
Semaphores. Limits and Extensions
CS 3SD3

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton,
Ontario, Canada

Ryszard Janicki Semaphores. Limits and Extensions 1/20

Semaphores

Semaphore s is an integer variable that can take only
non-negative values.

The only semaphore operations are down(s) (wait(s),V (s))
and up(s) (signal(s),P(s)).

down(s),wait(s),P(s): if s > 1 then s = s − 1

else block execution of the calling process
up(s), signal(s),V (s): if process blocked on s

then awaken one of them
else s = s + 1

Semaphores should be atomic and ‘easy/fast/efficient’ to
implement, preferably at a low level.

Ryszard Janicki Semaphores. Limits and Extensions 2/20

Mutual Exclusion

var s: semaphore = 1;
P1 : cycle begin P1-instructions1;

down(s);
critical region;
up(s);
P1-instructions2;

end

P2 : cycle begin P2-instructions1;
down(s);
critical region;
up(s);
P2-instructions2;

end

Ryszard Janicki Semaphores. Limits and Extensions 3/20

Theory of Semaphores

Properties of Dijkstra’s semaphore operations may be characterized
in the following way. Let:
C (s) - the initial value of a semaphore variable s
ndown(s) - the number of times down(s) was executed
nup(s) - the number of times up(s) was executed
npdown(s) - the number of times down(s) was passed

Using these notions we may define the results of actions down and
up as follows:
down(s) : ndown(s) = ndown(s) + 1 :

if ndown(s) ≤ nup(s) + C (s) then npdown(s) = npdown(s) + 1;
up(s) : if ndown(s) > nup(s) + C (s)

then npdowns(s) = npdowns(s) + 1; nup(s) = nup(s) + 1;

Theorem/Definition (Semaphore Invariant)

npdown(s) = min(ndown(s),C (s) + nup(s))

• Anything that satisfies the equation above is a Dijkstra’s semaphore!

Ryszard Janicki Semaphores. Limits and Extensions 4/20

Smokers Problem

Three smokers are sitting at a table. One of them has tobacco,
another cigarette paper, and the third one has matches - each
one has a different ingredient required to make and smoke a
cigarette but he may not give any ingredient to another.
On the table in front of them, two of the three ingredients will be
placed, and the smoker who has the necessary third ingredient
should pick up the ingredients from the table, make a cigarette and
smoke it.
Since a new set of ingredients will not be placed on the table until
this action (i.e. smoking) is completed, the other smoker who
cannot make and smoke a cigarette with the ingredients on the
table, must not interfere with the fellow who can. Therefore,
coordination is needed among smokers.

Ryszard Janicki Semaphores. Limits and Extensions 5/20

The actions of the smokers without coordination

X - the smoker with tobacco
αx : pick up the paper

pick up the match
roll the cigarette
light the cigarette
smoke the cigarette
goto αx

Y - the smoker with paper
αy : pick up the tobacco

pick up the match
roll the cigarette
light the cigarette
smoke the cigarette
goto αy

Z - the smoker with matches
αz : pick up the tobacco

pick up the paper
roll the cigarette
light the cigarette
smoke the cigarette
goto αz

Ryszard Janicki Semaphores. Limits and Extensions 6/20

‘Obvious Solution’ with Semaphores

Rtobacco Rpaper Rmatch
rt: down(s); rp: down(s); rm: down(s);
up(paper); up(match); up(tobacco); ← agent
up(match); up(tobacco); up(paper);
goto rt goto rp goto rm

Smoker with Tobacco Smoker with Paper Smoker with Matches s
at: down(paper); ap: down(match); am: down(tobacco); m
down(match); down(tobacco); down(paper); ← o
. k

up(smokert); up(smokerp); up(smokerm); e
goto at goto ap goto am rs

bt: down(smokert); bp: down(smokerp); bm: down(smokerm);
up(s); up(s); up(s);
goto bt goto bp goto bm

↑
Rule: The set of new ingredients will not be placed on the table until

an appropriate action of smoking is completed

Ryszard Janicki Semaphores. Limits and Extensions 7/20

Deadlocking sequence (not unique):
down(s) in RTobacco → up(s) in RTobacco → down(paper)
in Smoker with Tobacco → up(matches) in RTobacco →
down(matches) in Smoker with Paper

paper and matches have been put on the table and the
process Smoker with Tobacco takes paper while the process
Smoker with Paper takes matches!

