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Three Basic Models of Concurrency

Algebraic or Equational: all process algebras including FSP of
the textbook.

Automata Based: Petri Nets, Asynchronous Automata, etc.

Logic and Model Theory Based: Temporal logics (as CTL,
LTL, CTL∗), etc.
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Veri�cation Techniques

Formal veri�cation techniques consist of:

A framework of modeling systems, typically a description
language of some sort

A speci�cation language for describing the properties to be
veri�ed

A veri�cation method to establish whether the description of a
system satis�es the speci�cation.

Approaches to veri�cation can be classi�ed as Proof-based and
Model-based.
The above statements are valid for all systems, but they are
especially important for concurrent systems.
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Proof-based vs Model-based

Proof-based: The system description is a set of formulas Γ (in a
suitable logic) and the speci�cation is another formula Φ. The
veri�cation method consists of trying to �nd a proof that Γ ⊢ Φ.
This typically requires guidance and expertise from the user.

Problem: Predicate Logic is undecidable, we will never construct a
`push button' theorem prover that could prove P =⇒ Q for any P
and Q.

Model-based: The system is represented by a �nite modelM for an
appropriate logic. The speci�cation is again represented by a
formula Φ and the veri�cation method consists of whether a model
M satis�es Φ. This is usually automatic, though the restriction to
�nite models limits the applicability.

Problem: A modelM may have millions of states, so an appropriate
logic must be simple enough to allow e�cient implementations.

Model-based approach is potentially simpler that the proof-based
approach, for it is based on a single modelM rather than a possibly
in�nite class of them.
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Temporal Logic : Ideas

In classical logic, formulae are evaluated within a single �xed
world.

For example, an elementary proposition such as �it is Monday�
must be either true or false.

Propositions are then combined using constructs such as ∧,¬,
etc.

But, most (not just computational) systems are dynamic.

In temporal logics, evaluation takes place within a set of
worlds. Thus, �it is Monday� may be satis�ed in some worlds,
but not in others.
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Temporal Logic : Ideas (cont.)

The set of worlds correspond to moments in time.

How we navigate between these worlds depends on our
particular view of time.

The particular model of time is captured by a temporal
accessibility relation between worlds.

Essentially, temporal logic extends classical propositional logic
with a set of temporal operators that navigate between worlds
using this accessibility relation.

To be useful for veri�cation, an appropriate temporal logic

must allow e�cient checking algorithms. Hence it must be
relatively simple.
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Model Checking and Temporal Logic

The idea of temporal logic is that a formula is not statically
true or false. Instead, the models of temporal logic contain
several states and a formula can be true in some states and
false in others. The static notion of truth is replaced by a
dynamic one.

The modelsM are transition systems (i.e. �nite automata)
and the properties Φ are formulas in temporal logic.

To verify that a system satis�es some property we must do
three things:

1 Model the system using the description language of a model
checker, arriving at a modelM.

2 Code the property using the speci�cation language of the
model checker, resulting in a temporal logic formula Φ.

3 Run the model checker with inputsM and Φ.
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Model Checking and Temporal Logic

The model checker outputs the answer �yes� ifM satis�es Φ
and �no� otherwise; in the latter case, most model checkers
also produce a trace of system behaviour which causes this
failure.

There are many temporal logics, we concentrate on CTL
(Computation Tree Logic) and LTL (Linear Time Logic).

Time could be continuous or discrete, we concentrate on
discrete time.

M is not a description of an actual physical system. Models
are abstractions that omit lots of real features of a physical
systems. We have similar situation in calculus, mechanics,

etc., where we have straight lines, perfect circles, no friction,

etc.
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Typical Models of Time

Linear Time: used for Linear Temporal Logic (LTL)

Branching time: used for CTL, CTL∗ logics, etc.
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CTL (Computational Tree Logic)

CTL is a branching-time logic, meaning that its model of time
is a tree-like structure in which the future is not determined;
there are di�erent paths in the future, any one of which might
be the `actual' path that is realized.

