
Analysis of Concurrent Systems:
Traces and Causal Structures

Łukasz Mikulski

Nicolaus Copernicus University, Faculty of Mathematics and Computer Science
Institute of Computer Science, Polish Academy of Sciences

(based on joint work with Ryszard Janicki and Jetty Kleijn and Maciej Koutny)

Toruń, 07/09/2023

Outline

Introduction of leading example

Sequential semantics (reminder)

Systems with step sequences semantics

Systems with interval order semantics (work in progress)

2 / 104

Outline

Introduction of leading example

Sequential semantics (reminder)

Systems with step sequences semantics

Systems with interval order semantics (work in progress)

3 / 104

Leading example

Sample program - sequence of events
‚ x = x+1;
‚ y = y+3;
‚ z = 2*x;
‚ y = y+z;
‚ x = x+1;

Assumed execution semantics
For each action we first read all values and then, atomically, write it into
a variable (lvalue).

4 / 104

Leading example

Sample program - sequence of events
‚ x = x+1;
‚ y = y+3;
‚ z = 2*x;
‚ y = y+z;
‚ x = x+1;

Assumed execution semantics
For each action we first read all values and then, atomically, write it into
a variable (lvalue).

4 / 104

Leading example

Sample program - adding action names
‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

Execution (events vs actions)
We will write the execution down as a(1)b(1)c(1)d(1)a(2), or equivalently
as abcda.

5 / 104

Application

Problem - state space explosion
Explicit state space exploration is exposed to the exponential explosion
(memory problem).

Solution - partial order reduction
‚ ample sets (dependence, fairness, reducing the set of enabled

transitions and state space)
‚ stubborn sets (independence, move stubborn transition to the prefix)
‚ persistent sets (dependence, invariants, consider only one

linearisation)

Practical test case
Model checking of electronic voting protocols (Selene).

6 / 104

Application

Problem - state space explosion
Explicit state space exploration is exposed to the exponential explosion
(memory problem).

Solution - partial order reduction
‚ ample sets (dependence, fairness, reducing the set of enabled

transitions and state space)
‚ stubborn sets (independence, move stubborn transition to the prefix)
‚ persistent sets (dependence, invariants, consider only one

linearisation)

Practical test case
Model checking of electronic voting protocols (Selene).

6 / 104

Application

Problem - state space explosion
Explicit state space exploration is exposed to the exponential explosion
(memory problem).

Solution - partial order reduction
‚ ample sets (dependence, fairness, reducing the set of enabled

transitions and state space)
‚ stubborn sets (independence, move stubborn transition to the prefix)
‚ persistent sets (dependence, invariants, consider only one

linearisation)

Practical test case
Model checking of electronic voting protocols (Selene).

6 / 104

Outline

Introduction of leading example

Sequential semantics (reminder)

Systems with step sequences semantics

Systems with interval order semantics (work in progress)

7 / 104

Observations and observers

Event observation
‚ a report supplied by an observer of the system on actions executed

during a run of the system

Form of a report
‚ action oriented description
‚ abstracts from state information
‚ distinguish between executions of the same action
‚ a single run will give rise to more then one event observation

(set of all such event observations – the history of this run)

8 / 104

Observations and observers

Observer (sequential semantics)
‚ observes events with each event corresponding to the execution of an

action;
‚ can observe an event no more than once;
‚ may observe one event at the moment;
‚ is active for a finite time;
‚ eventually observes only a finite number of events;
‚ as long as is active, it observes all events in the system;
‚ the order in which events are observed by an observer respects their

execution order in the system;
‚ reports all events it observes; and
‚ reports events in the order they were observed.

9 / 104

Properties of the observation

Observation is
‚ denoised;
‚ indivisibile and instantaneous;
‚ atomic;
‚ bounded;
‚ finite;
‚ complete;
‚ conform;
‚ unabridged; and
‚ reorderring-free.

10 / 104

Leading example

Sample program
‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

Equivalent executions
Single execution is a sequence of events. It is crucial to define the
dependence/independence relations.

11 / 104

Leading example

Sample program
‚ (a) txu

‚ (b) tyu

‚ (c) tx , zu

‚ (d) ty , zu

‚ (a) txu

Equivalent executions
Single execution is a sequence of events. It is crucial to define the
dependence/independence relations.

12 / 104

Leading example

Dependence relation
‚ Two actions that uses different variables are independent.
‚ Otherwise, they are dependent.

Independent/dependent actions
‚ a and b are independent, since txu X tyu “ ∅;
‚ a and c are dependent, since txu X tx , zu ‰ ∅;
‚ a and d are independent, since txu X ty , zu “ ∅;
‚ b and c are independent, since tyu X tx , zu “ ∅;
‚ b and d are dependent, since tyu X ty , zu ‰ ∅;
‚ c and d are dependent, since tx , zu X ty , zu ‰ ∅;

13 / 104

Leading example

Sample program
‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

Equivalent executions
Set of all independent pairs is txa,by2, xa,dy2, xb, cy2u.
Both abcda and bacda belong to the history of considered run.

14 / 104

Mazurkiewicz traces

Formal definition
‚ Alphabet of actions: Σ “ ta,b, c,du;
‚ Independence relation: ind “ txa,by2, xa,dy2, xb, cy2u;
‚ Concurrent alphabet: Γ “ xΣ, indy;
‚ Constructing equations: EQΓ “ tab “ ba | xa,by P indu

‚ Immediate similarity: «ΓĎ Σ˚ ˆ Σ˚, uabv «Γ ubav for xa,by P ind;
‚ Equivalence relation: ”ΓĎ Σ˚ ˆ Σ˚ “«˚

Γ

‚ Traces (equivalence classes): Σ˚

{”Γ

Trace
acbda «Γ abcda «Γ bacda «Γ bacad «Γ abcad «Γ acbad «Γ acabd

15 / 104

Alternative source of leading example

Petri net
‚ a triple pn “ xP,T ,F y;
‚ disjoint finite sets of nodes (places P and transitions T);
‚ flow relation F Ď pT ˆ Pq Y pP ˆ T q

Moreover, we have the following:
‚ marking M Ď P;
‚ inputs and outputs denoted by x and x ;
‚ neighborhood x “ x Y x ;
‚ t ‰ ∅ ‰ t and t X t “ ∅.

