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Abstract
Many applications in image processing, control systems and other
areas, have very well understood mathematical models. Optimiza-
tion problems, in particular, are a class of (implicit) models which
is particularly useful. When faced with the task to develop such
an application, a software engineer aware of best practices might
use a computer algebra system to compute some problem-specific
quantities which are then put into a simulation environment (such
as Matlab), and ultimately translated to code. Such a process re-
quires the development of multiple versions of the mathematical
model, often by hand, in tools with widely varying levels of for-
malism, which are generally susceptible to soundness problems.
Moreover, it may be very difficult to decide whether the various
models are in fact equivalent. Through an extended example of
a multidimensional Newton’s Method, we demonstrate how com-
puter algebra and theorem proving systems can be used to largely
automate this process. We compute problem-specific quantities, in-
cluding higher-order ones, verify their correctness, and automati-
cally generate code which is verifiably correct. The process com-
bines untrusted components with trusted ones so that failure in an
untrusted component is always detected.

1. Introduction
The Model Driven Development (MDD) methodology can afford
developers significant advantages such as traceability of require-
ments, executability of the model, platform independence, etc.
Selic states that for a model to be useful it must have the five key at-
tributes of abstraction, understandability, accuracy, predictiveness,
and inexpensive [Selic 2003]. An additional attribute required to
realize the full benefits of MDD is the ability to manipulate and
calculate new results from the models. A significant problem is
that most models currently are neither easy to manipulate (if they
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can be manipulated at all), nor can they be used to derive new
results.

While current technology is still unable to manipulate and cal-
culate new results with models of general software applications,
there are significant classes of problems in areas like image pro-
cessing, control systems design, mechanical design, etc., which
have well-understood mathematical models. These can be repre-
sented exactly (although not always in closed-form) via the use of
a computer algebra system (CAS). For certain classes of problems,
the mathematical models may even be coaxed into closed-form so-
lutions. Even from implicit representations, numerical approxima-
tion code is frequently (and easily) derivable. These mathematical
models are usually quite abstract (from a computational point-of-
view) as they usually correspond to the physical model of the un-
derlying problem. But that is also a strength, as they also tend to
be accurate descriptions of the problem, and can be used to pre-
dict the behavior of the system being modeled. In these cases, one
can profitably use the symbolic computation and code generation
capabilities of a CAS, such as Maple, to perform model driven de-
velopment. For example, the mathematical model of a target im-
age for a vision processing system can be modeled in Maple and
then manipulated to derive an efficient solver based upon New-
ton’s method [Korobkine 2002]. Similarly, symbolic methods can
be profitably applied to control systems problems [Munro 1999].

Mathematical models described in a CAS clearly possess the
first four of Selic’s key attributes while his fifth - “inexpensive”
should soon be achieved – engineers are usually already using
mathematical models, but they frequently have to be taught to work
at the model-level rather than relying solely on simulation. As we
will see through our example, some models are easily manipulated
in a CAS, so that a proper MDD methodology can be used with
them.

However, as pointed out in the literature [Harrison and Théry
1998, Kramer 2007, Wester 2000b], CAS typically have soundness
bugs. For example, consider finding the minimum of the function
f(x) = 2x2 + x4 + sin(x + 1). When Maple 131 attempts
to solve this symbolically (using the command minimize(f, x,
location)), it produces the clearly incorrect result +∞; asking
for a numerical solution, we however get the “correct” answer
−0.163103667753977111. Such soundness concerns in CAS, as
well as limitations on the kinds of computations that automated
theorem provers (ATP) can perform, have led to efforts to integrate
CAS with theorem provers such as HOL, Coq and PVS (e.g.,
[Harrison and Théry 1998, Delahaye and Mayero 2005, Adams
et al. 2001]). Such works typically focus on using an ATP to check
the soundness CAS results and/or using the CAS to help the ATP
with proofs. In our case, we are interested in performing provably
correct model driven development. In other words, we want to

1 Similar problems can be found for all CASs.
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verify not just the operations performed by the CAS, but also the
code generated from the model. Checking the soundness of the
algebraic manipulations and generating correctness proofs are the
“necessary evils” to verify and validate our implementation.