We work with a �xed set of atomic formulas/description
(p, q, r , . . ., or p1, p2, . . .). These atoms stand for atomic
descriptions of a system, like:

the printer is busy
there are currently no requested jobs for the printer
the current content of register R1 is the integer 6

The choice of atomic descriptions depends on our particular
interest in a system at hand.

Ryszard Janicki Temporal Logic and Model Checking 10 / 90



CTL Syntax

Φ ::= ⊥ | ⊤ | p | (¬Φ) | (Φ ∧ Φ) | (Φ ∨ Φ) | (Φ⇒ Φ) |
AXΦ | EXΦ | A[ΦUΦ] | E [ΦUΦ] |
AGΦ | EGΦ | AFΦ | EFΦ

where p ranges over atomic formulas/descriptions.

⊥ - false, ⊤ - true

AX ,EX ,AG ,EG ,AU,EU,AF ,EF︸ ︷︷ ︸
all pairs, each starts with either A or E

are temporal connections.

A means �along All paths� (inevitably)

E means �along at least (there Exists) one path� (possibly)

X means �neXt state�

F means �some Future state�

G means �all future states (Globally)�

U means �Until"

X ,F ,G ,U cannot occur without being preceded by A or E .

every A or E must have one of X ,F ,G ,U to accompany it.
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Bindings

¬,AG ,EG ,AF ,EF ,AX ← strongest bind
↓
∧,∨
↓

⇒,AU,EU ← lowest bind
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Parsing Trees

A[AX¬p U E [EX (p ∧ q) U ¬p]]

A subformula of a CTL formula Φ is any formula Ψ whose
parse tree is a subtree of Φ's parse tree.
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Model

De�nition

A modelM = (S ,→, L) for CTL is a set of states S endowed
witha transition relation → (a binary relation on S), such that
every s ∈ S has some s ′ ∈ S with s → s ′ and a labeling function
L : S → 2Atoms .

Example

L(s0) = {p, q}, L(s1) = {q, r}, L(s2) = {r}
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No deadlock

De�nition

�No deadlock� i� for every s ∈ S there is at least one s ′ ∈ S such
that s → s ′.

Example

A system with a deadlock A system without a deadlock, sd is

a �deadlock� state
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Examples of CTL Formulas

An upwards traveling elevator at the second �oor does not
change its direction when it has passengers wishing to go to
the �fth �oor:

AG (floor = 2 ∧ direction = up ∧ ButtonPressed5⇒
A[direction = up U floor = 5])

The elevator can remain idle on the third �oor with its doors
closed:

AG ((floor = 3 ∧ idle ∧ door = closed)⇒
EG (floor = 3 ∧ idle ∧ door = closed))

`floor = 2', ′direction = up', ButtonPressed5',
'door = closed ', etc. are names of atomic formulas.
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Semantics

LetM = (S ,→, L) be a model for CTL. Given any s ∈ S , we
de�ne whether a CTL formula Φ holds in state s. We denote this
by: M, s |= Φ

De�nition (The de�nition of |=)

1 M, s |= ⊤ andM, s ̸|= ⊥ for all s ∈ S

2 M, s |= p i� p ∈ L(s)

3 M, s |= ¬Φ i�M, s ̸|= Φ

4 M, s |= Φ1 ∧ Φ2 i�M, s |= Φ1 andM, s |= Φ2

5 M, s |= Φ1 ∨ Φ2 i�M, s |= Φ1 orM, s |= Φ2

6 M, s |= Φ1 ⇒ Φ2 i�M, s ̸|= Φ1 orM, s |= Φ2
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De�nition

7 M, s |= AXΦ i� for all s1 such that s → s1,
we haveM, s1 |= Φ

AX says: �in every next state�.