16 / 104

Alternative source of leading example

Elementary net system
‚ a tuple en “ xP,T ,F ,Minit y;
‚ pn “ xP,T ,Fy is a net;
‚ Minit Ď P is a nonempty initial marking;
‚ t P T is enabled at M (Mrtypn) if t Ď M ^ t X M “ ∅;
‚ Mrtypn M 1 “ Mz t Y t ;
‚ mixed firing sequence mfs “ M0t1M1 . . .Mn´1tnMn pn ě 0q;
‚ firing sequence fs “ t1 . . . tn;

17 / 104

Alternative source of leading example

Elementary net system

a

b

c

d

λ

18 / 104

Alternative source of leading example

Elementary net system

a

b

c

d

a

19 / 104

Alternative source of leading example

Elementary net system

a

b

c

d

ab

20 / 104

Alternative source of leading example

Elementary net system

a

b

c

d

abc

21 / 104

Alternative source of leading example

Elementary net system

a

b

c

d

abcd

22 / 104

Alternative source of leading example

Elementary net system

a

b

c

d

abcda

23 / 104

Leading example

Dependence relation
‚ Two actions with disjoint neighborhoods are independent.
‚ Otherwise, they are dependent.

Independent/dependent actions

a

b

c

d

a and c are dependent

c and d are dependent

b and d are dependent

24 / 104

Occurrence nets

Occurrence net
is a tuple on “ xP,T ,F , ℓy such that:
‚ xP,T ,Fy is a net with a nonempty set of places.
‚ | p| ď 1 and |p | ď 1, for every p P P.
‚ F is acyclic

line, cut and configuration
‚ line is a maximal sequence p0t1p1 . . . pn´1tnpn (n ě 0) satisfying

p0Ft1Fp1 . . . pn´1FtnFpn;
‚ cut is a maximal set of places cut such that pcut ˆ cutq X F ` “ ∅.
‚ configuration is a set of transitions cnf such that if t P cnf and uF `t ,

then u P cnf , for every u P T .

25 / 104

Process

Possible executions
acbda «Γ abcda «Γ bacda «Γ bacad «Γ abcad «Γ acbad «Γ acabd

Occurrence net (unfolding)

a

b

c

d

a

26 / 104

Process

Possible executions
acbda «Γ abcda «Γ bacda «Γ bacad «Γ abcad «Γ acbad «Γ acabd

Forgetting states

a

b

c

d

a

27 / 104

Leading example

Dependence graph

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

Dependence together with order of execution evolved to causality.

28 / 104

Leading example

Dependence graph

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

Dependence together with order of execution evolved to causality.

28 / 104

Leading example

Dependence graph

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

Dependence together with order of execution evolved to causality.

28 / 104

Leading example

Dependence graph

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

Dependence together with order of execution evolved to causality.

28 / 104

Leading example

Dependence graph

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a

b

c

d

a

Dependence together with order of execution evolved to causality.

29 / 104

Closure

Behaviour graph

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

Transitive closure transforms dependence graph into partial order.

30 / 104

Closure

Behaviour graph

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

Transitive closure transforms dependence graph into partial order.

30 / 104

Saturation

Behaviour graph

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

Specifying missing relationships (and closing) we saturate the structure.

31 / 104

Saturation

Behaviour graph

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

Specifying missing relationships (and closing) we saturate the structure.

31 / 104

Saturation

Behaviour graph

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

Specifying missing relationships (and closing) we saturate the structure.

31 / 104

Saturation

Behaviour graph

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

Specifying missing relationships (and closing) we saturate the structure.

31 / 104

Saturation

Behaviour graph

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

Specifying missing relationships (and closing) we saturate the structure.

31 / 104

Partial orders and total orders

Axioms for partial order
Partial order is a tuple x∆,ă, ℓy such that, for all x , y , z P ∆:

x ć x : PO:1
x ă y ùñ x ć y : PO:2

x ă y ^ y ă z ùñ x ă z : PO:3

Axioms for total order
Total order is a tuple x∆,ă, ℓy such that, for all x , y , z P ∆:

x ć x : TO:1
x ă y ùñ x ć y : TO:2

x ă y ^ y ă z ùñ x ă z : TO:3
x ‰ y ùñ x ă y ^ y ă x : TO:4

32 / 104

Partial orders and total orders

Summary
‚ Single observation of a run is a sequence of events (total order);
‚ History of a run is a set of possible observations;
‚ Order of execution together with dependence allows to construct

dependence graph (directed acyclic graph on events);
‚ Closure of dependence graph is a partial order (order-theoretic

invariant);
‚ Saturation of partial order leads to total order (any of the

observations in the history) that is a linearisation of this partial order;

33 / 104

Szpilrajn theorem

Diagram

Histories (trace)

Dependence graphs

Partial orders

add causality closure

intersection

saturation

Theorem
For every partial order po there exists total order to containing it and
po is equal to the intersection of all total orders containing it.

34 / 104

True concurrency paradigm

Paradigm
True concurrency paradigm (also known as ‘diagonal rule’ or ‘diamond
property’) states that simultaneity is the same as the possibility to
occur in any order.

Formally:

@x , y P ∆ : pDob P H : x ⌢ob yq

ðñ

pDob1 P H : x ăob1 yq ^ pDob2 P H : y ăob2 xq .

pπ8q

35 / 104

Leading example

Equivalent executions

‚ abcad
‚ abcda
‚ acabd
‚ acbad
‚ acbda
‚ bacad
‚ bacda

‚ (ab)cad
‚ abc(ad)
‚ ac(ab)d
‚ acb(ad)
‚ a(cb)da
‚ bac(ad)
‚ (ab)cda

‚ (ab)c(ad)
‚ a(bc)(ad)

36 / 104

Outline

Introduction of leading example

Sequential semantics (reminder)

Systems with step sequences semantics

Systems with interval order semantics (work in progress)

37 / 104

Observations and observers

Observer (sequential semantics)
‚ observes events with each event corresponding to the execution of an

action;
‚ can observe an event no more than once;
‚ may observe one event at the moment;
‚ is active for a finite time;
‚ eventually observes only a finite number of events;
‚ as long as is active, it observes all events in the system;
‚ the order in which events are observed by an observer respects their

execution order in the system;
‚ reports all events it observes; and
‚ reports events in the order they were observed.

38 / 104

Observations and observers

Observer (step sequences semantics)
‚ observes events with each event corresponding to the execution of an

action;
‚ can observe an event no more than once;
‚ may observe more than one event at the same moment;
‚ different executions of the same action can only be observed at

different moments;
‚ is active for a finite time;
‚ eventually observes only a finite number of events;
‚ as long as is active, it observes all events in the system;
‚ the order in which events are observed by an observer respects their

execution order in the system;
‚ reports all events it observes; and
‚ reports events in the order they were observed.
39 / 104

Properties of the observation

Observation is
‚ denoised;
‚ indivisible and instantaneous;
‚ concurrent;
‚ autoconcurrency-free;
‚ bounded;
‚ finite;
‚ complete;
‚ conform;
‚ unabridged; and
‚ reordering-free.

40 / 104

Leading example

Sample program - are all relationships symmetric?
‚ x = x+1; (a)
‚ y = y+3; (b) ac ff ca
‚ z = 2*x; (c)
‚ y = y+z; (d) (ac) « ca
‚ x = x+1; (a)

Assumed execution semantics
For each action we first read all values and then, atomically, write it into
a variable (lvalue).

