
Model-Based Design
CS 3SD3

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton,
Ontario, Canada

Ryszard Janicki Model-Based Design 1/29

Design

2015 Concurrency: model-based design
2

©Magee/Kramer 2nd Edition

Design

Concepts: design process:
requirements to models to implementations

Models: check properties of interest:

 - safety on the appropriate (sub)system
 - progress on the overall system

Practice: model interpretation - to infer actual system behavior
threads and monitors

Aim: rigorous design process.

The relationship between Models and Requirements is a cycle!

Ryszard Janicki Model-Based Design 2/29

Requirements and Models

2015 Concurrency: model-based design
3

©Magee/Kramer 2nd Edition

♦  goals of the system
♦  scenarios (Use Case models)

♦  properties of interest

8.1 from requirements to models

Requirements

Model

♦  identify the main events, actions, and interactions

♦  identify and define the main processes

♦  identify and define the properties of interest

♦  structure the processes into an architecture

♦  check traces of interest

♦  check properties of interest

Any appropriate
design approach

can be used.

An arrow from Model to Requirements is also needed!

Ryszard Janicki Model-Based Design 3/29

Cruise Control System: Requirements

When the car ignition is switched on and the on button is
pressed, the current speed is recorded and the system is
enabled.
It maintains the speed of the car at the recorded setting.

Pressing the brake, accelerator or off button disables the
system.

Pressing resume or on enables the system.

Ryszard Janicki Model-Based Design 4/29

Cruise Control System - Hardware

2015 Concurrency: model-based design
5

©Magee/Kramer 2nd Edition

a Cruise Control System - hardware

Wheel revolution sensor generates interrupts to enable the car speed to be
calculated.

Parallel Interface Adapter (PIA) is polled every 100msec. It records the actions
of the sensors: •  buttons (on, off, resume)

•  brake (pressed)

•  accelerator (pressed)

•  engine (on, off).

buttons

engine

accelerator
brake

PIA
polled

wheel interrupt

CPU

throttleD/A

Output: The cruise control system controls the car speed by setting the
throttle via the digital-to-analogue converter.

Ryszard Janicki Model-Based Design 5/29

Outline Design

2015 Concurrency: model-based design
6

©Magee/Kramer 2nd Edition

model - outline design

♦ outline processes and interactions.

Input Speed monitors
the speed when the
engine is on, and provides
the current speed
readings to speed control.

Sensor Scan monitors
the buttons, brake,
accelerator and engine
events.

Cruise Controller triggers
clear speed and record speed,
and enables or disables the
speed control.

Speed Control clears and
records the speed, and sets
the throttle accordingly when
enabled.

Throttle
sets the
actual
throttle.

Sensors

Prompts Engine

speed
setThrottle

Gearbox is not included, so it looks as an oversimplification!

Ryszard Janicki Model-Based Design 6/29

2015 Concurrency: model-based design
7

©Magee/Kramer 2nd Edition

model -design

♦  Main events, actions and interactions.
 on, off, resume, brake, accelerator
 engine on, engine off,
 speed, setThrottle
 clearSpeed,recordSpeed,
 enableControl,disableControl

♦  Identify main processes.

 Sensor Scan, Input Speed,
 Cruise Controller, Speed Control and
 Throttle

♦  Identify main properties.

 safety - disabled when off, brake or accelerator pressed.
♦ Define and structure each process.

Sensors

Prompts

Ryszard Janicki Model-Based Design 7/29

Structure, Actions and Interactions

2015 Concurrency: model-based design
8

©Magee/Kramer 2nd Edition

model - structure, actions and interactions

set Sensors = {engineOn,engineOff,on,off,
 resume,brake,accelerator}
set Engine = {engineOn,engineOff}
set Prompts = {clearSpeed,recordSpeed,
 enableControl,disableControl}

SENSOR
SCAN

CRUISE
CONTROLLER

Sensors

INPUT
SPEED SPEED

CONTROL
set

Throttle
speed

Engine Prompts

CONTROL CRUISE
CONTROL
SYSTEM

THROTTLE

The
CONTROL
system is
structured as
two
processes.

The main
actions and
interactions
are as shown.