8 M, s |= EXΦ i� for some s1 such that s → s1,
we haveM, s1 |= Φ

EX says: �in some next state�.
E is dual to A, as ∃ is dual to ∀.
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De�nition

9 M, s |= AGΦ i� for all paths s1 → s2 → ..., where s1 equals s,
and for all si (including s1) along the path,
we haveM, si |= Φ.

For All computation paths beginning with s the property Φ
holds Globally.

10 M, s |= EGΦ i� there is a path s1 → s2 → ..., where s1
equals s, and for all si along the path,
we haveM, si |= Φ.

There Exists a path beginning in s such that Φ holds Globally
along the path.

11 M, s |= AFΦ i� for all paths s1 → s2 → ..., where s1 equals s,
there is some si along the path,
such thatM, si |= Φ.

For All computation paths beginning with s there will be some
Future state where Φ holds.
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De�nition

12 M, s |= EFΦ i� there is a path s1 → s2 → ..., where s1 equals
s, and for some si along the path,
we haveM, si |= Φ.

There Exists a computation path beginning in s such that Φ
holds in some Future states.

13 M, s |= A[Φ1 U Φ2] i� for all paths s1 → s2 → ..., where s1
equals s, that path satis�es Φ1 U Φ2, i.e. there
is some si along the path, such that
M, si |= Φ2, and for each j < i ,
we haveM, sj |= Φ1.

All computation paths beginning in s satisfy that Φ1 Until Φ2

holds on it.

14 M, s |= E [Φ1 U Φ2] i� there is a path s1 → s2 → ..., where s1
equals s, that path satis�es Φ1 U Φ2,
as speci�ed in (13).

There Exists a computation path beginning in s such that Φ1

Until Φ2 holds on it.

In clauses 9-14, the future includes the present.
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Unwinding
Unwinding the system from page 14 as an in�nite tree of all
computation path beginning in a particular state.
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Semantics: Illustrations

EFΦ EGΦ AGΦ AFΦ

s0•−−s1•−−s2•−−s3•−−s4•−−s5•−−s6•−−s7•−−s8•︸ ︷︷ ︸
Φ

−−s9•
Ψ
−−s10•−−· · ·

each of the states from s3 to s9 satis�es Φ U Ψ

If the given set of states is �nite, then we may compute the
set of all states satisfying Φ.

IfM is obvious, we will write s |= Φ.
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Some Examples for the System from Pages 14 and 21

Example

1 M, s0 |= p ∧ q since L(s0) = {p, q}
2 M, s0 |= ¬r since r ̸= L(s0)

3 M, s0 |= ⊤ by the de�nition

4 M, s0 |= EX (q ∧ r) since we have the leftmost computation
path s0 → s1 → s0 → s1 → ... in Figure on page 21,
and L(s1) = {q, r}

5 M, s0 |= ¬AX (q ∧ r) since we have the rightmost
computation path s0 → s2 → s2 → s2 → ... in Figure on
page 21, and q /∈ L(s2)

6 M, s0 |= ¬EF (p ∧ r) since there is no computation path
beginning in s0 such that we could reach a state where
p ∧ q would hold.

For each s ∈ S , p ∈ L(s)⇔ r /∈ L(s).
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Example (continued)

7 M, s2 |= EGr since there is a computation path
s2 → s2 → s2 → s2 → ... beginning with s2 such that r
holds in all future states.

8 M, s2 |= AGr since there is only one computation path
beginning in s2 and it satis�es r globally.

9 M, s0 |= AFr since for all computation paths beginning in
s0, the system reaches a state (s1 or s2) such that r
holds.

10 M, s0 |= E [(p ∧ q) U r ] since we have the rightmost
computation path s0 → s2 → s2 → s2 → ... in Figure on
page 16, whose second node s2 (i = 1) satis�es r , but
all previous nodes (only j = 0, i.e. node s0) satisfy
p ∧ q.

11 M, s0 |= A[p U r ] since p holds in s0 and r holds in any
possible successor state of s0, so p U r is true for all
computation paths beginning in s0.
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Practical Patterns of Speci�cations (1)

What kind of practically relevant properties can we check with
formulas of CTL?
Suppose atomic descriptions include some words as busy,
requested, ready, etc.

