horozal, F., Sojakova, K.: A case study on formalizing algebra in a module system. In:
Proceedings of the 1st Workshop on Modules and Libraries for Proof Assistants, MLPA ’09, pp. 11–18.
ACM, New York, NY, USA (2009). DOI 10.1145/1735813.1735816. URL http://doi.acm.org/
10.1145/1735813.1735816

28. Durán, F., Meseguer, J.: Maude’s module algebra. Science of Computer Programming 66(2), 125–153
(2007)

29. Dybjer, P.: Internal type theory. In: International Workshop on Types for Proofs and Programs, pp.
120–134. Springer (1995)

30. Farmer, W.M., Guttman, J.D., Thayer, F.J.: Little theories. In: CADE-11: Proceedings of the 11th Inter-
national Conference on Automated Deduction, pp. 567–581. Springer-Verlag, London, UK (1992)

31. Fiore, M.P.: Mathematical models of computational and combinatorial structures. In: International Con-
ference on Foundations of Software Science and Computation Structures, pp. 25–46. Springer (2005)

32. Firore, M., Turi, D.: Semantics of name and value passing. In: Proceedings 16th Annual IEEE Sympo-
sium on Logic in Computer Science, pp. 93–104. IEEE (2001)

33. Gambino, N., Larrea, M.F.: Models of martin-löf type theory from algebraic weak factorisation systems
(2019)

34. Geuvers, H., Pollack, R., Wiedijk, F., Zwanenburg, J.: A constructive algebraic hierarchy in coq. Journal
of Symbolic Computation 34(4), 271 – 286 (2002). DOI https://doi.org/10.1006/jsco.2002.0552. URL
http://www.sciencedirect.com/science/article/pii/S0747717102905523

35. Goguen, J., Kirchner, C., Kirchner, H., Mégrelis, A., Meseguer, J., Winkler, T.: An introduction to obj 3.
In: International Workshop on Conditional Term Rewriting Systems, pp. 258–263. Springer (1987)

36. Goguen, J.A., Mossakowski, T., de Paiva, V., Rabe, F., Schröder, L.: An institutional view on categorical
logic. Int. J. Software and Informatics 1(1), 129–152 (2007)

37. Grabowski, A., Schwarzweller, C.: On duplication in mathematical repositories. In: S. Autexier, J. Cal-
met, D. Delahaye, P. Ion, L. Rideau, R. Rioboo, A. Sexton (eds.) Intelligent Computer Mathematics,
Lecture Notes in Computer Science, vol. 6167, pp. 300–314. Springer Berlin / Heidelberg (2010). DOI
10.1007/978-3-642-14128-7 26

34 Jacques Carette et al.

38. Guttag, J.V., Horning, J.J.: Larch: languages and tools for formal specification. Springer Science &
Business Media (2012)

39. Hales, T.: A review of the lean theorem prover (2018). URL https://jiggerwit.wordpress.com/
2018/09/18/a-review-of-the-lean-theorem-prover/

40. Halleck, J.: Logic system interrelationships. http://www.horizons-2000.org/2.%20Ideas%
20and%20Meaning/John%20Halleck%27s%20Logic%20System%20Interrelationships.html.
Accessed: December 14, 2018

41. Harper, R., Mitchell, J.C., Moggi, E.: Higher-order modules and the phase distinction. In: Proceedings of
the 17th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp. 341–354.
ACM (1989)

42. Harper, R., Sannella, D., Tarlecki, A.: Structured theory presentations and logic representations. An-
nals of Pure and Applied Logic 67(1), 113 – 160 (1994). DOI https://doi.org/10.1016/0168-0072(94)
90009-4. URL http://www.sciencedirect.com/science/article/pii/0168007294900094

43. Hofmann, M.: On the interpretation of type theory in locally cartesian closed categories. In: International
Workshop on Computer Science Logic, pp. 427–441. Springer (1994)

44. Hofmann, M.: Extensional concepts in intensional type theory. Ph.D. thesis, University of Edinburgh
(1995)

45. Hofmann, M.: Syntax and semantics of dependent types. In: Extensional Constructs in Intensional Type
Theory, pp. 13–54. Springer (1997)

46. Huet, G.P., Saı̈bi, A.: Constructive category theory. In: G.D. Plotkin, C. Stirling, M. Tofte (eds.) Proof,
Language, and Interaction, Essays in Honour of Robin Milner, pp. 239–276. The MIT Press (2000)

47. Jacobs, B.: Comprehension categories and the semantics of type dependency. Theoretical Computer
Science 107(2), 169 – 207 (1993). DOI https://doi.org/10.1016/0304-3975(93)90169-T. URL http:
//www.sciencedirect.com/science/article/pii/030439759390169T

48. Jacobs, B.: Categorical Logic and Type Theory. No. 141 in Studies in Logic and the Foundations of
Mathematics. North Holland, Amsterdam (1999)

49. Jenks, R.D., Sutor, R.S.: Axiom: the scientific computation system. Springer (1992)
50. Jipsen, P.: List of mathematical structures. http://math.chapman.edu/~jipsen/structures/

doku.php. Accessed: December 14, 2018
51. Kapur, D., Musser, D.: Tecton: a framework for specifying and verifying generic system components.