41 / 104

New set of relations

New challenge
Dependence/independence relation is not enough. We need something
which might be not symmetric.

First concept
We need to consider two aspects of independence separately:
‚ Independence
‚ Simultaneity - actions can occur in one step
‚ Serialisability - occurrence in one step is equivalent with specified

order

42 / 104

New set of relations

New challenge
Dependence/independence relation is not enough. We need something
which might be not symmetric.

First concept
We need to consider two aspects of independence separately:
‚ Independence
‚ Simultaneity - actions can occur in one step
‚ Serialisability - occurrence in one step is equivalent with specified

order

42 / 104

Leading example

Sample program
‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

Equivalent executions
Single execution is a sequence of steps. It is crucial to define valid
steps (simultaneity relation) and serialisability relation.

43 / 104

Leading example

Simultaneity relation
‚ Two actions can occur in the same step if they change different

variables.
‚ Otherwise, they cannot.

Simultaneous actions
‚ a and b are simultaneous, since x ‰ y ;
‚ a and c are simultaneous, since x ‰ z;
‚ a and d are simultaneous, since x ‰ y ;
‚ b and c are simultaneous, since y ‰ z;
‚ b and d are not simultaneous, since they both change y ;
‚ c and d are simultaneous, since z ‰ y ;

44 / 104

Leading example

Serialisability relation
‚ Two actions a and b occurring in the same step can be serialised as

ab if a changes variable not used by b.
‚ Otherwise, they cannot.

Serialisable actions
‚ (ab) can be serialised as ab or ba, since a and b are independent;
‚ (ac) can be serialised only as ca, since a changes value of x ;
‚ (ad) can be serialised as ad or da, since a and d are independent;
‚ (cb) can be serialised as cb or bc, since b and c are independent;
‚ (bd) cannot be serialised, since b and d are not simultaneous;
‚ (cd) can be serialised only as dc, since c changes value of z;

45 / 104

Leading example

Sample program
‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

Equivalent executions
Set of all simultaneous pairs is txa,by2, xa, cy2, xa,dy2, xb, cy2, xc,dy2u,
while for serialisability we have txa,by2, xc,ay, xa,dy2, xb, cy2, xd , cyu.

46 / 104

Combined traces

Formal definition
‚ Alphabet of actions: Σ “ ta,b, c,du;
‚ Simultaneity relation: sim “ txa,by2, xa, cy2, xa,dy2, xb, cy2, xc,dy2u;
‚ Serialisability relation: ser “ txa,by2, xc,ay, xa,dy2, xb, cy2, xd , cyu;
‚ Concurrent alphabet: Θ “ xΣ, sim, sery;
‚ Valid steps: SΘ “ tA Ď Σ | A ‰ ∅ ^ pA ˆ AqzidΣ Ď simu

‚ Constructing equations: EQΘ “ tAB “ A Y B | A ˆ B Ď seru
‚ Immediate similarity:

«ΘĎ S˚
Θ ˆ S˚

Θ, uABv «Θ upA Y Bqv for A ˆ B Ď ser;
‚ Equivalence relation: ”ΘĎ S˚

Θ ˆ S˚
Θ “«˚

Θ

‚ Traces (equivalence classes): S˚
Θ {”Θ

47 / 104

Leading example

Equivalent executions

‚ abcad
‚ abcda
‚ acabd
‚ acbad
‚ acbda
‚ bacad
‚ bacda

‚ (ab)cad
‚ abc(ad)
‚ ac(ab)d
‚ acb(ad)
‚ a(cb)da
‚ bac(ad)
‚ (ab)cda
‚ (ab)c(ad)
‚ a(bc)(ad)

‚ ab(ca)d
‚ a(ca)bd
‚ ba(ca)d
‚ (ab)(ca)d
‚ a(cab)d

48 / 104

System model

Elementary net system with activators
‚ a tuple en “ xP,T ,Act ,F ,Minit y;
‚ pn “ xP,T ,Fy is a net;
‚ Act Ď P ˆ T is a set of activation arcs;
‚ et “ tp P P | xp, ty P Actu are the activator places of transition t ;
‚ Minit Ď P is a nonempty initial marking;
‚ t P T is enabled at M (Mrtypn) if t Y et Ď M ^ t X M “ ∅;
‚ Mrtypn M 1 “ Mz t Y t ;
‚ U Ď T is enabled at M (MrUypn) if @tPUpMrtypn ^ @t‰t 1PU t X t 1 “ ∅q;
‚ mixed firing sequence mfs “ M0U1M1 . . .Mn´1UnMn pn ě 0q;
‚ firing sequence fs “ U1 . . .Un;

49 / 104

Alternative source of leading example?

Elementary net system

a

b

c

d

λ

50 / 104

Alternative source of leading example?

Non-safe solution
a

b

c

d

Problem
In elementary systems, we can never execute the same transition in
two consecutive steps!

51 / 104

Alternative source of leading example?

Non-safe solution
a

b

c

d

Problem
In elementary systems, we can never execute the same transition in
two consecutive steps!

51 / 104

Label splitting

Elementary net system with activators
a1

b

c

d

a2 a1 and c are not simultaneous

a2 and c are not serialisable

c and a2 are serialisable

52 / 104

Leading example

Dependence graph

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

Serialisability together with order of execution is weak causality.
Weak causality is ’not later than’ (earlier or at the same time) relation.
Lack of serialisability together with order of execution is causality.

53 / 104

Leading example

Dependence graph

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

Serialisability together with order of execution is weak causality.
Weak causality is ’not later than’ (earlier or at the same time) relation.
Lack of serialisability together with order of execution is causality.

53 / 104

Leading example

Dependence graph

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

Serialisability together with order of execution is weak causality.
Weak causality is ’not later than’ (earlier or at the same time) relation.
Lack of serialisability together with order of execution is causality.

53 / 104

Leading example

Dependence graph

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

Serialisability together with order of execution is weak causality.
Weak causality is ’not later than’ (earlier or at the same time) relation.
Lack of serialisability together with order of execution is causality.

53 / 104

Closure

Relational structure

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

Many types of transitivity - two causality arcs, two weak causality arcs
and mixed situations. Intuition works fine.

54 / 104

Closure

Relational structure

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

Many types of transitivity - two causality arcs, two weak causality arcs
and mixed situations. Intuition works fine.

54 / 104

Saturation

Relational structure

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

We can specify either new causality or new weak causality arcs (and
close the structure).

55 / 104

Saturation

Relational structure

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

We can specify either new causality or new weak causality arcs (and
close the structure).

55 / 104

Saturation

Relational structure

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

We can specify either new causality or new weak causality arcs (and
close the structure).

55 / 104

Saturation

Relational structure

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

We can specify either new causality or new weak causality arcs (and
close the structure).