The methodology we use is to first create a general MDD en-
vironment for solving a classes of problems which can be well-
modeled using classical mathematics. We then specialize this to a
specific class, and then further specialize to a particular method –
our main example uses an N dimensional Newton’s Method (sec-
tion 2.5). To facilitate the development of a high reliability solu-
tion to specific problem instances, we use the Maple model to not
only compute a solution and generate an implementation, but also
to generate problem specific verification tasks in PVS. This helps
us certify the correctness of both, the Maple computations and the
generated code. We use a unified representation of all aspects of
the mathematical model in Maple, which is then used for all subse-
quent tasks, and in particular, to generate the code and to generate
the PVS proof obligations which “certify” the correctness of the
generated code.

We note that currently we are only verifying that the generated
code agrees with the (syntactic representation of the) model from
which it came, where by “agree” we mean that they define the same
computation over the abstract theory of the reals. In other words,
we prove various theorems relating syntactic equivalence of com-
putations, and we are not consider low-level semantic issues, nor
are we considering numerical issues due to floating-point compu-
tations – although many others are actively working on such prob-
lems. There is much that needs to be done to deliver on the full
promise of provably correct MDD from mathematical models. We
hope that this work helps motivate further research and develop-
ment to this end.

This paper is organized as follows. Section 2 introduces readers
to the mathematical tools employed. Section 3 provides details on
our proposed methodology, and the next section provides a full
length example. Section 5 discusses related work, while Section 6
provides the conclusion and outlines future work.

2. Mathematical Tools
This section provides a brief introduction to the mathematical tools
used in our research. We first illustrate the basic ideas of symbolic
computation in Maple, as well as its code generation capabilities.
We then briefly introduce the proof capabilities of PVS (based on
the introduction in [Formal Methods Program 2003]), as well as its
built-in computational capabilities (PVSio).

2.1 Symbolic Computation in Maple
Maple is a software system for symbolic and numeric computa-
tions, scientific visualization, as well as providing a full-fledged
programming language. Such systems are usually known as com-
puter algebra systems (CAS), but this is misleading. While a CAS
usually does indeed excel in performing algebraic computations
(such as computations with integers, rationals, polynomials, ele-
ments of finite fields, matrices over all the above domains, formal
series, and so on), such systems are really useful through the sym-
bolic computation features they provide.

In general, symbolic computation is any computation done on a
term algebra which contains un-interpreted symbols. In “computer
algebra”, there are simple interpretation functions between the syn-
tactic objects in the term algebra and the semantic objects of the
underlying model. Furthermore, there is a simple correspondence
between computations on the term models and functions on ob-
jects in the models. While in many instances of “symbolic compu-
tation” there are also interpretation functions and correspondences
between computations and functions, the adequacy and soundness

of these can be much more problematic [Stoutemeyer 1991, Wester
2000b].

Nevertheless, it is the power of symbolic computation which
we wish to harness here. In particular, we want to manipulate
mathematical models represented in exact form by closed-form
mathematical formulae. This is a very powerful paradigm, with
a long history of successful applications [Barton and Fitch 1972,
Pavelle 1985, Wester 2000a].

We should note that Maple supports multiple modes of interac-
tion; one can write “interactive documents”, use a top-level Read-
Eval-Print-Loop (REPL), or run batch programs. Each mode has
different uses, and we will not detail them here. For simplicity
we show transcripts of the use of the REPL. Such interactive ses-
sions are useful for exploration and prototyping, but they should be
turned into proper programs once a proper methodology for solving
(a class of) problems is found.

We can illustrate the power of this paradigm with a few exam-
ples of what such a system can do. As a first example, we might
want to determine the value of a4 + b4 + c4 under the constraints

a + b + c = 6

a2 + b2 + c2 = 10

a3 + b3 + c3 = 25.

One way to encode this problem is as one of simplification with
side-relations; in Maple, this translates to the following input:

> simplify (a^4+b^4+c^4, {a+b+c=6,
> a^2+b^2+c^2=10, a^3+b^3+c^3=25});

106

Of more direct interest to us are computations of derivatives and
symbolic expressions for a matrix to be positive definite.

> assume(x::’real’,y::’real’):
> H1 := VectorCalculus:-Hessian
> (2*exp(x)-y^3-8*x*y,[x,y]);

H1 :=

„
2ex −8
−8 −12y2

«
> LinearAlgebra:-IsDefinite(H1);

0 < 2ex and 0 < −12yex − 64

The above already shows an example of why we need to combine
computation and deduction. While the symbolic expression for H1
to be positive definite is correct, it is easy to prove that in fact
2ex > 0 is true, but harder to do a simple “computation” to simplify
this to true.

