
Safety and Liveness Properties
CS 2SD3

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton,
Ontario, Canada

Ryszard Janicki Safety and Liveness Properties 1/46

Safety and Liveness Properties

2015 Concurrency: safety & liveness properties
2

©Magee/Kramer 2nd Edition

safety & liveness properties

Concepts: properties: true for every possible execution

safety: nothing bad happens

liveness: something good eventually happens

Models: safety: no reachable ERROR/STOP state

progress: an action is eventually executed
fair choice and action priority

Practice: threads and monitors

Aim: property satisfaction.

Ryszard Janicki Safety and Liveness Properties 2/46

Safety

A safety property asserts that nothing bad happens.

STOP or deadlocked state (no outgoing transitions)

ERROR process (-1) to detect erroneous behaviour

ACTUATOR = (command → ACTION)
ACTION = (respond → ACTUATOR | command → ERROR)

2015 Concurrency: safety & liveness properties
3

©Magee/Kramer 2nd Edition

♦  STOP or deadlocked state (no outgoing transitions)

♦  ERROR process (-1) to detect erroneous behaviour

7.1 Safety

ACTUATOR
 =(command->ACTION),
ACTION
 =(respond->ACTUATOR

 |command->ERROR).

Trace to ERROR:
 command
 command

♦  analysis using LTSA:
(shortest trace)

A safety property asserts that nothing bad happens.

command

command

respond

-1 0 1

Smallest trace to ‘ERROR’ : command → command

This smaller trace will be produced by LTSA with ‘Safety
Analysis’.

Ryszard Janicki Safety and Liveness Properties 3/46

Safety Properties
ERROR condition states what is not required (cf. exceptions).
In complex systems, it is usually better to specify safety
properties by stating directly what is required.
Safety properties are specified in FSP by property process.
Syntax of this process: just a prefix property
Safety properties are composed with a target system to ensure
that the specified property holds for that system.

property SAFE ACTUATOR = (command → respond → SAFE ACTUATOR)

Semantics differs from ‘normal’ FSP!

Ryszard Janicki Safety and Liveness Properties 4/46

Semantics of Safety Property Processes

In all states, all the actions in the alphabet of a property
process are eligible choices, and everything that is not
specified explicitly goes to ERROR state (process) (-1).

POLITE = (knock → enter → POLITE)

property POLITE = (knock → enter → POLITE)

Ryszard Janicki Safety and Liveness Properties 5/46

Safety Properties

Safety property P defines a deterministic process that asserts
that any trace including actions in the alphabet of P, is
accepted by P. Those actions that are not part of the
specified behaviour of P are transitions to the ERROR state.

Thus, if P is composed with S , then traces of actions in
alphabet(S) ∩ alphabet(P) must also be valid traces of P,
otherwise ERROR is reachable.

Transparency of safety properties: Since all actions in the
alphabet of a property are eligible choices, composing a
property with a set of processes does not affect their correct
behaviour. However, if a behaviour can occur which violates
the safety property, then ERROR is reachable.

Properties must be deterministic to be transparent.

The textbook states: ‘Experience has shown that this is rarely
a restriction in practice’, but not everyone agrees!

Ryszard Janicki Safety and Liveness Properties 6/46

Safety Property

How can we specify that some action, disaster, never occurs?

property CALM = STOP + {disaster}

2015 Concurrency: safety & liveness properties
7

©Magee/Kramer 2nd Edition

Safety properties

♦  How can we specify that some action, disaster, never occurs?

property CALM = STOP + {disaster}.

disaster

-1 0

A safety property must be specified so as
to include all the acceptable, valid
behaviours in its alphabet.

A safety property must be specified so as to include all the
acceptable, valid behaviours in its alphabet.