55 / 104

Saturation

Relational structure

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

We can specify either new causality or new weak causality arcs (and
close the structure).

55 / 104

Saturation

Relational structure

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

We can specify either new causality or new weak causality arcs (and
close the structure).

55 / 104

Saturation

Relational structure

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

Obtained step sequence is:
a(abc)d.

56 / 104

Closed structures

Axioms for stratified order structures
stratified order structure is a ralational structure x∆,ă,Ă, ℓy such that,
for all x , y , z P ∆:

x Ă x : SO:1
x ă y ùñ x Ă y : SO:2

x ‰ z ^ x Ă y Ă z ùñ x Ă z : SO:3
x Ă y ă z _ x ă y Ă z ùñ x ă z : SO:4

Closure

x∆,ă,Ă, ℓy ÞÑ x∆, precospă,Ăq, pă Y Ăq�, ℓy

where
‚ precospQ,Rq “ pQ Y Rq˚ ˝ Q ˝ pQ Y Rq˚

‚ R� “ R`zR0.

57 / 104

Maximal structures

Axioms for layered concurrent structures
Layered concurrent structure is a relational structure x∆,ă,Ă, ℓy such
that, for all x , y , z P ∆:

x Ă x : LC:1
x ă y ùñ x Ă y ^ y Ă x : LC:2
x ă y ùñ x ă z _ z ă y : LC:3
x ‰ y ùñ x Ă y Ă x _ x ăsym y : LC:4

Equivalent objects
Layered concurrent structures correspond to step sequences and
stratified partial orders (partial orders where p∆ ˆ ∆qz ăsym is an
equivalence relation).

58 / 104

Stratified order and layered concurrent structures

Summary
‚ Single observation of a run is a step sequence of events (stratified

order);
‚ History of a run is a set of possible observations;
‚ Order of execution together with simultaneity and serialisability allows

to construct dependence graph (relational structure on events);
‚ Closure of dependence graph is a stratified order structure

(order-theoretic invariant);
‚ Saturation of stratified order structure can be extended to layered

concurrent structure (any of the observations in the history);

59 / 104

Szpilrajn theorem

Diagram

Histories (trace)

Relational structures

Stratified order
structures

add causalities closure

intersection

saturation

Theorem
For every stratified order structure sos there exists layered concurrent
structure los containing it and sos is equal to the intersection of
layered concurrent structures containing it.

60 / 104

Less demanding paradigm

Paradigm
To express ’not later than’ relations we can weaken true concurrency
paradigm. The less demanding formulation states that possibility to
occur in any order implies simultaneity.

Formally:

@x , y P ∆ : pDpo P H : x ⌢po yq

ðù

pDpo P H : x ăpo yq ^ pDpo P H : y ăpo xq .

pπ3q

61 / 104

Leading example

Sample program - is it possible to commute events that are
cannot occur symultaneously?
‚ x = x+1; (a)
‚ y = y+3; (b) bd « db
‚ z = 2*x; (c)
‚ y = y+z; (d) (bd) indefinite
‚ x = x+1; (a)

Assumed execution semantics
For each action we first read all values and then, atomically, write it into
a variable (lvalue).

62 / 104

Even larger set of relations

New challenge
Simultaneity and serialisability relations are not enough. We need
something new to capture interleaving.

First attempt
We can add interleaving not related (or even disjoint) with simultaneity
as third relation.

Economical solution
Let us drop the assumption that serialisability is included in simultaneity:
‚ Simultaneity - actions can occur in one step
‚ Serialisability
‚ Sequentialisability - serialisability enriched by interleaving

63 / 104

Even larger set of relations

New challenge
Simultaneity and serialisability relations are not enough. We need
something new to capture interleaving.

First attempt
We can add interleaving not related (or even disjoint) with simultaneity
as third relation.

Economical solution
Let us drop the assumption that serialisability is included in simultaneity:
‚ Simultaneity - actions can occur in one step
‚ Serialisability
‚ Sequentialisability - serialisability enriched by interleaving

63 / 104

Even larger set of relations

New challenge
Simultaneity and serialisability relations are not enough. We need
something new to capture interleaving.

First attempt
We can add interleaving not related (or even disjoint) with simultaneity
as third relation.

Economical solution
Let us drop the assumption that serialisability is included in simultaneity:
‚ Simultaneity - actions can occur in one step
‚ Serialisability
‚ Sequentialisability - serialisability enriched by interleaving

63 / 104

Leading example

Sequentialisability relation
‚ Two actions a and b can be sequentialised if either a changes

variable not used by b or they both changes the same variable with
the same eventual results for ab and ba;

‚ Otherwise, they cannot.

Serialisable actions
‚ (ab) can be sequentialised as ab or ba (a and b are independent);
‚ (ac) can be sequentialised only as ca (they are serialisable this way);
‚ (ad) can be sequentialised as ad or da (a and d are independent);
‚ (cb) can be sequentialised as cb or bc (b and c are independent);
‚ b and d are sequentialisable, since b and d are not simultaneous but

results of (bd) and (db) are the same;
‚ (cd) can be sequentialised only as dc (they are serialisable this way).
64 / 104

Leading example

Sample program
‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

Equivalent executions
Set of all simultaneous pairs is txa,by2, xa, cy2, xa,dy2, xb, cy2, xc,dy2u,
while sequentialisability: txa,by2, xc,ay, xa,dy2, xb, cy2, xb,dy2, xd , cyu.

65 / 104

Step traces

Formal definition
‚ Alphabet of actions: Σ “ ta,b, c,du;
‚ Simultaneity relation: sim “ txa,by2, xa, cy2, xa,dy2, xb, cy2, xc,dy2u;
‚ Sequentialisability relation:

seq “ txa,by2, xc,ay, xa,dy2, xb, cy2, xb,dy2, xd , cyu;
‚ Concurrent alphabet: Θ “ xΣ, sim, seqy;
‚ Valid steps: SΘ “ tA Ď Σ | A ‰ ∅ ^ pA ˆ AqzidΣ Ď simu

‚ Constructing equations: EQΘ “ tAB “ A Y B | A ˆ B Ď seq X sim
AB “ BA | A ˆ B Ď seq X seq´1u

‚ Immediate similarity: «ΘĎ S˚
Θ ˆ S˚

Θ,
uABv «Θ upA Y Bqv for A ˆ B Ď seq X sim;

or uABv «Θ uBAv for A ˆ B Ď seq X seq´1;
‚ Equivalence relation: ”ΘĎ S˚

Θ ˆ S˚
Θ “«˚

Θ

‚ Traces (equivalence classes): S˚
Θ {”Θ

66 / 104

Leading example

Equivalent executions

‚ abcad
‚ abcda
‚ acabd
‚ acbad
‚ acbda
‚ bacad
‚ bacda

‚ (ab)cad
‚ abc(ad)
‚ ac(ab)d
‚ acb(ad)
‚ a(cb)da
‚ bac(ad)
‚ (ab)cda
‚ (ab)c(ad)
‚ a(bc)(ad)

