Analysis of Concurrent Systems:

Traces and Causal Structures

tukasz Mikulski

Nicolaus Copernicus University, Faculty of Mathematics and Computer Science
Institute of Computer Science, Polish Academy of Sciences

(based on joint work with Ryszard Janicki and Jetty Kleijn and Maciej Koutny)

Torun, 07/09/2023

Outline

Introduction of leading example
Sequential semantics (reminder)
Systems with step sequences semantics

Systems with interval order semantics (work in progress)

Outline

Introduction of leading example

° NCU
.

Leading example

Sample program - sequence of events

o X =X+1;
oy =y+3;
o 7 =2%X;
°y=y+z;
o X =X+1;

.

Leading example

Sample program - sequence of events
o X =X+1;
°y=Yy+3;
o 7 =2%X;
° Y =Yy+z;
o X =X+1;

Assumed execution semantics

For each action we first read all values and then, atomically, write it into
a variable (lvalue).

° NCU
.

Leading example

Sample program - adding action names

° X =X+1; (a)
C Y=Y (b)
o 7 =2%; (c)
*y=Yy+z; (d)
o X =Xx+1; (a))

Execution (events vs actions)

We will write the execution down as a(1)b(1)c(1)d(1)a(2), or equivalently
as abcda.

v

S

Application

Problem - state space explosion

Explicit state space exploration is exposed to the exponential explosion
(memory problem).

Application

Problem - state space explosion

Explicit state space exploration is exposed to the exponential explosion
(memory problem).

Solution - partial order reduction

e ample sets (dependence, fairness, reducing the set of enabled
transitions and state space)

e stubborn sets (independence, move stubborn transition to the prefix)

e persistent sets (dependence, invariants, consider only one
linearisation)

| A\

r4
[e)
‘

Application

Problem - state space explosion

Explicit state space exploration is exposed to the exponential explosion
(memory problem).

Solution - partial order reduction

e ample sets (dependence, fairness, reducing the set of enabled
transitions and state space)

e stubborn sets (independence, move stubborn transition to the prefix)

e persistent sets (dependence, invariants, consider only one
linearisation)

| A\

Practical test case
Model checking of electronic voting protocols (Selene).

Outline

Sequential semantics (reminder)

o NCU
.

Observations and observers

Event observation

 a report supplied by an observer of the system on actions executed
during a run of the system

v

Form of a report

e action oriented description

e abstracts from state information

« distinguish between executions of the same action

¢ a single run will give rise to more then one event observation
(set of all such event observations — the history of this run)

° NCU
.

Observations and observers

Observer (sequential semantics)

* observes events with each event corresponding to the execution of an
action;

e can observe an event no more than once;

* may observe one event at the moment;

e is active for a finite time;

e eventually observes only a finite number of events;

e as long as is active, it observes all events in the system;

« the order in which events are observed by an observer respects their
execution order in the system;

e reports all events it observes; and
e reports events in the order they were observed.

N

S

Properties of the observation

e denoised;

« indivisibile and instantaneous;
e atomic;

e bounded;

e finite;

e complete;

e conform;

e unabridged; and

e reorderring-free.

el ——

Leading example

Sample program

o X =X+1; (a)
°y=y+3; (b)
° 7 =2%; (c)
° Y =Y+Z; (d)
o X =X+1; (a))

Equivalent executions

Single execution is a sequence of events. It is crucial to define the
dependence/independence relations.

Leading example

Sample program

. (a) {x}

. (b) {v}

. (c) {x,z}

. (d) {v.z}

. (a) {x} |

Equivalent executions

Single execution is a sequence of events. It is crucial to define the
dependence/independence relations.

Leading example

Dependence relation

e Two actions that uses different variables are independent.
e Otherwise, they are dependent.

Independent/dependent actions

e a and b are independent, since {x} n {y} = &;

e a and c are dependent, since {x} n {x, z} # &;

e a and d are independent, since {x} n {y, z} = &;
e b and c are independent, since {y} n {x, z} = &;
e b and d are dependent, since {y} n {y, z} # &;

e c and d are dependent, since {x, z} n {y, z} # &;

i ————

Leading example

Sample program

X = X+1;
y =y+3;
Z =2%X;
y =Yy+z;
X = X+1;

(b)
(c)
(d)
(a)

Equivalent executions

Set of all independent pairs is {(a, b)2,{(a, d)?, (b, ¢)?}.
Both abcda and bacda belong to the history of considered run.

Mazurkiewicz traces

Formal definition

e Alphabet of actions: ¥ = {a, b, ¢, d};

Independence relation: ind = {(a, b)?,{a, d)?,{b, ¢)?};
Concurrent alphabet: ' = (¥, ind);

Constructing equations: EQr = {ab = ba | {(a, b) € ind}
Immediate similarity: ~r< ©* x £*, uabv ~r ubav for {(a, b) € ind;
Equivalence relation: =rc ©* x ©* =&

Traces (equivalence classes): =" /.

acbda ~r abcda ~r bacda ~r bacad ~r abcad ~r acbad ~r acabd

Alternative source of leading example

e atriple pn={(P, T, F);

« disjoint finite sets of nodes (places P and transitions T);
e flow relation F < (T x P) u (P x T)

Moreover, we have the following:

e marking M c P;

e inputs and outputs denoted by ®x and x®;
 neighborhood ®x® = ®x U x°;

et~ £tand®tnt® =o.

Alternative source of leading example

Elementary net system

e atuple en=<(P, T, F, Mp);

pn={(P,T,F)is anet;

* M, < P is a nonempty initial marking;

e te Tisenabledat M (M[t),,)if®tc M At M= g2;
M[t),, M" = M\°t U t°;

mixed firing sequence mfs = MotiMy ... Mp_1t;M, (n = 0);
e firing sequence fs =t ... 1y;

o NCU
.

Alternative source of leading example

Elementary net system

o NCU
.

Alternative source of leading example

Elementary net system

Alternative source of leading example

Elementary net system

Alternative source of leading example

Elementary net system

Alternative source of leading example

Elementary net system

Alternative source of leading example

Elementary net system

Leading example

Dependence relation
e Two actions with disjoint neighborhoods are independent.
e Otherwise, they are dependent.