Ryszard Janicki Model-Based Design 8/29

2015 Concurrency: model-based design
9

©Magee/Kramer 2nd Edition

model elaboration - process definitions

SENSORSCAN = ({Sensors} -> SENSORSCAN).
 // monitor speed when engine on

INPUTSPEED = (engineOn -> CHECKSPEED),
CHECKSPEED = (speed -> CHECKSPEED
 |engineOff -> INPUTSPEED
).

 // zoom when throttle set
THROTTLE =(setThrottle -> zoom -> THROTTLE).

 // perform speed control when enabled
SPEEDCONTROL = DISABLED,
DISABLED =({speed,clearSpeed,recordSpeed}->DISABLED
 | enableControl -> ENABLED
),
ENABLED = (speed -> setThrottle -> ENABLED
 |{recordSpeed,enableControl} -> ENABLED
 | disableControl -> DISABLED
).

2015 Concurrency: model-based design
10

©Magee/Kramer 2nd Edition

model elaboration - process definitions

set DisableActions = {off,brake,accelerator}
 // enable speed control when cruising, disable when a disable action occurs

CRUISECONTROLLER = INACTIVE,
INACTIVE =(engineOn -> clearSpeed -> ACTIVE
 |DisableActions -> INACTIVE),
ACTIVE =(engineOff -> INACTIVE
 |on->recordSpeed->enableControl->CRUISING
 |DisableActions -> ACTIVE),
CRUISING =(engineOff -> INACTIVE
 |DisableActions->disableControl->STANDBY
 |on->recordSpeed->enableControl->CRUISING),
STANDBY =(engineOff -> INACTIVE
 |resume -> enableControl -> CRUISING
 |on->recordSpeed->enableControl->CRUISING
 |DisableActions -> STANDBY
).

∥ CONTROL = (CRUISECONTROLLER ∥ SPEEDCONTROL).
Ryszard Janicki Model-Based Design 9/29

Some Problem

Cruising = (engineOff → INACTIVE ∥ . . .

WHY?

Shouldn’t be
Cruising = (engineOff → disableCntrol → INACTIVE ∥ . . .
?.

Ryszard Janicki Model-Based Design 10/29

∥ CONTROL = (CRUISECONTROLLER ∥ SPEEDCONTROL).

The solutions, even not fully complete is complex. It is
difficult, if not impossible, to deduct somrthing form it
without using some tools!
Which bothers me a lot!

Animation
Animation is a fishing expedition, but it may show some errors
or unexpected behaviour. However showing no errors does not
mean much!

Here we can check the following traces:

Is control enabled after the engine is switched on and the on
button is pressed?
Is control disabled when the brake is then pressed?
Is control re-enabled when resume when resume is pressed?

However, we need analysis to check exhaustively:

Safety: Is the control disabled when off, brake or accelerator is
pressed?

Progress: Can every action eventually be selected?

Ryszard Janicki Model-Based Design 11/29

Safety Properties

Safety checks are compositional. If there is no violation at a
subsystem level, then there cannot be a violation when the
subsystem is composed with other subsystems.

This is because, if the ERROR state of a particular safety
property is unreachable in the LTS of the subsystem, it
remains unreachable in any subsequent parallel composition
which includes the subsystem. Hence...

Safety properties should be composed with the appropriate
system or subsystem to which the property refers. In order
that the property can check the actions in its alphabet, these
actions must not be hidden in the system.

Ryszard Janicki Model-Based Design 12/29

Safety properties

2015 Concurrency: model-based design
13

©Magee/Kramer 2nd Edition

model - Safety properties

Is CRUISESAFETY violated?

||CONTROL =(CRUISECONTROLLER
 ||SPEEDCONTROL
 ||CRUISESAFETY
).

property CRUISESAFETY =
 ({DisableActions,disableControl} -> CRUISESAFETY
 |{on,resume} -> SAFETYCHECK
),
SAFETYCHECK =
 ({on,resume} -> SAFETYCHECK
 |DisableActions -> SAFETYACTION
 |disableControl -> CRUISESAFETY
),
SAFETYACTION =(disableControl->CRUISESAFETY).

LTS?

engineOn → clearSpeed → on → recordSpeed → enableControl →
engineOff → off → off

CRUISESAFETY violation!
Ryszard Janicki Model-Based Design 13/29

engineOn → clearSpeed → on → recordSpeed → enableControl →
engineOff → off → off

CRUISESAFETY violation! Strange Circumstances!
If the system is enabled by switching the engine on and
pressing the on button, and then the engine is switched off, it
appears that the control system is not disabled.