Problem (Smokers’ Problem)

The Smokers’ Problem is to define additional semaphores and
processes and to introduce appropriate down and up statements so
as to make them deadlock-free. No alternation can, however, be
made to the processes defining the agent. No conditional
statement and assignment statement instructions may be used.

Theorem (Patil 1970)

The Smokers’ Problem has no solution.

Ryszard Janicki Semaphores. Limits and Extensions 8/20

Parnas (1974) solution to Smokers’ Problem!?
initially: s = mutes = 1, t = tobacco = paper = match = smokert = smokerp =

smokerm = 0, S[1] = S[2] = S[3] = S[4] = S[5] = S[6] = 0
Rtobacco Rpaper Rmatch
rt: down(s); rp: down(s); rm: down(s);
up(paper); up(match); up(tobacco); ← agent
up(match); up(tobacco); up(paper);
goto rt goto rp goto rm

bt: down(smokert); bt: down(smokerp); bt: down(smokerm); const-
up(s); up(s); up(s); ← raints
goto bt goto bp goto bm

Smoker with Tobacco Smoker with Paper Smoker with Matches s
at: down(S [6]); ap: down(S [5]); am: down(S [3]); m
t = 0; t = 0; t = 0; ← o
. k

up(smokert); up(smokerp); up(smokerm); e
goto at goto ap goto am rs

dt: down(tobacco); dp: down(paper); dm: down(match);
down(mutex); down(mutex); down(mutex); push-
t = t + 1; t = t + 2; t = t + 4; ←ers
up(S [t]); up(S [t]); up(S [t]);
up(mutex); up(mutex); up(mutex);
goto dt goto dp goto dm

d1: down(S [1]); d2: down(S [2]); d3: down(S [4]); no over-
goto d1 goto d2 goto d3 ←flow

Ryszard Janicki Semaphores. Limits and Extensions 9/20

t and S [...]

t is just and integer variable, not a semaphore variable.

The array S [...] is an array of semaphores, a non-standard
construction, very seldom implemented, however formally OK.

Ryszard Janicki Semaphores. Limits and Extensions 10/20

Who is right? Patil or Parnas

Both!

Parnas, if the letter of law is more important.

Patil, if the spirit of law is more important.

Unfortunately, Patil’s paper was not well written and has
many implicit assumptions that were not spelled out.

It was implicitly assumed: no semaphore extension to arrays,
no extension to many variables, no assignment statements,
etc.

Ryszard Janicki Semaphores. Limits and Extensions 11/20

Multidimentional Semaphores of Agerwala

The extended primitives edown and eup are atomic
(indivisible) and each operates on a set of semaphore variables
which must be initiated with non-negative integer values.

edown(s1, . . . , sn, sn+1, . . . , sn+m︸ ︷︷ ︸
inhibitor values

):

if for all i , 1 ≤ i ≤ n, si > 0 and for all j , 1 ≤ j ≤ m, Sn+j = 0
then for all i , 1 ≤ i ≤ n, si = si − 1
else block execution of calling processes.

eup(s1, s2, . . . , sn):
if processes blocked on (s1, . . . , sn)
then awaken on of them
else for all i , 1 ≤ i ≤ n, si = si + 1

Theorem

Agerwala’s semaphores can simulate the action of an arbitrary
Turing machine.

Ryszard Janicki Semaphores. Limits and Extensions 12/20

Inhibitor Nets

A transition t can only be fired if all places connected by inhibitor
arcs are empty.
The transition t below can be fired as it has all input placed filled
and all inhibitor places empty.

The transition t below cannot be fires since its inhibitor places are
not all empty (some or all contain tokens).

Ryszard Janicki Semaphores. Limits and Extensions 13/20

Nets with Inhibitor Arcs and Turing Machines

Theorem

Nets with Inhibitor Arcs are equivalent to Turing Machines.