Occurrence nets

Occurrence net

is a tuple on = (P, T, F, ¢) such that:

e (P, T, F)is anetwith a nonempty set of places.
e [°p| < 1and |p®| <1, forevery pe P.

e Fis acyclic

line, cut and configuration

e line is a maximal sequence potip1 . .. Pr_1tnpn (N = 0) satisfying
,DoFt1F,D1 .. ~pn—1Ftann;

« cut is a maximal set of places cut such that (cut x cut) n F* = @.

» configuration is a set of transitions cnf such that if t € cnf and uF"t,
then u € cnf, forevery ue T.

Process

Possible executions
acbda ~r abcda ~r bacda ~r bacad ~r abcad ~r acbad ~r acabd

Occurrence net (unfolding)

Process

Possible executions
acbda ~r abcda ~r bacda ~r bacad ~r abcad ~r acbad ~r acabd

Forgetting states

.

Leading example

Dependence graph

° X =X+1; (a)

°y=y+3; (b)

zz © ofofcliola

° Yy =y+z; (d)

o X =X+1; (a) |

Dependence together with order of execution evolved to causality.)

Leading example

Dependence graph

X =X+1;
y =y+3;
z =2%X;
y =Yy+Z;
X =X+1;

(a)
(b)
(c)
(d)
(a)

Dependence together with order of execution evolved to causality.

Leading example

Dependence graph

X =X+1;
y =y+3;
z =2%X;
y =Yy+Z;
X =X+1;

(a)
(b)
(c)
(d)
(a)

Dependence together with order of execution evolved to causality.

a NCU
.

Leading example

Dependence graph

° X =X+1; (a)

°y=Yy+3; (b)

cze2x afoQasoln

°y=y+z, (d)

o X =X+1; (a) |
Dependence together with order of execution evolved to causality.)

Leading example

Dependence graph

o X =X+1; (a) E} -] '{ZI

°y=y+3; (b)
o z=2%; (c)
cy=y+z; ()

o X =X+1; (a) E} - o

g

Dependence together with order of execution evolved to causality.

Closure

Behaviour graph

o X=X+1; (a)

°y=y+3; (b)

oz =2%; (c)

oy =Yy+z; (d) H n n n

° X =X+1; (a) |

Transitive closure transforms dependence graph into partial order.)

a NCU

Closure

Behaviour graph

o X =X+1; (a)

cy=y+3 (b) —

° 7 =2%; (c) /“.

cyoyz () =] =]][]

o X=X+1; (a) |

Transitive closure transforms dependence graph into partial order.)

Saturation

Behaviour graph

X = X+1;
y =y+3;
Z = 2%X;
y =Yy+Z;
X = X+1;

(a)
(b)
(c)
(d)
(a)

Specifying missing relationships (and closing) we saturate the structure.)

Saturation

Behaviour graph

X = X+1;
y =y+3;
Z = 2%X;
y =Yy+Z;
X = X+1;

(a)
(b)
(c)
(d)
(a)

Specifying missing relationships (and closing) we saturate the structure.)

a NCU

Saturation

Behaviour graph

o X =X+1; (a)

cy=ys3 (b) /‘/\

o 7 =2%K; (c) n . .
e T-eOSE
° X =X+1; (a)

v

Specifying missing relationships (and closing) we saturate the structure.)

Saturation

Behaviour graph

o X =X+1; (a)

cy=ys3 (b) /‘/\

o 7 =2%K; (c) n . .
e eOsE E
° X =X+1; (a)

v

Specifying missing relationships (and closing) we saturate the structure.)

o NCU
.

Saturation

Behaviour graph

o X =X+1; (a)
°y=Yy+3; (b)
o 7 =2%; (c)
° Y =Y+Z; (d)
o X =X+1; (a)

Specifying missing relationships (and closing) we saturate the structure.)

Partial orders and total orders

Axioms for partial order

Partial order is a tuple (A, <, £) such that, for all x, y, z € A:

X ¥ x : PO:1
X<y = x<%y : PO:2
X<y Ay<z = x<2Z : PO:3

Axioms for total order
Total order is a tuple (A, <, ¢) such that, for all x, y,z € A:

X ¥ x : TO:1

X<y = x<%y : TO:2

X<y Any<z = Xx<2Z : TO:3
X#Y = X<YAy<x . TO4

e A —————————————————————

Partial orders and total orders

e Single observation of a run is a sequence of events (total order);
e History of a run is a set of possible observations;

e Order of execution together with dependence allows to construct
dependence graph (directed acyclic graph on events);

e Closure of dependence graph is a partial order (order-theoretic
invariant);

o Saturation of partial order leads to total order (any of the
observations in the history) that is a linearisation of this partial order;

Szpilrajn theorem

Diagram

Dependence graphs

add causality closure

intersection

//—\~

Histories (trace) Partial orders

-~

saturation
For every partial order po there exists total order fo containing it and
po is equal to the intersection of all total orders containing it.

e ——

True concurrency paradigm

Paradigm

True concurrency paradigm (also known as ‘diagonal rule’ or ‘diamond
property’) states that simultaneity is the same as the possibility to
occur in any order.

i A\

Vx,ye A : (GobeH: X ~pp Y)
— (7ts)

(Fob1 e H: X <pp, ¥) A (FObo e H: y <pp, X) -

Leading example

Equivalent executions

« abcad * (ab)cad

* abcda ¢ abc(ad)

e acabd * ac(ab)d

e acbad * acb(ad) P

p—— - a(cb)da " abolad

e bacad * bac(ad)

e bacda * (ab)cda)

Outline

Systems with step sequences semantics

a NCU
.

Observations and observers

Observer (sequential semantics)

* observes events with each event corresponding to the execution of an
action;

e can observe an event no more than once;

* may-observe-one-eventatthe-moment;

e is active for a finite time;

e eventually observes only a finite number of events;

e as long as is active, it observes all events in the system;

 the order in which events are observed by an observer respects their
execution order in the system;

e reports all events it observes; and
e reports events in the order they were observed.

e ———

a NCU
.