‚ ab(ca)d
‚ a(ca)bd
‚ ba(ca)d
‚ (ab)(ca)d
‚ a(cab)d

‚ acadb
‚ acdba
‚ acd(ab)
‚ ac(ad)b
‚ a(ca)db

67 / 104

System model

Elementary net system with activators and mutexes
‚ a tuple en “ xP,T ,Act ,Mut ,F ,Minit y;
‚ pn “ xP,T ,Fy is a net, Act is a set of activation arcs;
‚ Mut Ď P ˆ T is a set of mutex arcs;
‚ dt “ tp P P | xp, ty P Mutu are the mutex places of transition t ;
‚ Minit Ď P is a nonempty initial marking;
‚ t P T is enabled at M (Mrtypn) if t Y et Y dt Ď M ^ t X M “ ∅;
‚ Mrtypn M 1 “ Mz t Y t ;
‚ U Ď T is enabled at M (MrUypn) if

@tPUpMrtypn ^ @t‰t 1PUp t Y dtq X p t 1 Y dt 1q “ ∅q;
‚ mixed firing sequence mfs “ M0U1M1 . . .Mn´1UnMn pn ě 0q;
‚ firing sequence fs “ U1 . . .Un;

68 / 104

Label splitting again

Elementary net system with activators and mutexes
a1

b

c

d

a2

69 / 104

Leading example

Dependence graph

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

Sequentializability together with order of execution is weak causality.
Mutex is related with the lack of simultaneity or sequentializability.
Causality is the intersection of mutex and weak causality.

70 / 104

Leading example

Dependence graph

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

Sequentializability together with order of execution is weak causality.
Mutex is related with the lack of simultaneity or sequentializability.
Causality is the intersection of mutex and weak causality.

70 / 104

Leading example

Dependence graph

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

Sequentializability together with order of execution is weak causality.
Mutex is related with the lack of simultaneity or sequentializability.
Causality is the intersection of mutex and weak causality.

70 / 104

Leading example

Dependence graph

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

Sequentializability together with order of execution is weak causality.
Mutex is related with the lack of simultaneity or sequentializability.
Causality is the intersection of mutex and weak causality.

70 / 104

Closure

Relational structure

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

We need to complete induced mutex edges and weak causality arcs.

71 / 104

Closure

Relational structure

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

We need to complete induced mutex edges and weak causality arcs.

71 / 104

Closure

Relational structure

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

We need to complete induced mutex edges and weak causality arcs.

71 / 104

Saturation

Relational structure

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

We can specify either new mutex edges or weak causality arcs (and
close the structure).

72 / 104

Saturation

Relational structure

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

We can specify either new mutex edges or weak causality arcs (and
close the structure).

72 / 104

Saturation

Relational structure

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

We can specify either new mutex edges or weak causality arcs (and
close the structure).

72 / 104

Saturation

Relational structure

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

We can specify either new mutex edges or weak causality arcs (and
close the structure).

72 / 104

Saturation

Relational structure

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

We can specify either new mutex edges or weak causality arcs (and
close the structure).

72 / 104

Saturation

Relational structure

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

We can specify either new mutex edges or weak causality arcs (and
close the structure).

72 / 104

Saturation

Relational structure

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

We can specify either new mutex edges or weak causality arcs (and
close the structure).

72 / 104

Saturation

Relational structure

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

We can specify either new mutex edges or weak causality arcs (and
close the structure).

72 / 104

Saturation

Relational structure

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

We can specify either new mutex edges or weak causality arcs (and
close the structure).

72 / 104

Saturation

Relational structure

‚ x = x+1; (a)
‚ y = y+3; (b)
‚ z = 2*x; (c)
‚ y = y+z; (d)
‚ x = x+1; (a)

a b c d a

Obtained step sequence is:
ac(ad)b

73 / 104

Closed structures

Axioms for invariant order structures
invariant order structure is a relational structure x∆,é,Ă, ℓy such that,
for all x , y , z,w P ∆ (with Ť“é X Ă):

x é x ^ x Ă x : IO:1
x é y ùñ y é x : IO:2

x ‰ z ^ x Ă y Ă z ùñ x Ă z : IO:3
x Ť y Ă z ^ x Ă y Ť z ùñ x é z : IO:4

x é z ^ x Ă y Ă x ùñ y é z : IO:5
z é w ^ x Ă w Ă y ^ x Ă z Ă y ùñ x é y : IO:6

Closure

x∆,é,Ă, ℓy ÞÑ x∆,mutospé,Ăq, păq�, ℓy

‚ mutospQ,Rq “ Rf ˝ Q ˝ Rf Y R˚ ˝Q R˚

74 / 104

Maximal structures

Axioms for layered order structures
Layered order structure is a ralational structure x∆,é,Ă, ℓy such that,
for all x , y , z P ∆:

x é x ^ x Ă x : LO:1
x é y ùñ y é x : LO:2
x Ť y ùñ y Ă x : LO:3
x Ť y ùñ x Ť z _ z Ť y : LO:4
x ‰ y ùñ x Ă y Ă x _ x Ťsym y : LO:5

Equivalent objects
Layered order structures are very similar to layered concurrent
structures, but here causality is a secondary notion.

75 / 104

Invariant and layered order structures

Summary
‚ Single observation of a run is a step sequence of events (stratified

order);
‚ History of a run is a set of possible observations;
‚ Order of execution together with simultaneity and sequentialisability

allows to construct dependence graph (relational structure on
events);

‚ Closure of dependence graph is an invariant order structure
(order-theoretic invariant);

‚ Saturation of invariant order structure can be extended to layered
order structure (any of the observations in the history);

76 / 104

Szpilrajn theorem

Diagram

Histories (trace)

Relational structures

Invariant order
structures

add causalities closure

intersection

saturation

Theorem
For every invariant order structure sos there exists layered order
structure los containing it and sos is equal to the intersection of
layered order structures containing it.

77 / 104

What about the paradigm?

Paradigm
We drop all the requirements. We only insist that the history is closed in
the set of all observations. This way we obtained the most general
notion of invariant for step sequence semantics.

78 / 104

Outline

Introduction of leading example

Sequential semantics (reminder)

Systems with step sequences semantics

Systems with interval order semantics (work in progress)

79 / 104

Interval orders

Norbert Wiener: A contribution to the theory of relative
position [1914]
Any execution of a physical system that can be observed by a single
observer must be an interval order.