Ryszard Janicki Safety and Liveness Properties 7/46

Safety: Mutual Exclusion

LOOP = (mutex .down→ enter → exit → mutex .up → LOOP)
∥ SEMADEMO = (p[1..3] : LOOP ∥ {p[1..3]} :: mutex : SEMAPHORE(1))
SEMAPHORE(N) = SEMA(N)
SEMA[v : Int] = (when(v < N) up → SEMA[v + 1] ∥

when(v > 0) down → SEMA[v − 1])
property MUTEX = (p[i : 1..3].enter → p[i].exit → MUTEX),
where MUTEX expands to:
MUTEX = (p[1].enter → p[1].exit → MUTEX |

p[2].enter → p[2].exit → MUTEX | p[3].enter → p[3].exit → MUTEX)

∥ CHECK = (SEMADEMO ∥ MUTEX)

The safety property MUTEX specifies that when when a process enters
the critical section (p[i].enter), the same process must exit the critical
section (p[i].exit) before another process can enter.

The solution works for the above case, but:

Ryszard Janicki Safety and Liveness Properties 8/46

Safety: Mutual Exclusion

∥ SEMADEMO 2 = (p[1..3] : LOOP ∥ {p[1..3]} :: mutex : SEMAPHORE(2))

∥ CHECK 2 = (SEMADEMO 2 ∥ MUTEX)

The process ∥ CHECK produces a trace:
p.1.mutex .down→ p.1.enter → p.2.mutex .down→ p.2.exit

In this case SEMAPHORE (2) can be interpreted that we
allow two processes in the critical section. It does make sense,
however it is then usually not called ‘critical section’.

Ryszard Janicki Safety and Liveness Properties 9/46

Single Lane Bridge problem

2015 Concurrency: safety & liveness properties
9

©Magee/Kramer 2nd Edition

7.2 Single Lane Bridge problem

A bridge over a river is only wide enough to permit a single lane of traffic.
Consequently, cars can only move concurrently if they are moving in the same
direction. A safety violation occurs if two cars moving in different directions
enter the bridge at the same time.

A bridge over a river is only wide enough to permit a single
lane of traffic. Consequently, cars can only move concurrently
if they are moving in the same direction.

A safety violation occurs if two cars moving in different
directions enter the bridge at the same time.

Ryszard Janicki Safety and Liveness Properties 10/46

Single Lane Bridge - model

‘i%N + 1’ means ‘i mod N + 1’, i.e. i divided modulo N plus 1.

2015 Concurrency: safety & liveness properties
10

©Magee/Kramer 2nd Edition

Single Lane Bridge - model

♦  Events or actions of interest?
enter and exit

♦  Identify processes.

cars and bridge
♦  Identify properties.

oneway
♦ Define each process

and interactions

(structure).

red[ID].
{enter,exit}

blue[ID].
{enter,exit}

BRIDGE

property
ONEWAY

CARS

Single
Lane
Bridge

Ryszard Janicki Safety and Liveness Properties 11/46

Single Lane Bridge - CARS model

2015 Concurrency: safety & liveness properties
11

©Magee/Kramer 2nd Edition

Single Lane Bridge - CARS model

const N = 3 // number of each type of car
range T = 0..N // type of car count
range ID= 1..N // car identities

CAR = (enter->exit->CAR).

No overtaking constraints: To model the fact that cars
cannot pass each other on the bridge, we model a CONVOY of
cars in the same direction. We will have a red and a blue convoy
of up to N cars for each direction:

||CARS = (red:CONVOY || blue:CONVOY).

Ryszard Janicki Safety and Liveness Properties 12/46

Single Lane Bridge - CONVOY model

‘i%N + 1’ means ‘i mod N + 1’, i.e. i divided modulo N plus 1.

2015 Concurrency: safety & liveness properties
12

©Magee/Kramer 2nd Edition

Single Lane Bridge - CONVOY model

NOPASS1 = C[1], //preserves entry order
C[i:ID] = ([i].enter-> C[i%N+1]).
NOPASS2 = C[1], //preserves exit order
C[i:ID] = ([i].exit-> C[i%N+1]).

||CONVOY = ([ID]:CAR||NOPASS1||NOPASS2).

Permits 1.enterà 2.enterà 1.exità 2.exit
but not 1.enterà 2.enterà 2.exità 1.exit

 ie. no overtaking.