It is possible to get a state where started holds but ready does
not hold:

EF (started ∧ ¬ready)
For any state, if a request (of some resource) occurs, then it
will eventually be acknowledged:

AG (request ⇒ AF acknowledged)

A certain process is enabled in�nitely often on every
computation path:

AG (AF enabled)

Whatever happens, a certain process will eventually be
permanently deadlocked:

AF (AG deadlock)
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Practical Patterns of Speci�cations (2)

From any state it is possible to get a restart state:

AG (EF restart)

An upwards traveling elevator at the second �oor does not
change its direction when it has passengers wishing to go to
the �fth �oor:

AG (floor = 2 ∧ direction = up ∧ ButtonPressed5⇒
A[direction = up U floor = 5])

The elevator can remain idle on the third �oor with its doors
closed:

AG ((floor = 3 ∧ idle ∧ door = closed)⇒
EG (floor = 3 ∧ idle ∧ door = closed))
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Practical Patterns of CTL Speci�cations (3)

Train doors shall always remain closed between platforms
unless the train is stopped in emergency.

We cannot specify this statement in CTL, as it should start
with ∀tr : Train, pl : Platform . . . and we do not have
quanti�ers ∀ and ∃ in CTL!

For train tr75, its doors shall always remain closed between
platforms pl2 and pl3 (i.e. next platform) unless the train is
stopped in emergency.

AG (tr75.at.pl2 ∧ ¬tr75.at.pl3 =⇒ AG (tr75.doors = `closed')
∨ tr75.doors= `closed' U tr75.at.pl3
∨ (Alarm.tr75 ∧ ¬tr75.moving))
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Equivalences

Two CTL formulas Φ and Ψ are said to be semantically

equivalent if any state in any model which satis�es one of
them also satis�es the other, write then: Φ ≡ Ψ.

¬AFΦ ≡ EG¬Φ
¬EFΦ ≡ AG¬Φ

}
de Morgan rules

¬AXΦ ≡ EX¬Φ
AFΦ ≡ A[⊤ U Φ]
EFΦ ≡ E [⊤ U Φ]
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Mutual Exclusion Problem

Mutual Exclusion: only one process can access a critical section.

Problem: to �nd a proper protocol and to verify our solution by
checking that it has some expected properties as:

Safety: The protocol allows only one process to be in its critical
section at any time.
Liveness: Whenever any process wants to enter its critical section,
it will eventually be permitted to do so.

Safety: Bad things never happen.
Liveness: Good things eventually will happen.

Non-blocking: A process can always request to enter its critical
section.
No strict sequencing: Processes need not enter their section in
strict sequence.
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Mutual Exclusion Problem: First Solution
We assume two processes and they interleave, i.e. only one of
them can make a transition at a time.

n - non-critical state
t - trying to enter its critical state
c- in its critical state

each process behaves as: n→ t → c → n→ t → c → ...
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Properties of The First Solution

Safety Φ1
def
= AG¬(c1 ∧ c2)

Clearly it is satis�ed in every state.

Liveness Φ2
def
= AG (t1 ⇒ AFc1)

Not satis�ed by s0, since s0 → s1 but in s1 we have
t1 is true but AFc1 is not, as for the path
s1 → s3 → s7 → s1 → s3 → s7 → ..., c1 is always
false.

Non-blocking Φ3
def
= AG (n1 ⇒ EXt1)

Satis�ed since every n1 state has an (immediate) t1
successor.

No strict sequencing

Φ4
def
= EF (c1 ∧ E [c1 U (¬c1 ∧ E [¬c2 U c1])])

Satis�ed, e.g. by the mirror path to the computation
path described for liveness:
s5 → s3 → s4 → s5 → s3 → s4 → ...
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Problems With Liveness

Reason for Liveness Failure:
non-determinism means that it might continually favour one
process over another!