Observations and observers

Observer (step sequences semantics)

e observes events with each event corresponding to the execution of an
action;

e can observe an event no more than once;
¢ may observe more than one event at the same moment;

« different executions of the same action can only be observed at
different moments;

¢ is active for a finite time;
¢ eventually observes only a finite number of events;
e as long as is active, it observes all events in the system;

« the order in which events are observed by an observer respects their
execution order in the system;

e reports all events it observes; and
e reports events in the order they were observed.

e —————

Properties of the observation

e denoised;

¢ indivisible and instantaneous;
e concurrent;

e autoconcurrency-free;

e bounded;

o finite;

e complete;

e conform;

e unabridged; and

e reordering-free.

i ——

Leading example

Sample program - are all relationships symmetric?

° X =X+1; (@)

oy =y+3; (b) ac % ca

o 7 =2%; (c)

°y=y+z; (d) (ac) ~ ca

° X =X+1; (@) |

Assumed execution semantics

For each action we first read all values and then, atomically, write it into
a variable (lvalue).

New set of relations

New challenge

Dependence/independence relation is not enough. We need something
which might be not symmetric.

New set of relations

New challenge

Dependence/independence relation is not enough. We need something
which might be not symmetric.

| A\

First concept

We need to consider two aspects of independence separately:
* Independence

e Simultaneity - actions can occur in one step

 Serialisability - occurrence in one step is equivalent with specified
order

Leading example

Sample program

° X =X+1; (a)
o y=y+3; (b)
o 7z =2%; (c)
°y=y+z; (d)
o X =X+1; (a))

Equivalent executions

Single execution is a sequence of steps. It is crucial to define valid
steps (simultaneity relation) and serialisability relation.

o NCU
.

Leading example

Simultaneity relation

» Two actions can occur in the same step if they change different
variables.

e Otherwise, they cannot.

Simultaneous actions

e a and b are simultaneous, since x # y;

e a and c are simultaneous, since x # z;

e a and d are simultaneous, since x # y;

e b and c are simultaneous, since y # z;

e b and d are not simultaneous, since they both change y;
e ¢ and d are simultaneous, since z # y;

e —

a NCU
.

Leading example

Serialisability relation

e Two actions a and b occurring in the same step can be serialised as
ab if a changes variable not used by b.

e Otherwise, they cannot.

Serialisable actions

e (ab) can be serialised as ab or ba, since a and b are independent;
» (ac) can be serialised only as ca, since a changes value of x;

e (ad) can be serialised as ad or da, since a and d are independent;
 (cb) can be serialised as cb or bc, since b and ¢ are independent;
¢ (bd) cannot be serialised, since b and d are not simultaneous;

* (cd) can be serialised only as dc, since ¢ changes value of z;

e ———

Leading example

Sample program

° X =X+1; (a)
© Yy =Yy+3; (b)
o 7 =2%X; (c)
*y=Yy+z; (d)
* X =X+1; (a))

Equivalent executions

Set of all simultaneous pairs is {(a, b)?, {a, ¢)?,{a, d)?,{b, c)?,{c, d)?},
while for serialisability we have {(a, b)?,{c, a),{a, d)?,{b, c)?,{d, c)}.

Combined traces

Formal definition

e Alphabet of actions: ¥ = {a, b, ¢, d};

« Simultaneity relation: sim = {(a, b)?, (a, ¢)?,{a, d)?,{b, c)?,{c, d)?};
« Serialisability relation: ser = {(a, b)?,{c, a),{(a, d)?,{(b, c)?,{d, c)};
e Concurrent alphabet: © = (X, sim, ser);

e Valid steps: Sg = {AS X | A# 2@ A (Ax A\ids < sim}

e Constructing equations: EQe = {AB=AuU B | Ax B c ser}

e Immediate similarity:
~oC S§ x SE, UABv ~g U(A U B)v for A x B < ser;

 Equivalence relation: =< S§ x S§ =~

e Traces (equivalence classes): 3 [=s

S ——————————————————————————

Leading example

Equivalent executions

e (ab)cad
e abcad e abc(ad)
e abcda e ac(ab)d e ab(ca)d
e acabd e acb(ad) e a(ca)bd
e acbad e a(cb)da ¢ ba(ca)d
e acbda e bac(ad) e (ab)(ca)d
e bacad * (ab)cda e a(cab)d
e bacda e (ab)c(ad)
e a(bc)(ad) |

i ———

System model

Elementary net system with activators

e atuple en= (P, T, Act, F, Minjt);

pn={(P,T,F)is anet;

e Act < P x T is a set of activation arcs;

* Ot ={pe P|{p,t)e Act} are the activator places of transition t;
* M,y € Pis a nonempty initial marking;

e te Tisenabled at M (M[t),,) if®t uCtS M A t® N M = &;

o M[t),,M" = M\°t L t°

e Uc Tisenabled at M (M[U),,) if Vieu(M[t),, A Vizreu®t 0t = 2);
e mixed firing sequence mfs = MoUiMy ... Mp_1 UM, (n = 0);

e firing sequence fs = Uy ... Up;

e ——

Alternative source of leading example?

Elementary net system

Alternative source of leading example?

[-] []

Alternative source of leading example?

Hv (®

In elementary systems, we can never execute the same transition in
two consecutive steps!

Label splitting

Elementary net system with activators

Leading example

Dependence graph

° X =X+1; (a)
°y=Yy+3; (b)
zm © ofofcliola
* Yy =Yy+z; (d)
° X =X+1; (a)

Serialisability together with order of execution is weak causality.
Weak causality is 'not later than’ (earlier or at the same time) relation.
Lack of serialisability together with order of execution is causality.

Leading example

Dependence graph

o X=X+1; (a)

°y=y+3; (b) LeT T
[
cy=y+sz (d)

o X =X+1; (a)

Serialisability together with order of execution is weak causality.
Weak causality is 'not later than’ (earlier or at the same time) relation.
Lack of serialisability together with order of execution is causality.

Leading example

Dependence graph

o X =X+1; (a)

cy=y+3; (b)
cze2x O ofohasohn
° Yy =y+z; (d)

o X=X+1; (a)

Serialisability together with order of execution is weak causality.
Weak causality is 'not later than’ (earlier or at the same time) relation.
Lack of serialisability together with order of execution is causality.