1.enter 2.enter

3.enter

0 1 2

1.exit 2.exit

3.exit

0 1 2

Ryszard Janicki Safety and Liveness Properties 13/46

Single Lane Bridge - BRIDGE model

Cars can move concurrently on the bridge only if in the same
direction. The bridge maintains counts of blue and red cars on
the bridge. Red cars are only allowed to enter when the blue
count is zero and vice-versa.

2015 Concurrency: safety & liveness properties
13

©Magee/Kramer 2nd Edition

Single Lane Bridge - BRIDGE model

BRIDGE = BRIDGE[0][0], // initially empty
BRIDGE[nr:T][nb:T] = //nr is the red count, nb the blue

 (when(nb==0)
 red[ID].enter -> BRIDGE[nr+1][nb] //nb==0
 | red[ID].exit -> BRIDGE[nr-1][nb]
 |when (nr==0)
 blue[ID].enter-> BRIDGE[nr][nb+1] //nr==0
 | blue[ID].exit -> BRIDGE[nr][nb-1]

).

Cars can move concurrently on the bridge only if in the same direction. The bridge
maintains counts of blue and red cars on the bridge. Red cars are only allowed to
enter when the blue count is zero and vice-versa.

Even when 0, exit actions permit the car counts
to be decremented. LTSA maps these undefined
states to ERROR. Even when 0, exit actions permit the car counts to be

decremented. LTSA uses this assumption.

Ryszard Janicki Safety and Liveness Properties 14/46

Single Lane Bridge - safety property ONEWAY

We now specify a safety property to check that cars do not
collide!

While red cars are on the bridge only red cars can enter;
similarly for blue cars.

When the bridge is empty, either a red or a blue car may enter.

2015 Concurrency: safety & liveness properties
14

©Magee/Kramer 2nd Edition

Single Lane Bridge - safety property ONEWAY

property ONEWAY =(red[ID].enter -> RED[1]
 |blue[ID].enter -> BLUE[1]
),
RED[i:ID] = (red[ID].enter -> RED[i+1]
 |when(i==1)red[ID].exit -> ONEWAY
 |when(i>1) red[ID].exit -> RED[i-1]
), //i is a count of red cars on the bridge
BLUE[i:ID]= (blue[ID].enter-> BLUE[i+1]
 |when(i==1)blue[ID].exit -> ONEWAY
 |when(i>1)blue[ID].exit -> BLUE[i-1]
). //i is a count of blue cars on the bridge

We now specify a safety property to check that cars do not collide!
While red cars are on the bridge only red cars can enter; similarly for blue cars.
When the bridge is empty, either a red or a blue car may enter.

Ryszard Janicki Safety and Liveness Properties 15/46

Single Lane Bridge - Analysis of This Simple Model

2015 Concurrency: safety & liveness properties
15

©Magee/Kramer 2nd Edition

Single Lane Bridge - model analysis

Is the safety property
ONEWAY violated?

||SingleLaneBridge = (CARS|| BRIDGE||ONEWAY).

No deadlocks/errors

Trace to property violation in ONEWAY:
 red.1.enter
 blue.1.enter

Without the BRIDGE
contraints, is the safety
property ONEWAY
violated?

||SingleLaneBridge = (CARS||ONEWAY).

Ryszard Janicki Safety and Liveness Properties 16/46

Single Lane Bridge - Analysis of This Simple Model

Question: How ONEWAY can be seen as transparent and
nondeterministic? It contains ‘|’ operator.

Answer: It could be interpreted as ‘semantically deterministic’, but this
concept is hidden in the textbook.

property P is a passive process, but it is just a process with a
little bit different semantics. However it can entirely be
simulated by just a standard process.

Transparency and Determinism are not defined very precisely
in the textbook.

Determinism is of semantical nature, it follows from the fact
that every process involved in the definition of ‘property P’ is
considered to be passive and ‘local’ to P.