What if the engine is switched on again?

Consider the trace:
engineOn → clearSpeed → on → recordSpeed →
enableControl → engineOff → engineOn → speed →
setThrottle → speed → setThrottle → . . .

The car will accelerate and zoom off when the engine is
switched on again!

Ryszard Janicki Model-Based Design 14/29

Action hiding and minimization can help to reduce the size of
an LTS diagram and make it easier to interpret.

2015 Concurrency: model-based design
16

©Magee/Kramer 2nd Edition

Model LTS for CONTROLMINIMIZED

engineOn

off
brake
accelerator
speed

off
brake
acceleratorengineOff

on

speed

off
brake

accelerator

engineOff

on
speed

engineOn

off
brake
accelerator
speed

speed off
brake
accelerator

engineOff

on
resume

speed

0 1 2 3 4 5

minimal
||CONTROLMINIMIZED =
 (CRUISECONTROLLER
 ||SPEEDCONTROL
) @ {Sensors,speed}.

… using progress?

Ryszard Janicki Model-Based Design 15/29

Progress

Progress violation for actions:
{accelerator , brake, clearSpeed , disableControl , enableControl ,
engineOff , engineOn, off , on, recordSpeed , resume}
Trace to terminal set of states:
engineOn → clearSpeed → on → recordSpeed →
enableControl → engineOff → engineOn

Cycle in terminal set: speed →← setThrottle

Actions in terminal set: {setThrottle, speed}
The same problem is no safety property process is added and
no hidden actions.

Ryszard Janicki Model-Based Design 16/29

Revised Cruise Controller

2015 Concurrency: model-based design
18

©Magee/Kramer 2nd Edition

model - revised cruise controller

Modify CRUISECONTROLLER so that control is disabled when the engine is
switched off:
…
CRUISING =(engineOff -> disableControl -> INACTIVE
 |DisableActions -> disableControl -> STANDBY
 |on->recordSpeed->enableControl->CRUISING
),
…

Modify the safety property:

property IMPROVEDSAFETY =
 {DisableActions,disableControl,engineOff} -> IMPROVEDSAFETY
 |{on,resume} -> SAFETYCHECK
),
SAFETYCHECK = ({on,resume} -> SAFETYCHECK

 |{DisableActions,engineOff} -> SAFETYACTION
 |disableControl -> IMPROVEDSAFETY
),

SAFETYACTION =(disableControl -> IMPROVEDSAFETY). OK now?

Ryszard Janicki Model-Based Design 17/29

2015 Concurrency: model-based design
19

©Magee/Kramer 2nd Edition

revised CONTROLMINIMIZED

engineOn

off
brake
accelerator
speed

off
brake
accelerator

engineOff

on

speed

off
brake

accelerator

engineOff

on
speed

off
brake
accelerator

engineOff

on
resume

speed

0 1 2 3

No deadlocks/errors

2015 Concurrency: model-based design
20

©Magee/Kramer 2nd Edition

model analysis

||CONTROL =
 (CRUISECONTROLLER||SPEEDCONTROL||CRUISESAFETY
)@ {Sensors,speed,setThrottle}.

||CRUISECONTROLSYSTEM =
 (CONTROL||SENSORSCAN||INPUTSPEED||THROTTLE).

We can now proceed to compose the whole system:

Deadlock?
Safety?

No deadlocks/errors

Progress?

No deadlocks/errors
Ryszard Janicki Model-Based Design 18/29

Progress Properties

Progress checks are not compositional.

Even if there is no violation at a subsystem level, there may
still be a violation when the subsystem is composed with other
subsystems.

This is because an action in the subsystem may satisfy
progress yet be unreachable when the subsystem is composed
with other subsystems which constrain its behaviour. Hence...

Progress checks should be conducted on the complete target
system after satisfactory completion of the safety checks.

No progress violation for the solution from previous page.

Ryszard Janicki Model-Based Design 19/29

System Sensitivities

What about progress under adverse conditions?

Check for system sensitivities.
∥ SPEEDHIGH = CRUISECONTROLSYSTEM << {speed}.
Progress violation for actions:
{accelerator , brake, engineOff , engineOn, off , on, resume,
setThrottle, zoom}
Path to terminal set of states: engineOn → tau

Cycle in terminal set: speed Actions in terminal set: {speed}
The system may be sensitive to the priority of the action
speed.