Leading example

Dependence graph

o X =X+1; (a)

°y=y+3; (b) seFTEs
czex @ ofo\nSohn
° Yy =y+z; (d)

o X=X+1; (a)

Serialisability together with order of execution is weak causality.
Weak causality is 'not later than’ (earlier or at the same time) relation.
Lack of serialisability together with order of execution is causality.

Closure

Relational structure

X =X+1;
y =Yy+3;
Z = 2%X;
y =Y+Z;
X = X+1;

(a)
(b)
(c)
(d)
(a)

THEEE

Many types of transitivity - two causality arcs, two weak causality arcs
and mixed situations. Intuition works fine.

Closure

Relational structure

° X =X+1; (a)
©y=y+3; (b)
° 7 =2%X; (c)
cy=y+z; (d)
° X =X+1; (a)

Many types of transitivity - two causality arcs, two weak causality arcs
and mixed situations. Intuition works fine.

Saturation

Relational structure

° X =X+1; (a)
©y=y+3; (b)
o 7 =2%; (c)
©y=Yy+z; (d)
° X =X+1; (a)

We can specify either new causality or new weak causality arcs (and
close the structure).

Saturation

Relational structure

° X =X+1; (a)
©y=y+3; (b)
o 7 =2%; (c)
©y=Yy+z; (d)
° X =X+1; (a)

We can specify either new causality or new weak causality arcs (and
close the structure).

Saturation

Relational structure

° X =X+1; (a)
©y=y+3; (b)
o 7 =2%; (c)
©y=Yy+z; (d)
° X =X+1; (a)

We can specify either new causality or new weak causality arcs (and
close the structure).

Saturation

Relational structure

° X =X+1; (a)
©y=y+3; (b)
o 7 =2%; (c)
©y=Yy+z; (d)
° X =X+1; (a)

We can specify either new causality or new weak causality arcs (and
close the structure).

Saturation

Relational structure

° X =X+1; (a)
©y=y+3; (b)
o 7 =2%; (c)
©y=Yy+z; (d)
° X =X+1; (a)

We can specify either new causality or new weak causality arcs (and
close the structure).

Saturation

Relational structure

° X =X+1; (a)
©y=y+3; (b)
o 7 =2%; (c)
©y=Yy+z; (d)
° X =X+1; (a)

We can specify either new causality or new weak causality arcs (and
close the structure).

o NCU
.

Saturation

Relational structure

° X =X+1; (a)
*y=y+3; (b)
o 7 =2%; (c)
© Y =Y+zZ; (d)
° X =X+1; (a)

Obtained step sequence is:
a(abc)d.

Closed structures

Axioms for stratified order structures

stratified order structure is a ralational structure (A, <, =, £) such that,
forall x,y,ze A:

Xt x : so:

X<y = XcZy : S0:2

X#2Z A XCycz = Xcz o SO0:3
XCy<z v X<ycz = x<z : S04

v

(A, <, =, 0 — (A pre (<, 5), (< uE)*, 0

where
* preo(Q.R) = (QU R)*o Qo (Qu R)*
« R = RT\RC.

e ———————————————————————————

Maximal structures

Axioms for layered concurrent structures

Layered concurrent structure is a relational structure (A, <, =, ¢) such
that, for all x,y,z € A:

X x : LC:1
X<y = xcy A yHEX : LC:2
X<y — x<2Z v z<y : LC:3
X#y = XCycXx v x<¥My : LC:4

Equivalent objects

Layered concurrent structures correspond to step sequences and
stratified partial orders (partial orders where (A x A)\ <™ is an
equivalence relation).

| A\

NCU

Stratified order and layered concurrent structures

e Single observation of a run is a step sequence of events (stratified
order);

e History of a run is a set of possible observations;

e Order of execution together with simultaneity and serialisability allows
to construct dependence graph (relational structure on events);

e Closure of dependence graph is a stratified order structure
(order-theoretic invariant);

e Saturation of stratified order structure can be extended to layered
concurrent structure (any of the observations in the history);

Szpilrajn theorem

Relational structures

add causalities closure

intersection

//\~

Histories (trace) Stratified order

~— __— structures

saturation

For every stratified order structure sos there exists layered concurrent
structure los containing it and sos is equal to the intersection of
layered concurrent structures containing it.

W

e ———

Less demanding paradigm

Paradigm

To express 'not later than’ relations we can weaken true concurrency
paradigm. The less demanding formulation states that possibility to
occur in any order implies simultaneity.

i A\

Vx,ye A : (3poeH: X ~poY)

= (m3)

(FpoeH: x <poy) A (3poeH: y <po X)

a NCU
.

Leading example

Sample program - is it possible to commute events that are
cannot occur symultaneously?

o X =X+1; (a)

°y=Yy+3; (b) bd ~ db

° z2=2%; (c)

°y=Yy+z; (d) (bd) indefinite
° X =X+1; (a)

v

Assumed execution semantics

For each action we first read all values and then, atomically, write it into
a variable (lvalue).

A ———

Even larger set of relations

New challenge

Simultaneity and serialisability relations are not enough. We need
something new to capture interleaving.

Even larger set of relations

New challenge

Simultaneity and serialisability relations are not enough. We need
something new to capture interleaving.

First attempt

We can add interleaving not related (or even disjoint) with simultaneity
as third relation.

| A\

r4
[e)
‘

Even larger set of relations

New challenge

Simultaneity and serialisability relations are not enough. We need
something new to capture interleaving.

| A\

First attempt

We can add interleaving not related (or even disjoint) with simultaneity
as third relation.

| A\

Economical solution
Let us drop the assumption that serialisability is included in simultaneity:
e Simultaneity - actions can occur in one step

« Seriafisabil

* Sequentialisability - serialisability enriched by interleaving

° NCU
.