Ryszard Janicki Safety and Liveness Properties 17/46

Alphabet Extension: Processes

Let: P = (a→ b → P), Q = (c → d → Q) and
Qa = (c → d → Q) + {b}.

alphabet(P) = {a, b}, alphabet(Q) = {c , d},
alphabet(Qa) = {b, c , d}, so alphabet(P) ∩ alphabet(Q) = ∅, while
alphabet(P) ∩ alphabet(Qa) = {b}.

Define ||PQ = P||A and PQa = P||Qa.

Labelled Transition Systems are:

P Q = Qa ||PQ ||PQa

Clearly ||PQ ̸≡ ||PQa !

Ryszard Janicki Safety and Liveness Properties 18/46

Alphabet Extension: Properties

Let property P = (a→ b → P) and
property Pc = (a→ b → P) + {c}.

Labelled Transition Systems are:

P Pc

Clearly P ̸≡ Q !

Ryszard Janicki Safety and Liveness Properties 19/46

Liveness

2015 Concurrency: safety & liveness properties
23

©Magee/Kramer 2nd Edition

7.3 Liveness

A safety property asserts that nothing bad happens.

A liveness property asserts that something good eventually
happens.

Single Lane Bridge: Does every car eventually get an opportunity
to cross the bridge?

ie. to make PROGRESS?

A progress property asserts that it is always the case that a particular
action is eventually executed. Progress is the opposite of starvation, the
name given to a concurrent programming situation in which an action
is never executed.

Ryszard Janicki Safety and Liveness Properties 20/46

Fair Choice: If a choice over a set of transitions is executed
infinitely often, then every transition in the set will be executed
infinitely often.

COIN = (toss → heads → COIN | toss → tails → COIN)

2015 Concurrency: safety & liveness properties
24

©Magee/Kramer 2nd Edition

Progress properties - fair choice

COIN =(toss->heads->COIN

 |toss->tails->COIN).

If a coin were tossed an
infinite number of times, we
would expect that heads
would be chosen infinitely
often and that tails would be
chosen infinitely often.

This requires Fair Choice !

toss

toss

heads

tails

0 1 2

Fair Choice: If a choice over a set of transitions is executed
infinitely often, then every transition in the set will be executed
infinitely often.

If a coin were tossed an infinite number of times, we would expect
that heads would be chosen infinitely often and that tails would be
chosen infinitely often.

This requires Fair Choice !

Ambiguity! What does it really mean?

1 Always happens
2 Sometimes Happens
3 Is this an enforcement or just an observation?

This is not discussed in the textbook!

Ryszard Janicki Safety and Liveness Properties 21/46

Progress Properties

progress P = {a1, a2, . . . , an} defines a progress property P
which asserts that in an infinite execution of a target system,
at least one of the actions a1, a2, . . . , an will be executed
infinitely often.

For COIN system we might have:
progress HEADS = {heads}, progress TAILS = {tails}.
Textbook says that is both cases ‘no progress violations
detected’.

WHY?? What about a possible infinite traces:
heads → heads → . . ., and tails → tails → . . .?
They are not disallowed!

Is the definition of “progress property” correct?

Before answering the last question, let us consider another
example from the textbook.

Ryszard Janicki Safety and Liveness Properties 22/46

2015 Concurrency: safety & liveness properties
26

©Magee/Kramer 2nd Edition

pick

pick toss

heads

toss
toss

tails
heads

0 1 2 3 4 5

Progress properties

Suppose that there were two possible coins that could be picked
up:

TWOCOIN = (pick->COIN|pick->TRICK),
TRICK = (toss->heads->TRICK),
COIN = (toss->heads->COIN|toss->tails->COIN).

TWOCOIN: progress HEADS = {heads} ?
 progress TAILS = {tails} ?

a trick coin and a
regular coin……

According to the textbook, for TWOCOINS the
progress HEADS property is satisfied, while the
progress TAILS property is not!

This means the definition of progress property in the
textbook is wrong!

Ryszard Janicki Safety and Liveness Properties 23/46

Progress Property: Correct Version

The correct definition could be the following one:
progress P = {a1, a2, . . . , an} defines a progress property P
which asserts that in any state of a target system, there is
always a continuation trace which contains at least one
element of {a1, a2, . . . , an}.
The above definition does not need the concept of infinite
trace.