2.2 Code Generation
For the Maple programs which correspond to traditional (nu-
merical) computations, there are facilities for doing program-to-
program translation, to a variety of languages. As of now2, C, Java,
Matlab, Fortran and VisualBasic are supported target languages.

We will illustrate some of these capabilities via a simple exam-
ple. Using a simple function f (defined as an expression),

> f := 1-x/2+3*x^2-x^3+x^4:

We can create a straight-line-program, or in other words, an
optimized list of computation steps to compute f

> g := codegen:-optimize (f);

g := t2 = x2, t5 = t22, t6 = 1− x
2

+ 3t2 − t2x + t5

2 i.e. in Maple 13.
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This can be translated to a C code fragment
> CodeGeneration:-C([g], ’declare’=[x::float]);

t2 = x ∗ x;

t5 = t2 ∗ t2;

t6 = 0.1e1− x/0.2e1 + 0.3e1 ∗ t2 − t2 ∗ x + t5;

If we are willing to take more time at the stage of code-generation,
we can ask for more efficient code to be generated

> g2 := codegen:-optimize(f, ’tryhard’):
> CodeGeneration:-C([g2],’declare’=[x::float]);

t1 = x ∗ x;

t2 = 0.1e1− x/0.2e1 + (0.3e1− x + t1) ∗ t1;

The efficiency difference in this toy example is minimal, but
nevertheless the generated code to compute f has fewer floating
point instructions and uses fewer locals (which may result in lower
memory usage). In larger examples, the tryhard option can result
in very significant gains [Carette et al. 2008].

It should certainly be noted that such symbolic computations
are not new [Kahrimanian 1953, Gibbons 1960, Wengert 1964],
and the literature on using CASes to help in the production of code
is rather large, with [Dall’Osso 2003, Carette et al. 2008] as two
typical examples.

2.3 PVS
PVS, or Proof Verification System, provides automated support for
specification and verification. It consists of a specification language
integrated with support tools and a theorem prover. The language
is used to define theories and conjectures. Assuming they are cor-
rect, these conjectures can then be discharged using the interactive
theorem prover.

The specification language of PVS is based on higher-order
logic, which is extended with predicate subtypes and dependent
types, as well as a theory system. Type constructors include func-
tions, tuples, records, recursive datatypes (e.g., lists and trees), and
enumerations. Furthermore, sets are represented by their character-
istic predicates. On top of that, PVS provides a large prelude of
theories of useful definitions, axioms and proved theorems.

Generally, the PVS theorem prover is used as an interactive
system, through a Read-Eval-Print-Loop (REPL), much as Maple
is. The PVS theorem prover is interactive and is based on a se-
quent calculus presentation. PVS offers a graphical representation
of proofs in the form of proof trees. These proofs can be saved
as scripts and rerun either automatically, or in a single-step mode.
While basic proof commands are built-in, most are programmed
as strategies. The built-in commands provide powerful automaton
that include decision procedures for unquantified integer and linear
arithmetic, automatic rewriting, and BDD-based propositional sim-
plification and symbolic model-checking. Predicate subtypes of-
fered by the specification language allow for a great deal of specifi-
cation to be embedded in its types. The predicate used for defining a
predicate subtype can be arbitrary. Thus, typechecking can become
undecidable, and may lead to proof obligations called Type Cor-
rectness Conditions (TCCs). Generally, the proof strategies built
into the theorem prover can automatically discharge some of these
obligations. The not so obvious ones, however, are left for the user
to prove. Although PVS has a model checker integrated with its
theorem prover, it lacks the counterexample generation capability.

2.4 PVSio
PVSio is a PVS prelude library extension that extends its ground
evaluator with “a predefined library of imperative programming

1. Express the Model - the model is declaratively expressed in
mathematical terms (symbolic DSL),

2. Transform the Model - transform the initial model into a
form more suitable for computational solutions,

3. Extract Structure - structure and properties are directly ex-
tracted from the model,

4. Optimize the Computation - the structure is used to optimize
the computational “solution” of the model,

5. Generate Correctness Conditions - all of the above infor-
mation is used to generate correctness conditions, and fre-
quently their proofs as well,

6. Generate the Code - low-level code is generated for the
solution.

Figure 1. Methodology

language features such as side effects, unbounded loops, in-
put/output operations, floating point arithmetic, exception han-
dling, pretty printing, and parsing” [Munoz 2005].