Agerwala’s semaphores can model Nets with Inhibitor Arcs, so
they can model Turing Machines as well.

Ryszard Janicki Semaphores. Limits and Extensions 14/20

‘Not Later Than’

The nets below allows the sequence a→ b and the simultaneous
step {a, b}, but the sequence b → a is disallowed.

The above net models ‘a is not later than b’.

Ryszard Janicki Semaphores. Limits and Extensions 15/20

‘Only Simultaneously’

The net below allows only the simultaneous step {a, b}, neither
a→ b nor b → a are allowed.

The above net models ‘only simultaneous execution of a and b’

This net with this interpretation is a little bit controversial as the
step {a, b} does not have any sequential interpretation, so cannot
be simulated by any sequential system!

Ryszard Janicki Semaphores. Limits and Extensions 16/20

Comments on Generalized Semaphores

Both inhibitor values and eup(s1, s2, . . . , sn) are rarely used in
practical applications.

Inhibitor values are needed to simulate Turing Machines.

Releasing resources seldom needs to be done in a specific
order, so eup(s1, s2, . . . , sn) are not so often used.

Problem: Any kind of semaphores except the classical
Dijkstra’s semaphores are not so easy to implement, especially
on a very low level, and implementations are usually expensive
and not very efficient.

Hence, very often we only have standard Dijkstra’s
semaphores to use.

Ryszard Janicki Semaphores. Limits and Extensions 17/20

Smokers’ Problem with Agerwala’s Semaphores

Rtobacco Rpaper Rmatch
rt: down(s); rp: down(s); rm: down(s);

up(paper); up(match); up(tobacco); ← agent
up(match); up(tobacco); up(paper);
goto rt goto rp goto rm

bt: down(smokert); bt: down(smokerp); bt: down(smokerm); const-
up(s); up(s); up(s); ← raints
goto bt goto bp goto bm

Smoker with Tobacco Smoker with Paper Smoker with Matches s
at: down(paper ,match); ap: down(tobacco,match); am: down(tobacco, paper); mo

. ← k
up(smokert); up(smokerp); up(smokerm); e
goto at goto ap goto am rs

Intuition: smoker can pick only two ingredients
simultaneously, i.e. as atomic one action.

Ryszard Janicki Semaphores. Limits and Extensions 18/20

Binary Semaphores. Why they are admired?

Simplicity, simplicity,

In FSP formalism: ‘Normal’ semaphores:

**
const Max = M (must be a concrete number)
range int = 0..Max
SEMAPHORE(N = K) = SEMA[N] (K is the initial value)
SEMA[v : int] = (when(v < Max)up → SEMA[v + 1] |

when(v > 0)down→ SEMA[v − 1])
**

For M = 3 it expands to:

SEMA[0] = (up → SEMA[1])
SEMA[1] = (up → SEMA[2] | down→ SEMA[0])
SEMA[2] = (up → SEMA[3] | down→ SEMA[1])
SEMA[3] = (down→ SEMA[2])
**

Binary semaphore: M = 1, so
SEMA[0] = (up → SEMA[1])
SEMA[1] = (down→ SEMA[0]), we can use substitution:
**
SEMA[0] = (up → down→ SEMA[0])
SEMA[1] = (down→ up → SEMA[1])
**
SEMAPHORE(N = 0) = SEMA[0]
SEMAPHORE(N = 1) = SEMA[1]

Ryszard Janicki Semaphores. Limits and Extensions 19/20

Binary Semaphores. Why they are admired?

Hence, in FSP formalism, the binary semaphores are very
simple!

If the initial value is 0 (False), then:
SEMAPHORE = (up → down→ SEMAPHORE)

If the initial value is 1 (True), then:
SEMAPHORE = (down→ up → SEMAPHORE)

In reality, binary semaphores are much easier to implement,
especially on low level, then ‘normal’ semaphores.

Usually, the implementation of binary semaphores is
conceptually different, i.e. it is not just a special case of
‘normal’ semaphores.

Binary semaphores are much simpler than the normal ones in
virtually any high level formalism!

Ryszard Janicki Semaphores. Limits and Extensions 20/20