Peter C Fishburn: Intransitive indifference with unequal
indifference intervals [1970]
A countable partial order pX ,ăq is interval

if and only if
there exists a total order pY ,!q and two injective mappings with
disjoint codomains B,E : X Ñ Y such that forall a,b P X ,
‚ Bpaq ! Epaq;
‚ a ă bEpaq ! Bpbq

80 / 104

Observations and observers

Observer (step sequences semantics)
‚ observes events with each event corresponding to the execution of an

action;
‚ can observe an event no more than once;
‚ may observe more than one event at the same moment;
‚ different executions of the same action can only be observed at

different moments;
‚ is active for a finite time;
‚ eventually observes only a finite number of events;
‚ as long as is active, it observes all events in the system;
‚ the order in which events are observed by an observer respects their

execution order in the system;
‚ reports all events it observes; and
‚ reports events in the order they were observed.
81 / 104

Observations and observers

Observer (interval order semantics)
‚ observes events with each event corresponding to the execution of an

action;
‚ can observe an event for a finite and continuous time;
‚ may observe more than one event at the same moment;
‚ different executions of the same action can only be observed at

different moments;
‚ is active for a finite time;
‚ eventually observes only a finite number of events;
‚ as long as is active, it observes all events in the system;
‚ the order in which events are observed by an observer respects their

execution order in the system;
‚ reports all events it observes; and
‚ reports events in the order they were observed.
82 / 104

Properties of the observation

Observation is
‚ denoised;
‚ interval;
‚ concurrent;
‚ autoconcurrency-free;
‚ bounded;
‚ finite;
‚ complete;
‚ conform;
‚ unabridged; and
‚ reordering-free.

83 / 104

Leading example

Assumed execution semantics
For each action we first read all values and then, after a while, write it
into a variable (lvalue).

Sample program - interval semantics

‚ x = x+1;
‚ y = y+3;
‚ z = 2*x;
‚ y = y+z;
‚ x = x+1;

‚ Ra : txu

‚ Rb : tyu

‚ Rc : txu

‚ Rd : ty , zu

‚ Ra : txu

‚ Wa : txu

‚ Wb : tyu

‚ Wc : tzu

‚ Wd : tyu

‚ Wa : txu

The order of subsequent reads or subsequent writes (to different
variables) does not matter.

84 / 104

Leading example

Assumed execution semantics
For each action we first read all values and then, after a while, write it
into a variable (lvalue).

Sample program - interval semantics

‚ x = x+1;
‚ y = y+3;
‚ z = 2*x;
‚ y = y+z;
‚ x = x+1;

‚ Ra : txu

‚ Rb : tyu

‚ Rc : txu

‚ Rd : ty , zu

‚ Ra : txu

‚ Wa : txu

‚ Wb : tyu

‚ Wc : tzu

‚ Wd : tyu

‚ Wa : txu

The order of subsequent reads or subsequent writes (to different
variables) does not matter.

84 / 104

Leading example

Assumed execution semantics
For each action we first read all values and then, after a while, write it
into a variable (lvalue).

Sample program - interval semantics

‚ x = x+1;
‚ y = y+3;
‚ z = 2*x;
‚ y = y+z;
‚ x = x+1;

‚ Ra : txu

‚ Rb : tyu

‚ Rc : txu

‚ Rd : ty , zu

‚ Ra : txu

‚ Wa : txu

‚ Wb : tyu

‚ Wc : tzu

‚ Wd : tyu

‚ Wa : txu

The order of subsequent reads or subsequent writes (to different
variables) does not matter.