The PVSio library is implemented using semantic attachments.
It provides a simple Emacs interface, as well as a stand alone
interface to the ground evaluator. Furthermore, PVSio includes
proof rules that safely integrates the ground evaluator into the PVS
theorem prover. These proof rules use the Common Lisp code
generated by the ground evaluator to simplify ground expressions
in sequent formulas [Munoz 2005].

2.5 Newton’s Method
To demonstrate an application of our methodology, we have chosen
our problem class to be function optimization using multivariate
Newton’s method. It is well-known that if the objective function
being optimized is convex, then Newton’s method will converge
in theory, although in practice it may be very slow and numerical
errors may prevent it from converging. On the other hand, if the
objective function is not convex, it will not converge in general.
However, under mild assumptions, every local minima is contained
in a neighborhood on which the function is convex, which is con-
tained in the basin of convergence of the local minima under the
Newton iteration.

Let JU be the Jacobian of F and HU the Hessian of F with
respect to the variables U . The Newton iteration is defined by the
recursion:

un+1 = un −HU (un)−1JU (un).

At each iteration, Newton’s method is equivalent to forming
a quadratic model of the objective function F around the current
iterate un. When the Hessian matrix, HU (un) is globally positive
definite, the model has a unique minimizer. If the Hessian matrix is
locally positive definite (which is more frequent than being globally
positive definite), then we are at least insured that Newton’s method
will take a ’step’ in the direction of a (local) minimum.

3. General Methodology
Our methodology (Figure 1) starts with a model of the problem
class. Contrary to many other model-driven development method-
ologies, our model is not a software model, or even a software-
inspired model (such as UML), but rather a mathematical model of
the physical process we are interested in. Our model is a mathe-
matical model of the environment and the abstract problem we are
trying to solve, and not a model of our software. In other words,
our models would be recognizable to any traditional engineer as a
“model”. Furthermore, the kinds of processes we are interested in
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Figure 2. System Architecture.

already have well-understood models, generally involving smooth
functions, differential equations, linear algebra and optimization.

We then carry out our task via model manipulations (and op-
timization), code generation and verification condition generation,
directly on (a representation of) the mathematical model. Note that
this is an extension of the methodology of [Carette et al. 2008] to
include verification condition generation.

This method can be implemented in software. Figure 2 shows
the overall system architecture of our implementation. This is
closely related to the “Certifiable Program Generation” of [Denney
et al. 2005] (see section 5.2 for discussion of their work). As they
do, the architecture distinguishes between trusted (grey) and un-
trusted (white) components. Trusted components must be correct.
The presence of errors in any of these components can compromise
the assurance provided by the overall system. Furthermore, the as-
surance provided by our program generation approach does not
depend on the correctness of its two main components: the Maple
computations, and the PVS theorem prover – instead, we need only
trust the problem specification, the safety policies, domain theory,
the pretty-printer and the PVS proof checker. Even in the case of
a failure of the PVS proof checker, in order to miss detecting an
error, Maple must have made an error and/or the pretty printer.

As should be apparent from Figure 2 though, our method cru-
cially relies on the correctness of the various code pretty-printers.

However, we believe that it is considerably easier to write correct
pretty-printers than it is to write a correct Verification Condition
Generator (VCG). Further it might be possible eliminate this po-
tential single point of failure by using another tool to parse the gen-
erated C code and generate another proof obligation to compare
(the model of) the code to the original model in maple which was
used to generate it.

The next section will describe the steps in more detail through
an example, but we first give a high-level outline of the ideas. More
specifically, Express the Model involves writing the Domain The-
ory, and Model parts of the architecture, as well as setting the
Safety/Liveness Policies. This frequently involves creating a sim-
ple DSL (domain specific language), which is straightforward in
any symbolic computation system. As the model is expressed di-
rectly in mathematical terms, which is what a CAS is designed for,
Transform the Model and Extract Structure are in some sense the
easiest step to perform! Various computations like finding deriva-
tives, carrying out linear algebra computations (including comput-
ing inverses, LU decompositions, finding eigenvalues), and so on
are quite easy. The difficulty lies in deciding which transforma-
tions are useful and what structure is actually present in any given
problem. This is the aspect of the work where human ingenuity still
has a significant rôle to play. Given a transformed model and struc-
tural information about that model, there are usually well-known
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solutions methods that can be applied. This is what Optimize the
Computation embodies. And it is at this step where advanced tech-
niques, like Active Libraries [Veldhuizen and Gannon 1998], Tele-
scoping Languages [Kennedy et al. 2001], and SANS [Dongarra
and Eijkhout 2003] can also come in.