Leading example

Sequentialisability relation

» Two actions a and b can be sequentialised if either a changes
variable not used by b or they both changes the same variable with
the same eventual results for ab and ba;

e Otherwise, they cannot.

v

Serialisable actions

¢ (ab) can be sequentialised as ab or ba (a and b are independent);
¢ (ac) can be sequentialised only as ca (they are serialisable this way);
» (ad) can be sequentialised as ad or da (a and d are independent);
* (cb) can be sequentialised as cb or bc (b and ¢ are independent);

e b and d are sequentialisable, since b and d are not simultaneous but
results of (bd) and (db) are the same;

 (cd) can be sequentialised only as dc (they are serialisable this way)

W

i ——

Leading example

Sample program

° X =X+1; (a)
© Yy =Yy+3; (b)
o 7 =2%X; (c)
*y=Yy+z; (d)
* X =X+1; (a))

Equivalent executions

Set of all simultaneous pairs is {(a, b)?, {a, ¢)?,{a, d)?,{b, c)?,{c, d)?},
while sequentialisability: {(a, b)?, {c, a),{a, d)?,{b, c)?,{(b,d)?,{(d, c)}.

Step traces

Formal definition
e Alphabet of actions: ¥ = {a, b, ¢, d};
« Simultaneity relation: sim = {(a, b)?, (a, ¢)?,{a, d)?,{b, c)?,{c, d)?};
¢ Sequentialisability relation:

seq = {<av b>27 <Cv a>7 <av d>27 <b7 C>2’ <b’ d>2’ <d? C>},
e Concurrent alphabet: © = (¥, sim, seq);
e Valid steps: Sg = {AS X | A# 2 A (Ax A\ids < sim}
e Constructing equations: EQe = {AB=Au B | Ax B < seqn sim

AB=BA|AxBcseqnseq '}

* Immediate similarity: ~o< S§ x S§,

UABV ~g u(Au B)v for A x B < seq n sim;

or UABv ~¢ UBAv for A x B seq nseq’;

* Equivalence relation: =< S§ x S§ =~§

g %
« Traces (equivalence classes): 56 /_,
V.

i ———

o NCU
.

Leading example

Equivalent executions

* (ab)cad
e abcad e abc(ad)
e abcda e ac(ab)d e ab(ca)d e acadb
e acabd * acb(ad) e a(ca)bd e acdba
e acbad e a(cb)da e ba(ca)d e acd(ab)
e achda ¢ bac(ad) e (ab)(ca)d e ac(ad)b
e bacad e (ab)cda e a(cab)d e a(ca)db
e bacda e (ab)c(ad)
* a(bc)(ad) |

e ——

System model

Elementary net system with activators and mutexes
e atuple en=<(P, T, Act, Mut, F, Minit);
pn=<{P,T,F)is anet, Act is a set of activation arcs;
Mut < P x T is a set of mutex arcs;
Ot = {pe P|{p,t) e Mut} are the mutex places of transition t;
e M,z < P is a nonempty initial marking;
te Tisenabledat M (M[t),,) if®t LUCtLOtS M A A M= g;
M[t),, M" = M\°t L t°;
e Uc Tisenabled at M (M[U),,) if
VieuM[t)y, A Vizreu(®tu Ot~ (°t LU OF) = 2);
mixed firing sequence mfs = MoUiMy ... Mp—1 UM, (n = 0);
e firing sequence fs = U; ... Up;

v

e ——

Label splitting again

Elementary net system with activators and mutexes

Leading example

Dependence graph

° X =X+1; (a)
°y=Yy+3; (b)
22 O ofolaioia
° Y =Y+Z; (d)
o X =X+1; (a)

Sequentializability together with order of execution is weak causality.
Mutex is related with the lack of simultaneity or sequentializability.
Causality is the intersection of mutex and weak causality.

Leading example

Dependence graph

o X =X+1; (a)

©y=y+3; (b) JPEEEN e
el ofiohofoho
° Y=Yz (d)

° X =X+1; (a)

Sequentializability together with order of execution is weak causality.
Mutex is related with the lack of simultaneity or sequentializability.
Causality is the intersection of mutex and weak causality.

Leading example

Dependence graph

o X =X+1; (a)

©y=y+3; (b) JPEEEN e
el ofiohoSoho
°y=y+z (d)

° X =X+1; (a)

Sequentializability together with order of execution is weak causality.
Mutex is related with the lack of simultaneity or sequentializability.
Causality is the intersection of mutex and weak causality.

Leading example

Dependence graph

° X =X+1; (a)

©y=y+3; (b)
ciezx © ofiohnSokn
°y=y+z; (d)

o X =X+1; (a)

Sequentializability together with order of execution is weak causality.
Mutex is related with the lack of simultaneity or sequentializability.
Causality is the intersection of mutex and weak causality.

Closure

Relational structure

X = X+1;
y =y+3;
Z = 2%X;
y =Yy+zZ;
X =X+1;

(a)
(b)
(c)
(d)
(a)

THEEE

v

We need to complete induced mutex edges and weak causality arcs.)

Closure

Relational structure

o X =X+1; (a)
°y=Yy+3; (b)
o 7 =2%; (c)
°y=y+z; (d)
o X =X+1; (a))

We need to complete induced mutex edges and weak causality arcs.)

Closure

Relational structure

X = X+1;
y =y+3;
Z = 2%X;
y =Yy+zZ;
X =X+1;

(a)
(b)
(c)
(d)
(a)

We need to complete induced mutex edges and weak causality arcs.)

Saturation

Relational structure

° X =X+1; (a)
©y=y+3; (b)
o 7 =2%; (c)
©y=Yy+z; (d)
° X =X+1; (a)

We can specify either new mutex edges or weak causality arcs (and
close the structure).

Saturation

Relational structure

° X =X+1; (a)
©y=y+3; (b)
o 7 =2%; (c)
©y=Yy+z; (d)
° X =X+1; (a)

We can specify either new mutex edges or weak causality arcs (and
close the structure).

Saturation

Relational structure

° X =X+1; (a)

cy=ys3; (b) ,‘/T
e][] [

© Y =Y+Z; (d)
° X =X+1; (a)

We can specify either new mutex edges or weak causality arcs (and
close the structure).

Saturation

Relational structure

° X =X+1; (a)

cy=ys3; (b) ,‘/T
e][] [

© Y =Y+Z; (d)
° X =X+1; (a)

We can specify either new mutex edges or weak causality arcs (and
close the structure).