Ryszard Janicki Model-Based Design 20/29

Model Interpretation

Models can be used to indicate system sensitivities.

If it is possible that erroneous situations detected in the model
may occur in the implemented system, then the model should
be revised to find a design which ensures that those violations
are avoided.

However, if it is considered that the real system will not
exhibit this behavior, then no further model revisions are
necessary.

Model interpretation and correspondence to the
implementation are important in determining the relevance
and adequacy of the model design and its analysis.

Ryszard Janicki Model-Based Design 21/29

From Models to Implementations: One Possibility

2015 Concurrency: model-based design
25

©Magee/Kramer 2nd Edition

8.2 from models to implementations

Model

Java

♦  identify the main active entities

- to be implemented as threads

♦  identify the main (shared) passive entities

- to be implemented as monitors

♦  identify the interactive display environment

- to be implemented as associated classes

♦  structure the classes as a class diagram

Ryszard Janicki Model-Based Design 22/29

Cruise Control Again. Petri Nets

PROBLEM

Consider Cruise Control System discussed in this Lecture
Notes and in Chapter 8 of the textbook.

Provide a Petri Net model of it. You can any kind of Petri
Nets discussed in class, i.e. elementary nets,
predicate/transitions nets or coloured nets.

Provide a few invariants as defined in Lecture Notes 12
(elementary nets are also place/transition nets)

Prove lack of deadlock (or other property) as in Lecture Notes
12.

Ryszard Janicki Model-Based Design 23/29

Cruise Control System: Requirements

When the car ignition is switched on and the on button is
pressed, the current speed is recorded and the system is
enabled.
It maintains the speed of the car at the recorded setting.

Pressing the brake, accelerator or off button disables the
system.

Pressing resume or on enables the system.

Ryszard Janicki Model-Based Design 24/29

Cruise Control System - Hardware

2015 Concurrency: model-based design
5

©Magee/Kramer 2nd Edition

a Cruise Control System - hardware

Wheel revolution sensor generates interrupts to enable the car speed to be
calculated.

Parallel Interface Adapter (PIA) is polled every 100msec. It records the actions
of the sensors: •  buttons (on, off, resume)

•  brake (pressed)

•  accelerator (pressed)

•  engine (on, off).

buttons

engine

accelerator
brake

PIA
polled

wheel interrupt

CPU

throttleD/A

Output: The cruise control system controls the car speed by setting the
throttle via the digital-to-analogue converter.

Ryszard Janicki Model-Based Design 25/29

Cruise Control System: Petri Net Assumption

This solution uses Elementary Petri nets.

The six Cruise Control (CC) actions are implemented as pairs
of actions on three separate steering column turn levels:
on/off, set speed/resume speed, and accelerate/decelerate.

Order of precedence for the CC actions:
1 on/off
2 set speed/resume speed
3 accelerate/decelerate

When the cruise control system is enabled and either the
accelerator pedal or brake pedal is depressed, the cruise
control system is disabled and remains so until either
set speed or resume speed is activated.

Cruising speed in uphill and downhill driving conditions is not
maintained, and thus not modelled in the following
specification.

Ryszard Janicki Model-Based Design 26/29

Gas pedal and brake pedal are two different devices but they are both used by
the same right leg and are not expected to be used simultaneously. Hence they
are modelled by the same subnet. If engine if off, pressing gas/brake does not
affect Cruise Control (CC), so we have transitions Press and Press CC. The
rest of the net is rather self-explaining.

Ryszard Janicki Model-Based Design 27/29

Invariants

m(ON) +m(OFF) = 1

m(Not Pressed) +m(Pressed) = 1

m(CC Off) +m(CC enabled) +m(Cruising) +m(P3) = 1

m(CC Off) +m(CC enabled) +m(Cruising) +m(P4) = 1

m(P1) +m(P3) = 1

m(P2) +m(P4) = 1

Ryszard Janicki Model-Based Design 28/29

Deadlock

From the invariant m(ON) +m(OFF) = 1 we have that
either Start Car or Turn Off Car is always enabled.

Usually proving deadlock is much easier for Petri Nets than
other models.

Ryszard Janicki Model-Based Design 29/29