In any case, at this point we still possess a model of a com-
putation. From this, we need to Generate Correctness Conditions.
These fall into various classes:

(a) That the new model is equivalent to the original model,

(b) That the extracted structure is correct,

(c) That the model (of a computation) will produce the “answer”
we want when run.

We then have to encode, partly in the Domain Theory and
partly in the Safety/Liveness Policies, the various specifications that
correspond to model equivalence (for a), definition of “extracted
structure” (for b), and the overall process (for c). Each of these
is quite specific to the class of problems being considered, and
are best given by example. In the end, these are also modeled in
our CAS, so that they can be pretty-printed as theories (in PVS,
currently).

Finally, we Generate the Code. More specifically, we simply
“pretty print” the model of the computation as code in various
languages.

Another aspect of our work is that we use both proofs and tests.
In particular, our process generates 3 separate pieces of “code”
from the same model: one each in C, Maple, and PVSio. All 3
can be executed (albeit at vastly different speeds), and their results
can be checked against each other. These are the Solution 1, 2, 3
in Figure 3. In other words, our Models, in both Maple and PVS,
are sufficiently precise that they can be executed.

4. Example
Figure 3 gives an overview of the various levels of our modeling
process. Figure 4 breaks down our code generation and verification
process.

To illustrate our process, consider the following (made up) un-
constrained optimization problem: Consider the following opti-
mization problem:

min
y0,y1,y2∈R

1

2
y2
0

„
1

6
y2
0 + 1

«
+

1

2
ey1−1 + (y1 − 10)4 + (y2 − 4)2.

(1)
The function to minimize, as well as the dimensionality 3 (i.e.

that we are in R3) will be our starting point. This is our model,
and gives us func and N in Figure 4, and the starting point for
the Symbolic Problem Model in Figure 3. A priori, we also choose
Newton’s Method on the gradient of our function as our method
to solve 1. This method requires an initial guess, which we also
provide.

Turning to the mathematics of solving an unconstrained mini-
mization problem via Newton’s method, there are several derived
quantities we need: the gradient of our function (as the minimum
will be amongst its zeroes) as well as the Hessian matrix, both be-
cause Newton’s method requires it (or, more precisely, its inverse),
and because we need to check that we get a minimum (Hessian
should be positive definite) and that we are iterating in a feasible
region (again, Hessian should be positive definite). Mathematically

> InverseThy := proc(A::LetC,B::LetC,argVec,N)
> local idM, i, j;
>
> idM := LetC("identityMatrixNxN",
> LinearAlgebra:-IdentityMatrix(N), ’None’);
> i := TypedVar("i", "below(N)");
> j := TypedVar("j", "below(N)");
> [ Import("MatrixNxN[N]"),
> CMatrix(idM),
> CMatrix(A),
> CMatrix(B),
> Lemma("checkInverse",
> ForAll([argVec, TypedVar(["i","j"],"below(N)")],
> Equal( Call(Let("multiplyVectors",NONE),
> Call(A,argVec), Call(B,argVec), i, j),
> Call(Call(idM, i), j)))),
> Proof("checkInverse",
> "(then (grind) (grind-reals))") ]
> end proc:

Figure 5. Maple generator for inverse theory

speaking, we can describe the process as

g = ∇f (2)
h = H(f) (3)

hh = h−1 (4)
p? = {y0, y1, y2 | h is positive definite} (5)

step1 = y − hh · g (6)
step2 = OSL(step1) (7)

where f is our function, g is treated as a row-vector, and OSL
is the operation of creating an ‘Optimized Straight Line’ program
equivalent to its input. Note that, in Maple, equations 3–7 are each
a single line of code!

Thus, in stage 1, we use Maple to carry out all those necessary
symbolic computations, generating derived model information. Si-
multaneously, we generate representations for the verification con-
ditions which will need to be checked to certify that these compu-
tations are correct. In Figure 4, the first 3 computations correspond
to the checkInverse, checkJACOBIAN, and checkHESSIAN obli-
gations, and the last to Equiv.