For TWOCOIN we have:
progress HEADS = {heads} ← YES
progress TAILS = {tails} ← NO
progress HEADSorTAILS = {heads, tails} ← YES

progress property is not a process-like structure, its semantics
is in reality defined in terms of ‘terminal sets of states’, which
is implicit in the textbook.

Ryszard Janicki Safety and Liveness Properties 24/46

Definition (Terminal Set of States)

A terminal set of states is one in which every state is reachable from
every other state in the set via one or more transitions, and there is no
transition from within the set to any state outside the set.

Terminal Set for COIN: {1, 2, 3}

2015 Concurrency: safety & liveness properties
28

©Magee/Kramer 2nd Edition

Progress analysis

A terminal set of states is one in which every state is reachable from every other
state in the set via one or more transitions, and there is no transition from within
the set to any state outside the set.

pick

pick toss

heads

toss
toss

tails
heads

0 1 2 3 4 5

Terminal sets for
TWOCOIN:

{1,2} and {3,4,5}

Given fair choice, each terminal set represents an execution in which each action
used in a transition in the set is executed infinitely often.

Since there is no transition out of a terminal set, any action that is not used in the
set cannot occur infinitely often in all executions of the system - and hence
represents a potential progress violation!

According to the textbook:
Given fair choice, each terminal set represents an execution in which
each action used in a transition in the set is executed infinitely often.

This means that fair choice policy enforces some rules. These
rules could be explained better had infinite traces been introduced,
as for example in most temporal logics and model checking.
Intuitively (toss → heads)∞ or even
(toss → tails)→ (toss → heads)∞ are illegal infinite behaviours.

Ryszard Janicki Safety and Liveness Properties 25/46

In other words, there is a DEMON (ORACLE) which
controls executions (runs) and after a finite numbers of
choices in one direction, it stops it and says ‘Listen lad,
enough is enough, move over and let the other guy to
move’.

Fair choice semantics is not a standard semantics. There are
cases when it is just not needed!

Since there is no transition out of a terminal set, any action
that is not used in the set cannot occur infinitely often in all
executions of the system, and hence it represents a potential
progress violation!

Ryszard Janicki Safety and Liveness Properties 26/46

Total Progress

Why in the definition of progress P = {a1, a2, . . . , an} we
have a statement: ’at least one’?

Because in many applications all {a1, a2, . . . , an} can be
considered as ‘equivalent’. For example we have
{get1, get2, . . . , getn}, but we really want any geti to be
executed infinitely many times.

However having also for instance:

total progress P = {a1, a2, . . . , an},
where ‘at least one’ is replaced by ‘all’ is a valid, and often
very useful, option!

Ryszard Janicki Safety and Liveness Properties 27/46

Another Definition of Progress Property

A progress property is violated if analysis finds a terminal set
of states in which none of the progress set action appears.

The above statement can also be a definition of progress
properties, and it is much more precise than the original
(wrong as we showed) definition given in the textbook.

Ryszard Janicki Safety and Liveness Properties 28/46

Default
Default: given fair choice, for every action in the alphabet of
the target system, that action will be executed infinitely often.
This is equivalent to specifying a separate progress property
for every action.

Default ⇐⇒ total progress P = Alphabet of All Processes

Default analysis for TWOCOIN: violation for pick and tails

2015 Concurrency: safety & liveness properties
28

©Magee/Kramer 2nd Edition

Progress analysis

A terminal set of states is one in which every state is reachable from every other
state in the set via one or more transitions, and there is no transition from within
the set to any state outside the set.

pick

pick toss

heads

toss
toss

tails
heads

0 1 2 3 4 5

Terminal sets for
TWOCOIN:

{1,2} and {3,4,5}

Given fair choice, each terminal set represents an execution in which each action
used in a transition in the set is executed infinitely often.