Tech. rep., Department of Computer Science, Rensselaer Polytechnic Institute, Troy, New York (1992).
RPI-92-20

52. Kapur, D., Musser, D.R., Stepanov, A.A.: Tecton: A language for manipulating generic objects. In:
Program Specification, Proceedings of a Workshop, pp. 402–414. Springer-Verlag, London, UK, UK
(1982). URL http://dl.acm.org/citation.cfm?id=647531.729043

53. Lawvere, W.F.: Functorial Semantics of Algebraic Theories. Reprints in Theory and Applications of
Categories 4, 1–121 (2004). URL http://tac.mta.ca/tac/reprints/articles/5/tr5.pdf

54. Mazzoli, F., Danielsson, N.A., Norell, U., Vezzosi, A., Abel, A.: Tog, a prototypical implementation of
dependent types. https://github.com/bitonic/tog

55. Moggi, E.: A category-theoretic account of program modules. In: Category Theory and Computer Sci-
ence, pp. 101–117. Springer-Verlag, London, UK, UK (1989). URL http://dl.acm.org/citation.
cfm?id=648332.755571

56. Mossakowski, T., Maeder, C., Lüttich, K.: The heterogeneous tool set, hets. In: International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, pp. 519–522. Springer (2007)

57. de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The lean theorem prover (system de-
scription). In: A.P. Felty, A. Middeldorp (eds.) Automated Deduction - CADE-25, pp. 378–388. Springer
International Publishing, Cham (2015)

58. Nederpelt, R., Geuvers, H.: Type Theory and Formal Proof: An Introduction, 1st edn. Cambridge Uni-
versity Press, New York, NY, USA (2014)

59. nLab authors: fully formal ETCS. http://ncatlab.org/nlab/show/fullyRevision 31
60. Norell, U.: Towards a practical programming language based on dependent type theory. Ph.D. thesis,

Dept. Comp. Sci. and Eng., Chalmers Univ. of Technology (2007)
61. North, P.R.: Type-theoretic weak factorization systems (2019)
62. Oriat, C.: Detecting equivalence of modular specifications with categorical diagrams. Theor. Comput.

Sci. 247(1-2), 141–190 (2000)
63. Pitts, A.M.: Categorical logic. In: S. Abramsky, D.M. Gabbay, T.S.E. Maibaum (eds.) Handbook of

Logic in Computer Science, Volume 5. Algebraic and Logical Structures, pp. 39–128. Oxford University
Press (2000). URL http://www.oup.co.uk/isbn/0-19-853781-6

64. Pitts, A.M.: Nominal sets: Names and symmetry in computer science, vol. 57. Cambridge University
Press (2013)

Building on the Diamonds between Theories: Theory Presentation Combinators 35

65. Rabe, F., Kohlhase, M.: A scalable module system. Inf. Comput. 230, 1–54 (2013). DOI 10.1016/j.ic.
2013.06.001. URL http://dx.doi.org/10.1016/j.ic.2013.06.001

66. Rabe, F., Müller, D.: Structuring theories with implicit morphisms. In: J.L. Fiadeiro, I. T, ut,u (eds.)
Recent Trends in Algebraic Development Techniques, pp. 154–173. Springer International Publishing,
Cham (2019)

67. Rabe, F., Sharoda, Y.: Diagram combinators in mmt. In: C. Kaliszyk, E. Brady, A. Kohlhase, C. Sac-
erdoti Coen (eds.) Intelligent Computer Mathematics, pp. 211–226. Springer International Publishing,
Cham (2019)

68. Sakkinen, M.: Disciplined inheritance. In: ECOOP, vol. 89, pp. 39–56 (1989)
69. Shulman, S.J.: A meta-theory for structured presentations in the coc. Ph.D. thesis, Oregon Graduate

Institute of Science & Technology, Beaverton, OR, USA (1997). UMI Order No. GAX97-24794
70. Smith, D.R.: Constructing specification morphisms. Journal of Symbolic Computation 15, 5–6 (1993)
71. Smith, D.R.: Mechanizing the development of software. In: M. Broy, R. Steinbrueggen (eds.) Calcu-

lational System Design, Proceedings of the NATO Advanced Study Institute, pp. 251–292. IOS Press,
Amsterdam (1999)

72. Spitters, B., van der Weegen, E.: Type classes for mathematics in type theory. CoRR abs/1102.1323
(2011). URL http://arxiv.org/abs/1102.1323

73. Spitters, B., van der Weegen, E.: Type classes for mathematics in type theory. Mathematical Structures
in Computer Science 21(4), 795–825 (2011)

74. Streicher, T.: Semantics of type theory: correctness, completeness and independence results. Springer
Science & Business Media (2012)

75. Taylor, P.: Practical Foundations of Mathematics. Cambridge Studies in Advanced Mathematics. Cam-
bridge University Press (1999). URL http://books.google.ca/books?id=iSCqyNgzamcC

76. Team, H.D.: Hets casl web interface. URL http://rest.hets.eu/
77. Team, T.C.D.: The coq proof assistant, version 8.12.0 (2020). DOI 10.5281/zenodo.4021912. URL

https://doi.org/10.5281/zenodo.4021912
78. Univalent Foundations Program, T.: Homotopy Type Theory: Univalent Foundations of Mathematics.

http://homotopytypetheory.org/book, Institute for Advanced Study (2013)
79. Whitehead, A.: A treatise on universal algebra: with applications. No. v. 1 in Cornell University Library

historical math monographs. The University Press (1898). URL http://books.google.ca/books?
id=XUwNAAAAYAAJ

80. Wiki, H.: Functor-applicative-monad proposal (2015). URL https://wiki.haskell.org/
Functor-Applicative-Monad_Proposal. [Online; accessed 14-November-2019]

81. Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schönböck, J., Schwinger, W., Kolovos, D.,
Paige, R., Lauder, M., Schürr, A., Wagelaar, D.: A comparison of rule inheritance in model-to-model
transformation languages. In: J. Cabot, E. Visser (eds.) Theory and Practice of Model Transformations,
pp. 31–46. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

82. Wirsing, M.: Structured algebraic specifications: A kernel language. Theoretical Computer Science 42,
123–249 (1986)