Of course, we do not wish to do explicit linear algebra, espe-
cially for such small dimensions, when actually solving our code.
We thus perform these computations too, getting 3 closed-form ex-
pressions for the Newton step update. In this stage, we also perform
some code optimization. Since the natural expression for the update
step in a multi-dimensional Newton’s method contains many du-
plicate computations, a common-subexpression elimination is very
fruitful. Instead of using a 3-vector of expressions, we turn the
code into a straight-line program. This generates another obliga-
tion, namely that this straight-line program does in fact compute
the “same function”, and this is the obligation Equiv. This is also
the “middle section” of the part labelled “Auto Code Generation”
in Figure 3.

In Figure 5, we see a bit of Maple code which generates a
PVS theory that checks if the matrix B is related to matrix A, via
A ·B = I , where I is the N -dimensional identity matrix.

In more detail, a LetC structure is a triple of a name, a (Maple)
value and a (possibly empty) sequence of free variables, and rep-
resents a named expression (of any type). argVec is a representa-
tion of an N-dimensional abstract vector, i.e. y0, y1, y2, encoded as
(”y”, 3, ”real”). A TypedVar is a typed variable (given as a name
and a type), Import brings in part of a domain theory, CMatrix
is for defining a constant matrix, and Lemma and Proof are self-
explanatory. multiplyVectors is defined in the Domain Theory
to be the usual vector multiplication, and the lemma ensures that
A ·B = Ii,j pointwise. This procedure is parametric in the 2 matri-
ces, their free variables and the dimension, and generates a special-
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Figure 3. Abstraction levels of modeling.

ized PVS theory for any given input. More precisely, InverseThy
generates an abstract data type (a “model”) of a specialized PVS
theory, which is then passed to a pretty-printer which “prints” a
PVS file.

This pretty-printer is completely generic, and only knows how
to print a specific DSL for mathematical models.

The process for the other theories in stage 1 follow exactly the
same pattern.

In stage 2, step1 is inserted into a more complex theory (not
shown here). This theory contains a part (checkNewton) is meant
to be run by PVSio. It contains an instantiation of the Newton
Method, as well as the results of running the same computation
(of the Newton Method) numerically in Maple (labelled Solution 1
and Solution 3 in Figure 3. A number of TCCs need to be verified at
this point to ensure termination and convergence, and this is where
the predicate p? is used.

While setting up the theory is tedious, it is not complex. Even-
tually we get to

PVSioPredicate("checkNewton",
ForAll(i, Close(Call(pvsres,i), Call(mapres,i),

prec)))

which generates a PVSio predicate

checkNewton : bool = FORALL (i: below(N)):
abs(Result(i) - MapleResult(i)) < precision,

which, for this example, is evaluated in PVSio to TRUE when
precision equals to 10−6.

Finally, now that we are quite confident that all of our pieces
work smoothly together, we can pass to stage 3, where we take
step2 and pretty-print it as C code. We actually have 2 ways of
doing this, one where we generate a C file for just the Newton Step
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Figure 4. Detailed overview of code generation and verification process.

to be plugged in to a driver routine (shown on Figure 4), as well as
a late-breaking method (not shown, but in the accompanying code)
to carry out whole-program generation.

For example, with an initial guess of
(y0, y1, y2) = (−1000.0,−1000.0,−1000.0), we come to a min-
ima at (y0, y1, y2) = (0.0, 6.67965113451880832, 4.0) in 20 iter-
ations, and all 3 solutions agree.

Lastly, in accordance with the skeptic’s approach to combining
CAS and ATP [Harrison and Théry 1998], all we need to record in
our theories are the input-output relations associated to 3–7, which
are quite simple. We do not need to worry about the (immense!)
complexity of some of the underlying implementations.

The full code for this paper is available at [Full Code].

5. Related Work
This section discuss the paper’s relationship to the existing litera-
ture. It is broken down into subsection on related CAS-ATP integra-
tion efforts, certifiable program generation, and testing of auto-code
generators.