84 / 104

Leading example

Sequence of events
‚ abcda

‚
Ra

‚
Wa

‚
Rb

‚
Wb

‚
Rc

‚
Wc

‚
Rd

‚
Wd

‚
Ra

‚
Wa

a b c d a

Step sequence of events
‚ (ab)(ac)d

‚
Ra

‚
Wa

‚
Rb

‚
Wb

‚
Ra

‚
Wa

‚
Rc

‚
Wc

‚
Rd

‚
Wd

a

b c

d

a

85 / 104

Leading example - no mutexes

Step sequence of events
‚ a(cab)d

‚
Ra

‚
Wa

‚
Rb

‚
Wb

‚
Ra

‚
Wa

‚
Rc

‚
Wc

‚
Rd

‚
Wd

a

b

c

da

86 / 104

Leading example - total orders

Interval sequence for sequence of events
‚ abcda

‚
Ra

‚
Wa

‚
Rb

‚
Wb

‚
Rc

‚
Wc

‚
Rd

‚
Wd

‚
Ra

‚
Wa

a b c d a

‚ RaWaRbWbRcWcRdWdRaWa

87 / 104

Leading example - stratified orders

Interval sequences for step sequence of events
‚ (ab)(ac)d

‚
Ra

‚
Wa

‚
Rb

‚
Wb

‚
Ra

‚
Wa

‚
Rc

‚
Wc

‚
Rd

‚
Wd

a

b c

d

a

‚ RaRbWaWbRaRcWaWcRd Wd

‚ RbRaWaWbRaRcWaWcRd Wd

‚ RaRbWbWaRaRcWaWcRd Wd

‚ RbRaWbWaRaRcWaWcRd Wd

‚ RaRbWaWbRcRaWaWcRd Wd

‚ RbRaWaWbRcRaWaWcRd Wd

‚ RaRbWbWaRcRaWaWcRd Wd

‚ RbRaWbWaRcRaWaWcRd Wd

‚ RaRbWaWbRaRcWaWcRd Wd

‚ RbRaWaWbRaRcWaWcRd Wd

‚ RaRbWbWaRaRcWaWcRd Wd

‚ RbRaWbWaRaRcWaWcRd Wd

‚ RaRbWaWbRcRaWaWcRd Wd

‚ RbRaWaWbRcRaWaWcRd Wd

‚ RaRbWbWaRcRaWaWcRd Wd

‚ RbRaWbWaRcRaWaWcRd Wd

88 / 104

Leading example - stratified orders

Interval sequences for step sequence of events
‚ (ab)(ac)d

‚
Ra

‚
Wa

‚
Rb

‚
Wb

‚
Ra

‚
Wa

‚
Rc

‚
Wc

‚
Rd

‚
Wd

a

b c

d

a

‚ RaRbWaWbRaRcWaWcRd Wd

‚ RbRaWaWbRaRcWaWcRd Wd

‚ RaRbWbWaRaRcWaWcRd Wd

‚ RbRaWbWaRaRcWaWcRd Wd

‚ RaRbWaWbRcRaWaWcRd Wd

‚ RbRaWaWbRcRaWaWcRd Wd

‚ RaRbWbWaRcRaWaWcRd Wd

‚ RbRaWbWaRcRaWaWcRd Wd

‚ RaRbWaWbRaRcWaWcRd Wd

‚ RbRaWaWbRaRcWaWcRd Wd

‚ RaRbWbWaRaRcWaWcRd Wd

‚ RbRaWbWaRaRcWaWcRd Wd

‚ RaRbWaWbRcRaWaWcRd Wd

‚ RbRaWaWbRcRaWaWcRd Wd

‚ RaRbWbWaRcRaWaWcRd Wd

‚ RbRaWbWaRcRaWaWcRd Wd

88 / 104

Leading example - stratified orders

Interval sequences for step sequence of events
‚ (ab)(ac)d

‚
Ra

‚
Wa

‚
Rb

‚
Wb

‚
Ra

‚
Wa

‚
Rc

‚
Wc

‚
Rd

‚
Wd

a

b c

d

a

‚ RaRbWaWbRaRcWaWcRd Wd

‚ RbRaWaWbRaRcWaWcRd Wd

‚ RaRbWbWaRaRcWaWcRd Wd

‚ RbRaWbWaRaRcWaWcRd Wd

‚ RaRbWaWbRcRaWaWcRd Wd

‚ RbRaWaWbRcRaWaWcRd Wd

‚ RaRbWbWaRcRaWaWcRd Wd

‚ RbRaWbWaRcRaWaWcRd Wd

‚ RaRbWaWbRaRcWaWcRd Wd

‚ RbRaWaWbRaRcWaWcRd Wd

‚ RaRbWbWaRaRcWaWcRd Wd

‚ RbRaWbWaRaRcWaWcRd Wd

‚ RaRbWaWbRcRaWaWcRd Wd

‚ RbRaWaWbRcRaWaWcRd Wd

‚ RaRbWbWaRcRaWaWcRd Wd

‚ RbRaWbWaRcRaWaWcRd Wd

88 / 104

Leading example - stratified orders

Interval sequences for step sequence of events
‚ (ab)(ac)d

‚
Ra

‚
Wa

‚
Rb

‚
Wb

‚
Ra

‚
Wa

‚
Rc

‚
Wc

‚
Rd

‚
Wd

a

b c

d

a

‚ RaRbWaWbRaRcWaWcRd Wd

‚ RbRaWaWbRaRcWaWcRd Wd

‚ RaRbWbWaRaRcWaWcRd Wd

‚ RbRaWbWaRaRcWaWcRd Wd

‚ RaRbWaWbRcRaWaWcRd Wd

‚ RbRaWaWbRcRaWaWcRd Wd

‚ RaRbWbWaRcRaWaWcRd Wd

‚ RbRaWbWaRcRaWaWcRd Wd

‚ RaRbWaWbRaRcWaWcRd Wd

‚ RbRaWaWbRaRcWaWcRd Wd

‚ RaRbWbWaRaRcWaWcRd Wd

‚ RbRaWbWaRaRcWaWcRd Wd

‚ RaRbWaWbRcRaWaWcRd Wd

‚ RbRaWaWbRcRaWaWcRd Wd

‚ RaRbWbWaRcRaWaWcRd Wd

‚ RbRaWbWaRcRaWaWcRd Wd

88 / 104

Leading example - stratified orders

Interval sequences for step sequence of events
‚ (ab)(ac)d

‚
Ra

‚
Wa

‚
Rb

‚
Wb

‚
Ra

‚
Wa

‚
Rc

‚
Wc

‚
Rd

‚
Wd

a

b c

d

a

‚ RaRbWaWbRaRcWaWcRd Wd

‚ RbRaWaWbRaRcWaWcRd Wd

‚ RaRbWbWaRaRcWaWcRd Wd

‚ RbRaWbWaRaRcWaWcRd Wd

‚ RaRbWaWbRcRaWaWcRd Wd

‚ RbRaWaWbRcRaWaWcRd Wd

‚ RaRbWbWaRcRaWaWcRd Wd

‚ RbRaWbWaRcRaWaWcRd Wd

‚ RaRbWaWbRaRcWaWcRd Wd

‚ RbRaWaWbRaRcWaWcRd Wd

‚ RaRbWbWaRaRcWaWcRd Wd

‚ RbRaWbWaRaRcWaWcRd Wd

‚ RaRbWaWbRcRaWaWcRd Wd

‚ RbRaWaWbRcRaWaWcRd Wd

‚ RaRbWbWaRcRaWaWcRd Wd

‚ RbRaWbWaRcRaWaWcRd Wd

89 / 104

Leading example - interval orders

Interval sequences for interval order (not stratified order)

‚
Ra

‚
Wa

‚
Rb

‚
Wb

‚
Ra

‚
Wa

‚
Rc

‚
Wc

‚
Rd

‚
Wd

a

b

c

d

a

‚ RaRbWaRaRcWbWcRd WaWd

‚ RbRaWaRaRcWbWcRd WaWd

‚ RaRbWaRcRaWbWcRd WaWd

‚ RbRaWaRcRaWbWcRd WaWd

‚ RaRbWaRaRcWcWbRd WaWd

‚ RbRaWaRaRcWcWbRd WaWd

‚ RaRbWaRcRaWcWbRd WaWd

‚ RbRaWaRcRaWcWbRd WaWd

‚ RaRbWaRaRcWbWcRd Wd Wa

‚ RbRaWaRaRcWbWcRd Wd Wa

‚ RaRbWaRcRaWbWcRd Wd Wa

‚ RbRaWaRcRaWbWcRd Wd Wa

‚ RaRbWaRaRcWcWbRd Wd Wa

‚ RbRaWaRaRcWcWbRd Wd Wa

‚ RaRbWaRcRaWcWbRd Wd Wa

‚ RbRaWaRcRaWcWbRd Wd Wa

90 / 104

Mazurkiewicz traces over beginnings and ends

Formal definition
‚ Alphabet of actions: Σë “ tRa,Wa,Rb,Wb,Rc ,Wc ,Rd ,Wd u;
‚ Interval orders independence: indint “ txRa,Rby, xWa,Wby | a ‰ bu;
‚ Concurrent alphabets: Φint “ xΣë, indint y;
‚ Immediate similarity: «Φint Ď Σ˚

ë ˆ Σ˚
ë;

‚ Equivalence relation: ”Φint Ď Σ˚
ë ˆ Σ˚

ë “«Φ˚
int

‚ Mazurkiewicz traces (equivalence classes): Σ˚
ë {”Φint

;
‚ Mazurkiewicz traces over Σë are equivalent to interval orders over
Σ “ ta,b, c,du, notation ℘;

91 / 104

Leading example - without mutexes

Equivalent executions - total and stratified orders

‚ abcad
‚ abcda
‚ acabd
‚ acbad
‚ acbda
‚ bacad
‚ bacda

‚ (ab)cad
‚ abc(ad)
‚ ac(ab)d
‚ acb(ad)
‚ a(cb)da
‚ bac(ad)
‚ (ab)cda
‚ (ab)c(ad)
‚ a(bc)(ad)

‚ ab(ca)d
‚ a(ca)bd
‚ ba(ca)d
‚ (ab)(ca)d
‚ a(cab)d

92 / 104

Leading example - no mutexes

Dependencies on beginnings and ends
We cannot move reads of some variables before their recent writes
(and need to distinguish between two executions).