Saturation

Relational structure

° X =X+1; (a)

cy=ys3; (b) ,‘/T
e][] [L]

© Y =Y+Z; (d)
° X =X+1; (a)

We can specify either new mutex edges or weak causality arcs (and
close the structure).

Saturation

Relational structure

° X =X+1; (a)

cy=ys3; (b) ,‘/T
e][] [L]

© Y =Y+Z; (d)
° X =X+1; (a)

We can specify either new mutex edges or weak causality arcs (and
close the structure).

Saturation

Relational structure

° X =X+1; (a)

cy=ys3; (b) ,‘/T
e L=l [L]

© Y =Y+Z; (d)
° X =X+1; (a)

We can specify either new mutex edges or weak causality arcs (and
close the structure).

Saturation

Relational structure

° X =X+1; (a)

cy=ys3; (b) ,‘/T
e L=l [L]

© Y =Y+Z; (d)
° X =X+1; (a)

We can specify either new mutex edges or weak causality arcs (and
close the structure).

Saturation

Relational structure

° X =X+1; (a)
©y=y+3; (b)
o 7 =2%; (c)
©y=Yy+z; (d)
° X =X+1; (a)

We can specify either new mutex edges or weak causality arcs (and
close the structure).

Saturation

Relational structure

° X =X+1; (a)
*y=y+3; (b)
o 7 =2%; (c)
© Y =Y+zZ; (d)
° X =X+1; (a)

Obtained step sequence is:
ac(ad)b

Closed structures

o NCU
.

Axioms for invariant order structures

invariant order structure is a relational structure (A, =, =, ¢) such that,

forall x,y,z,w e A (with E== n &):

X#2Z
XEycz

X=2z

Z=W A XCwCoy

> > > >

X3+ X
X=y
Xcycz
XCYyEz
XcycXx
Xczey

PEELL>

XX
y=x
Xcz
X=2z
y=z
X=y

10:1
10:2
10:3
10:4
10:5
10:6

v

(A, =, 0 — (A, mutes(=,), (<), £
* mutes(Q,R) = R® o Qo R® U R* oq R*

S ——————————————————————————————————

o NCU
.

Maximal structures

Axioms for layered order structures

Layered order structure is a ralational structure (A, =, =, ¢) such that,
forall x,y,z e A:

XX A XEX : LO:1
X=y = y=x : LO:2
XCy = yix : LO:3
XCYy =— XCzZvzZCy : LOM4
X##y = XcCyocxvxe¥y . Lob

Equivalent objects

Layered order structures are very similar to layered concurrent
structures, but here causality is a secondary notion.

| N\,

Invariant and layered order structures

e Single observation of a run is a step sequence of events (stratified
order);

e History of a run is a set of possible observations;

» Order of execution together with simultaneity and sequentialisability
allows to construct dependence graph (relational structure on
events);

e Closure of dependence graph is an invariant order structure
(order-theoretic invariant);

e Saturation of invariant order structure can be extended to layered
order structure (any of the observations in the history);

e ————————————————————————————

Szpilrajn theorem

Relational structures

add causalities closure

intersection

//\5

Histories (trace) Invariant order

~— ___— structures

saturation

For every invariant order structure sos there exists layered order
structure los containing it and sos is equal to the intersection of
layered order structures containing it.

v

e ———————————————

What about the paradigm?

Paradigm

We drop all the requirements. We only insist that the history is closed in
the set of all observations. This way we obtained the most general
notion of invariant for step sequence semantics.

Studies in (ompetational Inmtelligence 1020

_l Paradlgms
| - of Concurrency

Obse \n).&eha fioars, and Systems—

@ Springer

Outline

Systems with interval order semantics (work in progress)

Interval orders

Norbert Wiener: A contribution to the theory of relative
position [1914]

Any execution of a physical system that can be observed by a single
observer must be an interval order.

Peter C Fishburn: Intransitive indifference with unequal

indifference intervals [1970]

A countable partial order (X, <) is interval
if and only if
there exists a total order (Y, «) and two injective mappings with
disjoint codomains B, E : X — Y such that forall a, b € X,
* B(a) « E(a);
° a< bE(a) <« B(b)

V.

e ———

a NCU
.

Observations and observers

Observer (step sequences semantics)

e observes events with each event corresponding to the execution of an
action;

* can-observe-an-eventno-more-than-onece;
* may observe more than one event at the same moment;

« different executions of the same action can only be observed at
different moments;

¢ is active for a finite time;
e eventually observes only a finite number of events;
e as long as is active, it observes all events in the system;

« the order in which events are observed by an observer respects their
execution order in the system;

e reports all events it observes; and
e reports events in the order they were observed.)

i ——

a NCU
.

Observations and observers

Observer (interval order semantics)

e observes events with each event corresponding to the execution of an
action;

e can observe an event for a finite and continuous time;
* may observe more than one event at the same moment;

e different executions of the same action can only be observed at
different moments;

¢ is active for a finite time;
e eventually observes only a finite number of events;
e as long as is active, it observes all events in the system;

« the order in which events are observed by an observer respects their
execution order in the system;

e reports all events it observes; and
e reports events in the order they were observed.)

A ————

Properties of the observation

e denoised;

¢ interval;

e concurrent;

e autoconcurrency-free;
e bounded;

o finite;

e complete;

e conform;

e unabridged; and

e reordering-free.

e ———

a NCU
.

Leading example

Assumed execution semantics

For each action we first read all values and then, after a while, write it
into a variable (lvalue).

Sample program - interval semantics

° X =x+1;
y =Yy+3;
Z =2%X;
°y=Yy+z;
X = X+1;

a NCU
.

Leading example

Assumed execution semantics

For each action we first read all values and then, after a while, write it
into a variable (lvalue).

v

Sample program - interval semantics

° X =X+1; ° Ry: {x} o Wy {x}
oy =y+3; * R {y} s Wy {y}
o 7 =2%; ° R.: {x} e W,: {z}
° Y =y+z; * Ry :{y,z} o Wy {y}
° X =X+1; * Ry: {x} o Wy: {x}

i ———

Leading example

Assumed execution semantics

For each action we first read all values and then, after a while, write it
into a variable (lvalue).