5.1 Integration of CAS and ATP
There are ambitious projects based upon the OMDoc [Kohlhase
2000] and OpenMath [Buswell et al. 2004] standards to provide
correct semantic translations in between CAS and ATP (e.g. [Ar-
mando and Zini 2000]). These projects are typically focused upon

facilitating the use or verification of results of one type of system
in the other. These standards are still evolving, and there is not yet
consistent widespread support for them in either types of tools. Fur-
thermore, there is no native concept of “theory” in Maple. We have
therefore chosen to embed a DSL of theories (into Maple), along
with a pretty-printer to generate the required PVS theories for cer-
tification of our results.

A direct connection of a CAS and ATP is described in [Delahaye
and Mayero 2005]. It connects Maple to Coq to help Coq deal with
algebraic expressions over a field. This is typical of many of the
efforts to improve the proving capability of an ATP using a CAS.
In contrast we using the combined features of a CAS and an ATP
to do certifiably correct code generation for a class of models.

In doing this interconnection, we follow the “skeptics’ approach
to combining CAS and ATP” of [Harrison and Théry 1998] where
the ATP (PVS in our case) is used to certify results produced by
Maple. We take a similar approach to checking the correctness
of Maple’s results where we generate appropriate theorems as we
perform the derivations. For example, when computing HU (un)−1,
the inverse of the Hessian to be used in Newton’s method, we
generate a theorem that HU (un)HU (un)−1 = I to be discharged
in PVS. However our goal is to facilitate provably correct model
driven development from a mathematical model in the CAS, so
rather than have the ATP as the master and the CAS as the slave (as
in [Harrison and Théry 1998]), we have the CAS as the master. This
is similar to the Maple-PVS system [Adams et al. 2001]. Where
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we differ significantly from Maple-PVS is in the way in which
we do the translation to PVS and the fact that we also generate
and verify code. The Maple-PVS interface is string-based; more
precisely, the user directly writes PVS code in Maple strings, but
can directly refer to any Maple value by its name. As a proof-of-
concept, the authors achieved their goals, but this is clearly not a
viable methodology. Furthermore, we did not want to be tied to
PVS, and so we preferred to create a theory DSL which we could
pretty-print to PVS (now) and other theorem provers (later)3

In [Hardy 2006], Hardy develops a decision procedure for prob-
lems relating to polynomial and transcendental functions. A deci-
sion procedure is implemented using a modified version of Maple-
PVS, where PVS is connected to the QEPCAD implementation of
quantifier elimination by partial cylindrical algebraic decomposi-
tion. The implementation of the decision procedure is then applied
to the analysis of Nicols Plots that are frequently used to determine
the stability of feedback control systems. The approach of [Hardy
2006] is similar to our work in that it combines tools to solve a spe-
cific problem, but it is mainly concerned with implementing the de-
cision procedure, and the analysis of control systems is secondary.

In this area, the significant difference with previous efforts to
combined CAS and ATP is that we focus on certifiably correct
program generation from models in such a way that there should
be no single point of failure that could result in an undetected
error. This then brings us to the discussion of previous efforts in
certifiable program generation.

5.2 Certifiable Program Generation
Auto-coding techniques are becoming increasingly important. Au-
tomatically generating complete programs from models is essen-
tial to the success of MDD [Selic 2003]. Program generation has
significant potential to improve the software development process
and promises many benefits, including higher productivity, reduced
turn-around times, increased portability, and elimination of man-
ual coding errors. However, “the key to realizing these benefits is
clearly generator correctness – nothing is gained from replacing
manual coding errors with automatic coding errors” [Denney et al.
2005].

For large systems, verification of automatic code generations
is extremely difficult due to size and complexity. However, much
effort has been directed towards a product-oriented certification
approach [Schumann et al. 2003, Whalen et al. 2002]. There are
five major principles in this approach:

1. Trustworthiness of the code generator is reduced to the safety
and liveness of each individual generated program,

2. Program safety and liveness are defined as adherence to explic-
itly formulated policies,

3. The safety and liveness policies are formalized by a collection
of logical program properties,

4. Hoare-style program verification is used to show that each gen-
erated program satisfies the required properties, and

5. The code generator itself is extended to automatically produce
the code annotations (e.g., loop invariants) required for verifi-
cation.

It should be noted that the above principles refer to both, the
safety and liveness policies.