Since there is no transition out of a terminal set, any action that is not used in the
set cannot occur infinitely often in all executions of the system - and hence
represents a potential progress violation!

DEFAULT assumes the existence of a Demon that enforces
Fair Choice.

If the DEFAULT holds, then every other progress property
holds, i.e. every action is executed infinitely often and system
has a single terminal set of states.

All these concepts could be defined more precisely if the
concept of infinite traces were introduced!

Ryszard Janicki Safety and Liveness Properties 29/46

Single Lane Bridge Again

The Single Lane Bridge implementation can permit progress
violations (assuming infinite number of cars, or a cycle like
blow, not clear from the textbook statement).

However, if default progress analysis is applied (i.e. a
‘DEMON’ that enforces FAIR CHOICE exists) to the model,
then no violations are detected.

Ryszard Janicki Safety and Liveness Properties 30/46

Priority

Fair choice means that eventually every possible execution
occurs, including those in which cars do not starve. To detect
progress problems we must check under adverse conditions.
We superimpose some scheduling policy for actions, which
models the situation in which the bridge is congested.

Possible tool: Action Priority.

Action priority expressions describe scheduling properties.

Mixing priority and concurrency is a well known problem!

Ryszard Janicki Safety and Liveness Properties 31/46

2015 Concurrency: safety & liveness properties
32

©Magee/Kramer 2nd Edition

Progress - action priority

Action priority expressions describe scheduling properties:
||C = (P||Q)<<{a1,…,an} specifies a composition in
which the actions a1,..,an have higher priority than any other
action in the alphabet of P||Q including the silent action tau.

In any choice in this system which has one or more of the actions
a1,..,an labeling a transition, the transitions labeled with other,
lower priority actions are discarded.

High
Priority
(“<<”)

||C = (P||Q)>>{a1,…,an} specifies a composition in
which the actions a1,..,an have lower priority than any other
action in the alphabet of P||Q including the silent action tau.

In any choice in this system which has one or more transitions not
labeled by a1,..,an, the transitions labeled by a1,..,an are
discarded.

Low
Priority
(“>>”)

Is this definition clear to you?

Where this ‘discarding’ occurs?
On the FSP level or LTS level?

The statement ‘including the silent action τ ’ gives some hint,
but it is still unclear!

Ryszard Janicki Safety and Liveness Properties 32/46

Priority: Textbook Examples

NORMAL = (work → play → NORMAL | sleep → play → NORMAL)

2015 Concurrency: safety & liveness properties
33

©Magee/Kramer 2nd Edition

Progress - action priority

NORMAL =(work->play->NORMAL
 |sleep->play->NORMAL).

||HIGH =(NORMAL)<<{work}.

||LOW =(NORMAL)>>{work}.

work

sleep

play

play

0 1 2

work

play

0 1

sleep

play

0 1

Action priority simplifies the resulting LTS by
discarding lower priority actions from choices.

∥ HIGH = (NORMAL) << {work}

2015 Concurrency: safety & liveness properties
33

©Magee/Kramer 2nd Edition

Progress - action priority

NORMAL =(work->play->NORMAL
 |sleep->play->NORMAL).

||HIGH =(NORMAL)<<{work}.

||LOW =(NORMAL)>>{work}.

work

sleep

play

play

0 1 2

work

play

0 1

sleep

play

0 1

Action priority simplifies the resulting LTS by
discarding lower priority actions from choices.

WORKAHOLIC = (work → play →WORKAHOLIC)
∥ HIGH ≈WORKAHOLIC , so ‘|’ is just not used.

∥ LOW = (NORMAL) >> {work}
2015 Concurrency: safety & liveness properties

33
©Magee/Kramer 2nd Edition

Progress - action priority

NORMAL =(work->play->NORMAL
 |sleep->play->NORMAL).

||HIGH =(NORMAL)<<{work}.

||LOW =(NORMAL)>>{work}.

work

sleep

play

play

0 1 2

work

play

0 1

sleep

play

0 1

Action priority simplifies the resulting LTS by
discarding lower priority actions from choices.