Sample program - interval semantics

| A\

° X =X+1; ° Ry: {x} o Wy {x}
oy =y+3; * R {y} s Wy {y}
o 7 =2%; ° R.: {x} e W,: {z}
° Y =y+z; * Ry :{y,z} o Wy {y}
° X =X+1; * Ry: {x} o Wy: {x}

The order of subsequent reads or subsequent writes (to different
variables) does not matter.

o NCU
.

Leading example

Sequence of events

¢ abcda

a b c d a

L] L] L] [] (] [] [] [] [] []
Ra Wa Rb Wb Rc Wc Rd Wd Ra Wa

Step sequence of events
e (ab)(ac)d

[a [(] a (]
Ra W2 Ra W,
(] d (]
Ry Wy
° b (] (] c (]
R b Wb H c WC

Leading example - no mutexes

Step sequence of events

e a(cab)d

Leading example - total orders

Interval sequence for sequence of events

e abcda

(] a (] (] b L] o c o o d L] (] a []

Ra Wa Ry Wp R We Ry Wy Ra W,

L] Ra WaRb WbRC WcRd WdRa Wa

Leading example - stratified orders

Interval sequences for step sequence of events
e (ab)(ac)d

[]
R W, R, W,
a a a a o d o
Rq Wea
[] b [] [] C []
Rb Wb Re We

© RaRyWa Wy RaReWaWsRy Wy

Leading example - stratified orders

Interval sequences for step sequence of events
e (ab)(ac)d

R W, R, W,
a a a a o d o
Rq Wea
[] b [] [] C []
Rb Wb Re We

® R,R,W.W,RaRs WaW,Ry Wy
> RbRa Wa WbRaRc Wa WcRd Wd

Leading example - stratified orders

Interval sequences for step sequence of events

e (ab)(ac)d
. a e o a .
R. W, R. W,
a a a a o d o
Rd Wd
. b e o c .
Ry W, Rc W;
® R.R,W W,R,R:WaW,Ry Wy
® R,R,W,W,R,R: WaW,Ry Wy
® R,R,W,WaR.R: WaW,Ry Wy
® RyRaWpWaRaRcWaWe Ry Wy
v

Leading example - stratified orders

Interval sequences for step sequence of events
e (ab)(ac)d

° a e o a °
R. W, R. W.
a a a a o d o
Ry Wq

° b e o c °

Ry W, Rs W,
RaRp WaWpRaRe WaWe Ry Wy ® RaRpWaWyRaRe WaWeRy Wy
Ry RaWaWpRaReWaWe Ry Wy ® RyRaWaWpRaRe WaWeRyWa
Ha'qb Wb WaRaRc Wa WcRd Wd L Fi'aRb Wb WaRch Wa WCRd Wd
Ry Ra Wi WaRaRo Wa W, Ry Wy © RyRaW, WaRaRo WaWsRy W,
RaRy Wa Wy R Ra W, Wi Ry Wy © RyRyWaW,ReRaWaWsRy W,
Ry RaWa Wy R RaWa W, Ry Wy ® Ry R W, W,R:RaWoWoRy Wy
RaRy Wiy Wa R Ba Wa Wi Ry Wy © RuRy W, WaReRaWaWsRy W,
Ry Ra Wy WaRo RaWa Wi Ry Wy © RyRalW, WaRsRaWaWsRy W,

e ———

Leading example - stratified orders

Interval sequences for step sequence of events
e (ab)(ac)d

[) a [) [) a]
R W, R, W,
a a a a o d o
Rq Wy

[) b [)) C]

Rb Wb Re We
RaRp WaWpRaRe WaWe Ry Wy ® R,RyWyW,RaRWaWoRy Wy
Ry RaWa Wy, RaR: Wa W, Ry Wy ® RyR;WoW,RaR: WaWe Ry Wy
RaRy Wy, WaRzR: Wo W Ry Wy ® R.RyW,WaR,R WaWeRy Wy
Ry RaWp WaR2R: Wa W Ry Wy ® RpRaWpWaRaRWaWeRy Wy
RaRy Wy W, R RaWa W, Ry Wy ® R;RyWW,R:RaWaWeRy Wy
Ry RaWa Wy R RaW, W Ry Wy ® RpyRaWaWyR:RaWa W Ry Wy
RaRp Wy WaReRa Wa W Ry Wy ® R,RyW,WaR:RaWaW-Ry Wy
Ry Ra Wy, WaR:RaWa W, Ry Wy ® RyR; W, WaR:RaWaWeRy Wy

i ——

Leading example - interval orders

° NCU
.

Interval sequences for interval order (not stratified order)

° a o o c °
Ra Wa Rc We
° b o o d °
Rp Wy Rag Wa
° a °
R, Wa
RaRy WaRaRs Wy W, Ry Wa Wy © RyRyWaRaRo Wy WeRyg W,y Wy
RyRaWaRaRe Wy WeRg Wa Wy ® RyRaWaRaR: Wy WeRy Wy Wa
RaRpWaReRa Wy WeRa Wa Wy ® RaRpyWaRcRaWp WeRy Wy Wa
RoRaWaReRaWp WeRg WaWy ® RoRaWaRcRaWp WoRg Wy Wa
RaRyWaRaR: W, Wy, Ry W, Wy ® R,RyWaR;R.W.WpRyWyW,
Ry RaWaRaBe W, Wy Ry Wa Wy © RyRaWaRaRo Ws Wy Ry W,y Wy
RaRy WaRo Ra W, Wy Ry Wa Wy © RyRyWaRsRaWs Wy Ry W,y Wy
RyRaWaReRaWe Wy Ry Wa Wy ® RpRaWaRcRaWe Wy Ry Wy Wa

e —

Mazurkiewicz traces over beginnings and ends

NCU

Formal definition

Alphabet of actions: Xy = {Ra, Wa, Ry, Wy, Re, We, Ry, Wy};
Interval orders independence: indj,; = {(Ra, Rp),{Wa, W},) | a # b};
Concurrent alphabets: ®;,; = (X, indjnt);

Immediate similarity: ~e,, & X} x Xj;

Equivalence relation: =¢,, S T} x I} =~4x*

int

Mazurkiewicz traces (equivalence classes): i /E%I;

Mazurkiewicz traces over X are equivalent to interval orders over
Y = {a, b, c, d}, notation p;

g

Leading example - without mutexes

Equivalent executions - total and stratified orders

e (ab)cad
e abcad e abc(ad)
e abcda e ac(ab)d e ab(ca)d
e acabd e acb(ad) e a(ca)bd
e acbad e a(cb)da * ba(ca)d
e acbda e bac(ad) e (ab)(ca)d
e bacad e (ab)cda e a(cab)d
¢ bacda e (ab)c(ad)
e a(bc)(ad) |

S A —————————————————————————

o NCU
.