The local annotations for a statement capture the changes in
variables imposed by that statement, without the need to describe

3 We realize that our current DSL is probably still too PVS-specific right
now, and certainly the proofs cannot be reused, but believe that the modifi-
cations necessary will be manageable.

the global information that may later be necessary for proofs. Then,
the annotations are propagated throughout the program. “The ap-
proach is feasible because the code generator has full knowledge
about the program under construction and about the properties to
be verified.”[Schumann et al. 2003] It can thus often generate all
auxiliary code annotations a theorem prover would need to confirm
all arising verification obligations fully automatically.

This approach is similar to the methodology of proof carrying
code (PCC) [Necula and Lee 1998]. It also relies on a small ker-
nel of verified components. “These components, the safety policy,
verification condition generator, and the proof checker, are very
simple and can be verified using standard software development
techniques.”[Schumann et al. 2003] In case of PCC, the developer
produces the auxiliary annotations (e.g., loop invariants) which are
required to make the proofs possible. In product-oriented certifica-
tion approach [Schumann et al. 2003, Whalen et al. 2002], the code
generator itself generates the required auxiliary annotations. Even
in the latter case, errors in the various parts of the software (i.e., the
code generator and theorem prover) are intended to cause the proof
process to fail at some step.

5.3 Testing of Automatic Code Generators
The main approaches for the verification of auto-code generators
are formal verification and testing. As can be seen from the pre-
vious discussion above, formal verification methods can give very
strong guarantees about the correctness of auto-code generators.
Formal reasoning requires mathematically proving

(∀m : model, i : input) : ModelExecSem(m, i)

≡
CodeExecSem(CodeGen(m), i),

where ModelExecSem and CodeExecSem are the model and code
execution semantics respectively [Sampath et al. 2008]. CodeGen(m)
denotes the code generated by the auto-code generator to be veri-
fied, and≡ compares the output generated by a model with the out-
put generated by the corresponding code. Due to the quantification
over the models and the inputs, the verification process becomes a
very challenging task.

To simplify the approach to formal verification of the auto-
code generators, comparing of the model and the generated code
could be carried out separately for each execution of the code
generator. Now, given a m: model, the proof in hand simplifies to
the following:

(∀i : input) : ModelExecSem(m, i)

≡
CodeExecSem(CodeGen(m), i).

Furthermore, one can firstly and wisely choose a small subset of
inputs in order to meet some coverage criteria (statement, branch,
condition and state/transition coverage). Then one can verify the
above assertion for this chosen subset of inputs, which will provide
a degree of confidence that the program behaves correctly for all
possible inputs.

Ultimately, testing of automatic code generators challenges the
correctness of the following: for a particular subset of models and
inputs,

ModelExecSem(m, i) ≡ CodeExecSem(CodeGen(m), i).

Now, a test-case to an automatic code generator consists of the
following: the model, the chosen set of inputs to this model, and
the corresponding expected outputs from this model [Sampath et al.
2008].

We believe it is important to understand the various ways of
dealing with verification of automatic code generation and the level
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of complexity of this verification of each method. We believe that
our method offers some compelling advantages in certain situa-
tions.

6. Conclusion and Future Work
We believe formal methods can provide the highest level of assur-
ance of the safety of any given piece of code. This is especially
challenging when code generation is used. Nevertheless, the bene-
fits of code generation are too many to ignore, and thus it is impor-
tant to develop various methods to combine high-level assurance
with generative techniques. Like others before us, we wanted to
demonstrate that assurance in this case does not necessarily mean
code-generator trustworthiness, but follows from a constructed set
of assertions derived from the model and its gradual transforma-
tion into code. In other words, a model-driven approach, at least
when the model consists of well-understood mathematical models,
can simplify the job of getting high-assurance code by generative
means.

During the evolution of our DSL for models and theories, it be-
came more and more apparent that we were encoding biform the-
ories [Farmer 2007]. A biform theory combines axiomatics defini-
tions with computational transformers, coupled via meaning func-
tions. Our theory generators correspond exactly to those meaning
functions, with the Maple computations corresponding to the trans-
former and the Domain theory providing the axiomatic definitions.
We have some prototype work in this direction which is promising,
and should allow us to further simplify our models.

Naturally, we are also working on extending our methodology
to larger and more complex examples. In particular, many optimal
control problems should fit quite well in our development and veri-
fication environment. Furthermore, we plan to apply our methodol-
ogy to specific applications, such as the class of image processing
problems described in [Korobkine 2002]. Lastly, issues of numerics
should be considered in verifying the implementation, as has been
done for digital filters in [Akbarpour and Tahar 2007].
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