MY DREAM = (sleep → play → MY DREAM)
∥ LOW ≈ MY DREAM, so ‘|’ is just not used.

Oversimplification? YES!

Ryszard Janicki Safety and Liveness Properties 33/46

Famous Priority Example

The concurrent system PRIORITY comprises two sequential
subsystems, such that:

the first subsystem can cyclically engage in event a followed
by event b;

the second subsystem can cyclically engage in event c or in
event b;

the two subsytems synchronize by means of handshake
communication;

there is a priority constraint stating that if it is possible to
execute event b then c must not be executed.

Ryszard Janicki Safety and Liveness Properties 34/46

Petri Net Solution

It models ‘not later than’ as {a, c} and c → a are allowed but
a→ c is not!

Ryszard Janicki Safety and Liveness Properties 35/46

FSP Solution

P1 = (a→ b → P1)
P2 = (b → P2 | c → P2)
PRIORITY = (P1 ∥ P2) << {b}

LTS for (P1 ∥ P2):

Let P2′ = (b → P2′), LTS for (P1 ∥ P2′) is:

Is LTS for PRIORITY the same as for (P1 ∥ P2′), or”

??
Ryszard Janicki Safety and Liveness Properties 36/46

Priority

The solution must be:

otherwise there might be a serious problem.

Each model has at least two levels:
1 Syntax level.
2 Semantics level.

All definitions should clarify which level is dealt with!

Ryszard Janicki Safety and Liveness Properties 37/46

Priority: New Version

The following addition of priority to FSP most likely works
better:
P = (P1 ∥ . . . ∥ Pn)+ < {a1 < b1, . . . , ak < bk} specifies a
composition in which bi has higher priority than ai , for all
i = 1, . . . , k .
LTS of P is constructed as follows. First we construct LTS for
(P1 ∥ . . . ∥ Pn) is a standard manner, and next, in every state
where we have a choice between ai and bi , we discard a1, and
remove useless states if needed.

Ryszard Janicki Safety and Liveness Properties 38/46

Priority: New Version

For our previous example we have now:
P1 = (a→ b → P1)
P2 = (b → P2 | c → P2)
PRIORITY = (P1 ∥ P2)+ < {c < b}
LTS for (P1 ∥ P2):

LTS for PRIORITY:

So we are done!

Ryszard Janicki Safety and Liveness Properties 39/46

Congested Single Lane Bridge

2015 Concurrency: safety & liveness properties
34

©Magee/Kramer 2nd Edition

7.4 Congested single lane bridge

progress BLUECROSS = {blue[ID].enter}
progress REDCROSS = {red[ID].enter}

BLUECROSS - eventually one of the blue cars will be able to enter

REDCROSS - eventually one of the red cars will be able to enter

Congestion using action priority?
Could give red cars priority over blue (or vice versa) ?

In practice neither has priority over the other.

Instead we merely encourage congestion by lowering the priority of the
exit actions of both cars from the bridge.

||CongestedBridge = (SingleLaneBridge)
 >>{red[ID].exit,blue[ID].exit}.

 Progress Analysis ? LTS?

Ryszard Janicki Safety and Liveness Properties 40/46

Congested Single Lane Bridge

2015 Concurrency: safety & liveness properties
35

©Magee/Kramer 2nd Edition

congested single lane bridge model

Progress violation: REDCROSS
Trace to terminal set of states:

 blue.1.enter
Cycle in terminal set:

 blue.2.enter
 blue.1.exit
 blue.1.enter
 blue.2.exit

Actions in terminal set:
 blue[1..2].{enter, exit}

This corresponds
with the observation
that, with more
than one car
(N=2 say), it is
possible that
whichever colour
car enters the bridge
first could
continuously occupy
the bridge
preventing the other
colour from ever
crossing.