Leading example - no mutexes

Dependencies on beginnings and ends

We cannot move reads of some variables before their recent writes
(and need to distinguish between two executions).

Leading example

| A\

Ry {x}—— W, : {x}
Ry : {y}——Wo: {y}
Re: {x}—— W, : {z}

Ra :{y,z} —— Wy : {y}

o NCU
.

Leading example - no mutexes

Dependencies on beginnings and ends

We cannot move reads of some variables before their recent writes
(and need to distinguish between two executions).

Leading example

Ry {x}—— W, : {x}
Ry : {y} Wo : {y}
Re: {x}—— W, : {z}

Ra :{y,z} —— Wy : {y}

o NCU
.

Leading example - no mutexes

Dependencies on beginnings and ends

We cannot move reads of some variables before their recent writes
(and need to distinguish between two executions).

Leading example

Ry {x}—— W, : {x}
R : {y} Wo : {y}
R : {x} W, : {z}

Ra :{y,z} —— Wy : {y}

o NCU
.

Leading example - no mutexes

Dependencies on beginnings and ends

We cannot move reads of some variables before their recent writes
(and need to distinguish between two executions).

Leading example

Ry {x}—— W, : {x}
R : {y} Wo : {y}
R : {x} W, : {z}

Ra :{y, 2z} —— Wy : {y}

Interval traces

Formal definition

Alphabet of actions: ¥ = {a, b, ¢, d};
Weak independence relation:
wind = {<av b>23 <Ca a>7 <a7 d>27 <b7 C>2’ <d7 C>}:
Independence relation: ind = ind;y;u

{<Ra, Wb>27<Ra7 WC>25<Raa Wd>2»<Rba Wa>27

<va WC>23<RCa Wb>2a<RCa Wd>2a <Hd7 Wa>2};
Concurrent alphabets: ®;,; = (X, indinsy; @ = Xy, indy);

*
Interval orders: p =*i /—, ;

int
Traces (considering weak independence): > /E% ;
Equivalence relation =, is an invariant for p (=6, <=0,);
Interval traces: ©/=, .

v

e ——

Leading example - no mutexes

a NCU
.

Equivalent executions

e abcad
e abcda
e acabd
e acbad
e acbda
e bacad
e bacda

e (ab)cad
e abc(ad)
e ac(ab)d
e acb(ad)
e a(cb)da
e bac(ad)
e (ab)cda
e (ab)c(ad)
e a(bc)(ad)

ab(ca)d
a(ca)bd
ba(ca)d
(ab)(ca)d
a(cab)d

Closed structures

Axioms for invariant combined structures

invariant combined structure is a tuple (A, <, =, £) such that, for all
X,y,Z,We A

X X :Ic:1

X<y = xcydx o Ic:2

X<y<z = x<2z : 1c:3

XCy<2z v X<ycz — Xc2Z . 1c:4
X<ycz<w = x<Ww . 1c:5
XCY<ZCW#X = XCW . 1C:6

Maximal structures

Axioms for interval poset structures

interval order structure is a tuple (A, <, =, £) such that, for all
X, ¥y, Z,wWeA

Xt x © 1P
X<y = xcy © P2
X<y < ygEx#y : IP:3
X<y A Z<W = X<Wv zZ<y : IP4

Invariant and layered order structures

» Single observation of a run is a interval partial order of events;
History of a run is a set of possible observations;

Order of execution together with weak independence allows to
construct dependence graph (relational structure on events);

Closure of dependence graph is an invariant combined structure;

Saturation of invariant order structure can be extended to interval
poset structure (any of the observations in the history);

Szpilrajn theorem

Relational structures

add causalities closure

intersection

/_\—

Histories (trace) Invariant combine

- __—— structures

saturation

v

For every invariant combined structure jos there exists interval poset
structure jps containing it and ios is equal to the intersection of
interval poset structures containing it.

o

v

e ————————————————————————————

Further generalisation

What about mutexes? I

Further generalisation

What about mutexes? I

Work in progress

* Ryszard Janicki, Maciej Koutny, tukasz Mikulski:
Interval Traces with Mutex Relation. Petri Nets 2023: 145-166

Summary

e sequential;
e step sequence;
e interval order.

Forbidden cycles

e acyclic graphs (no cycles of <);
e separable structures (no cycle of = is connected by =);

e combined interval acyclic structures
(every cycle has two consecutive = arcs).

o NCU
.

Summary

Petri net systems

* elementary systems

» elementary systems with activators (step sequence semantics)
e elementary systems with activators and mutexes

* elementary systems with activators (interval order semantics)

V.

e Mazurkiewicz traces
¢ Combined traces

o Step traces

Interval traces

R ——

Summary

e we started from Mazurkiewicz concept of equivalent computations
and partial orders as invariants [1977];

e adapting true concurrency paradigm allows us to elevate to step
sematnics [1987];

e weakening causality made it possible to introduce the notion of
combined traces [1993];

» decomposition of causality to weak causality and mutual exclusion
led to the definition of step traces [2013]

* rejection of the transitivity of simultaneity allows us to elevate to
interval semantics [2009-2023]

e what next?

i ——

o NCU
.

Summary

Design clues

e Acyclicity notion (allowed structures) are crucial design decision;
e Saturation is a secondary concept based on acyclity;

e Closed structure and dependence structures are secondary concepts
based on saturation;

v

* More precise notion of acyclicity for interval semantics;
e Mutexes for interval semantics;
¢ Net systems for interval semantics;

	Introduction of leading example
	Sequential semantics (reminder)
	Systems with step sequences semantics
	Systems with interval order semantics (work in progress)