Leading example
Ra : txu Wa : txu

Rb : tyu Wb : tyu

Rc : txu Wc : tzu

Rd : ty , zu Wd : tyu

93 / 104

Leading example - no mutexes

Dependencies on beginnings and ends
We cannot move reads of some variables before their recent writes
(and need to distinguish between two executions).

Leading example
Ra : txu Wa : txu

Rb : tyu Wb : tyu

Rc : txu Wc : tzu

Rd : ty , zu Wd : tyu

93 / 104

Leading example - no mutexes

Dependencies on beginnings and ends
We cannot move reads of some variables before their recent writes
(and need to distinguish between two executions).

Leading example
Ra : txu Wa : txu

Rb : tyu Wb : tyu

Rc : txu Wc : tzu

Rd : ty , zu Wd : tyu

93 / 104

Leading example - no mutexes

Dependencies on beginnings and ends
We cannot move reads of some variables before their recent writes
(and need to distinguish between two executions).

Leading example
Ra : txu Wa : txu

Rb : tyu Wb : tyu

Rc : txu Wc : tzu

Rd : ty , zu Wd : tyu

93 / 104

Interval traces

Formal definition
‚ Alphabet of actions: Σ “ ta,b, c,du;
‚ Weak independence relation:

wind “ txa,by2, xc,ay, xa,dy2, xb, cy2, xd , cyu;
‚ Independence relation: indë “ indint Y

txRa,Wby2, xRa,Wcy2, xRa,Wd y2, xRb,Way2,
xRb,Wcy2, xRc ,Wby2, xRc ,Wd y2, xRd ,Way2u;

‚ Concurrent alphabets: Φint “ xΣë, indint y; Φë “ xΣë, indëy;

‚ Interval orders: ℘ “
Σ˚

ë {”Φint
;

‚ Traces (considering weak independence): Σ˚
ë {”Φë

;

‚ Equivalence relation ”Φë
is an invariant for ℘ (”Φint Ď”Φë

);
‚ Interval traces: ℘{”Φë

.

94 / 104

Leading example - no mutexes

Equivalent executions

‚ abcad
‚ abcda
‚ acabd
‚ acbad
‚ acbda
‚ bacad
‚ bacda

‚ (ab)cad
‚ abc(ad)
‚ ac(ab)d
‚ acb(ad)
‚ a(cb)da
‚ bac(ad)
‚ (ab)cda
‚ (ab)c(ad)
‚ a(bc)(ad)

‚ ab(ca)d
‚ a(ca)bd
‚ ba(ca)d
‚ (ab)(ca)d
‚ a(cab)d

‚
‚ ‚

‚ ‚

‚ ‚

‚ ‚

‚ ‚

a

b

c

d

a

‚
‚ ‚

‚ ‚

‚ ‚‚ ‚

‚ ‚

a

b

c

d

a

‚
‚ ‚

‚ ‚

‚ ‚

‚ ‚

‚ ‚

a

b

c

d

a

‚ ‚ ‚ ‚

95 / 104

Closed structures

Axioms for invariant combined structures
invariant combined structure is a tuple x∆,ă,Ă, ℓy such that, for all
x , y , z,w P ∆

x Ă x : IC:1
x ă y ùñ x Ă y Ă x : IC:2

x ă y ă z ùñ x ă z : IC:3
x Ă y ă z _ x ă y Ă z ùñ x Ă z : IC:4

x ă y Ă z ă w ùñ x ă w : IC:5
x Ă y ă z Ă w ‰ x ùñ x Ă w : IC:6

96 / 104

Maximal structures

Axioms for interval poset structures
interval order structure is a tuple x∆,ă,Ă, ℓy such that, for all
x , y , z,w P ∆

x Ă x : IP:1
x ă y ùñ x Ă y : IP:2
x ă y ðñ y Ă x ‰ y : IP:3

x ă y ^ z ă w ùñ x ă w _ z ă y : IP:4

97 / 104

Invariant and layered order structures

Summary
‚ Single observation of a run is a interval partial order of events;
‚ History of a run is a set of possible observations;
‚ Order of execution together with weak independence allows to

construct dependence graph (relational structure on events);
‚ Closure of dependence graph is an invariant combined structure;
‚ Saturation of invariant order structure can be extended to interval

poset structure (any of the observations in the history);

98 / 104

Szpilrajn theorem

Diagram

Histories (trace)

Relational structures

Invariant combined
structures

add causalities closure

intersection

saturation

Theorem
For every invariant combined structure ios there exists interval poset
structure ips containing it and ios is equal to the intersection of
interval poset structures containing it.

99 / 104

Further generalisation

Question
What about mutexes?

Work in progress
‚ Ryszard Janicki, Maciej Koutny, Łukasz Mikulski:

Interval Traces with Mutex Relation. Petri Nets 2023: 145-166

100 / 104

Further generalisation

Question
What about mutexes?

Work in progress
‚ Ryszard Janicki, Maciej Koutny, Łukasz Mikulski:

Interval Traces with Mutex Relation. Petri Nets 2023: 145-166

100 / 104

Summary

Semantics
‚ sequential;
‚ step sequence;
‚ interval order.

Forbidden cycles
‚ acyclic graphs (no cycles of ă);
‚ separable structures (no cycle of Ă is connected by é);
‚ combined interval acyclic structures

(every cycle has two consecutive Ă arcs).

101 / 104

Summary

Petri net systems
‚ elementary systems
‚ elementary systems with activators (step sequence semantics)
‚ elementary systems with activators and mutexes
‚ elementary systems with activators (interval order semantics)

Traces
‚ Mazurkiewicz traces
‚ Combined traces
‚ Step traces
‚ Interval traces

102 / 104

Summary

Milestones
‚ we started from Mazurkiewicz concept of equivalent computations

and partial orders as invariants [1977];
‚ adapting true concurrency paradigm allows us to elevate to step

sematnics [1987];
‚ weakening causality made it possible to introduce the notion of

combined traces [1993];
‚ decomposition of causality to weak causality and mutual exclusion

led to the definition of step traces [2013]
‚ rejection of the transitivity of simultaneity allows us to elevate to

interval semantics [2009-2023]
‚ what next?

103 / 104

Summary

Design clues
‚ Acyclicity notion (allowed structures) are crucial design decision;
‚ Saturation is a secondary concept based on acyclity;
‚ Closed structure and dependence structures are secondary concepts

based on saturation;

Future work
‚ More precise notion of acyclicity for interval semantics;
‚ Mutexes for interval semantics;
‚ Net systems for interval semantics;

104 / 104

	Introduction of leading example
	Sequential semantics (reminder)
	Systems with step sequences semantics
	Systems with interval order semantics (work in progress)