Similarly for BLUECROSS

Ryszard Janicki Safety and Liveness Properties 41/46

The Case of Two Cars

2015 Concurrency: safety & liveness properties
36

©Magee/Kramer 2nd Edition

congested single lane bridge model

red.1.enter

blue.1.enterblue.2.enter blue.1.exit blue.1.enter

blue.2.exit

red.2.enter red.1.exit red.1.enter

red.2.exit

0 1 2 3 4 5 6 7 8

||CongestedBridge = (SingleLaneBridge)
 >>{red[ID].exit,blue[ID].exit}.

Will the results be the same if we model congestion by giving car entry to the bridge
high priority?

Can congestion occur if there is only one car moving in each direction?

The same story if we give car entry higher priority.
With only one car moving in each direction it is OK.

Ryszard Janicki Safety and Liveness Properties 42/46

Revised Model

The bridge needs to know whether or not cars are waiting to
cross.

Modified CAR:

CAR = (request → enter → exit → CAR)

Modified BRIDGE :

Red cars are only allowed to enter the bridge if there are no
blue cars on the bridge and there are no blue cars waiting to
enter the bridge.
Blue cars are only allowed to enter the bridge if there are no
red cars on the bridge and there are no blue cars waiting to
enter the bridge.

Ryszard Janicki Safety and Liveness Properties 43/46

Revised Model

2015 Concurrency: safety & liveness properties
38

©Magee/Kramer 2nd Edition

Progress - revised single lane bridge model

/* nr– number of red cars on the bridge wr – number of red cars waiting to enter
 nb– number of blue cars on the bridge wb – number of blue cars waiting to enter
*/
BRIDGE = BRIDGE[0][0][0][0],
BRIDGE[nr:T][nb:T][wr:T][wb:T] =
 (red[ID].request -> BRIDGE[nr][nb][wr+1][wb]
 |when (nb==0 && wb==0)
 red[ID].enter -> BRIDGE[nr+1][nb][wr-1][wb]
 |red[ID].exit -> BRIDGE[nr-1][nb][wr][wb]
 |blue[ID].request -> BRIDGE[nr][nb][wr][wb+1]
 |when (nr==0 && wr==0)
 blue[ID].enter -> BRIDGE[nr][nb+1][wr][wb-1]
 |blue[ID].exit -> BRIDGE[nr][nb-1][wr][wb]
).

OK now?Problem:
red .1.request → red2.request → red3.request → blue.1.request →
blue.2.request → blue.3.request
and deadlock.

The trace is the scenario in which there are cars waiting at both
ends, and consequently, the bridge does not allow either red or blue
cars to enter.

Ryszard Janicki Safety and Liveness Properties 44/46

Solution to the Revised Model

Introduce some asymmetry and alternation in the problem (cf.
Dining philosophers).

We introduce a boolean variable bt which breaks the deadlock
by indicating whether it is the turn of blue cars or red cars to
enter the bridge.

Arbitrarily set bt to true initially giving blue initial precedence.

Ryszard Janicki Safety and Liveness Properties 45/46

2015 Concurrency: safety & liveness properties
40

©Magee/Kramer 2nd Edition

Progress - 2 nd revision of single lane bridge model

const True = 1
const False = 0
range B = False..True
/* bt - true indicates blue turn, false indicates red turn */
BRIDGE = BRIDGE[0][0][0][0][True],
BRIDGE[nr:T][nb:T][wr:T][wb:T][bt:B] =
 (red[ID].request -> BRIDGE[nr][nb][wr+1][wb][bt]
 |when (nb==0 && (wb==0||!bt))
 red[ID].enter -> BRIDGE[nr+1][nb][wr-1][wb][bt]
 |red[ID].exit -> BRIDGE[nr-1][nb][wr][wb][True]
 |blue[ID].request -> BRIDGE[nr][nb][wr][wb+1][bt]
 |when (nr==0 && (wr==0||bt))
 blue[ID].enter -> BRIDGE[nr][nb+1][wr][wb-1][bt]
 |blue[ID].exit -> BRIDGE[nr][nb-1][wr][wb][False]
).

Analysis ?

When should bt be reset, on entry or exit?
No deadlock, BLUECROSS and REDCROSS properties are
not violated, no starvation.

Ryszard Janicki Safety and Liveness Properties 46/46