The state s3 does not distiquish between which of the
processes �rst went into its trying state. We might try to split
s3 into two states.
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Mutual Exclusion: Second Solution

We split the old s3 into s3 and s8.

This solution satis�es Safety, Liveness, Non-blocking and No

Strict Sequencing.

Oversimpli�cation: we will move to a di�erent state an every
click of the clock! We may wish to model that a process can
stay in its critical state for several ticks, but if we include an
arrow from s2 or s6, to itself, we will again violate liveness.
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Mutual Exclusion: Third Solution (with some tricks)
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ct0 means process 1 is in critical section, process 2 is trying and the
Boolean variable turn = 0.
The variable turn indicate which process will get into critical
section, 0 indicates process 1, 1 indicate process 2. It is also often
represented by two predicates turn = 1 and turn = 2.
The labels on the transitions denote the process which makes the move.

The label 1, 2 means that either process could make that move. The

labels are redundant but increase readability.
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Tool: FAIRNESS ϕ
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We want to express that �nite sequences nn0 → nn0 → . . . → nn0, or
ct0 → . . . → ct0 are valid, but not in�nite versions for some of them.

The tool FAIRNESS ϕ, available in most model checkers, allows
ignoring any path along with ϕ is not satis�ed in�nitely often.

While FAIRNESS ϕ and Fair Choice discussed for FSPs have similar
roots, they are di�erent tools and concepts!

To guarantee that no process will use a critical section in�nitely, we
have to invoke FAIRNESS ¬c (or something semantically similar).
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Role of turn

Because the boolean variable turn has been explicitly
introduced to distinguish between states s3 and s8 of �gure
from page 33, we now distinguish between certain states (for
example, ct0 and ct1) which were identical before.

However, these states are not distinguished if you look just at
the transitions from them.

Therefore, they satisfy the same CTL (or LTL) formulas which
don't mention turn.

Those states are distinguished only by the way they can arise.
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Role of turn

We have eliminated an over-simpli�cation made in the model
of page 33. Recall that we assumed the system would move
to a di�erent state on every tick of the clock (there were no
transitions from a state to itself).

In �gure from pages 34 and 35 , we allow transitions from
each state to itself, representing that a process was chosen for
execution and did some private computation, but did not
move in or out of its critical section.

Of course, by doing this we have introduced paths in which
one process gets stuck in its critical section, whence the need
to invoke a fairness constraint to eliminate such paths.

Ryszard Janicki Temporal Logic and Model Checking 37 / 90



Model Checking Algorithms

Humans → unwinding, in�nite trees

Computers → must use transition system as it needs to check
on �nite data structures.

How one can considerM, s0
?

|= Φ as a computational
problem?

1 Input: M, ϕ, s0 Output: `yes' or `no'
2 Input: M, ϕ Output: all states s such thatM, s |= Φ.

One may show that (1)⇔ (2)

The most e�cient algorithms use �xed points approach, and
can handle millions of states and long formulas.
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Re�nement, Filters, Fairness

M, s0 |= Φ might fail becauseM may contain behaviour that
is unrealistic, or guaranteed not to occur in the actual system
being analyzed.

Re�neM, or

stick to the original model and impose a �lter on the model
check:
insteadM, s0 |= Φ verifyM, s0 |= (Ψ⇒ Φ), where Ψ
encodes the re�nement of our model expressed as a
speci�cation.

Unfortunately, not all re�nements of models for CTL model
checking can be done in this way.

Simple Fairness: Φ is true in�nitely often.

Fairness: If Ψ is true in�nitely often, then Φ is also true
in�nitely often.
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Typical Models of Time

Linear Time: used for Linear Temporal Logic (LTL)

Branching time: used for CTL, CTL∗ logics, etc.
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LTL Syntax

Φ ::= ⊥ | ⊤ | p | (¬Φ) | (Φ ∧ Φ) | (Φ ∨ Φ) | (Φ⇒ Φ) |
(GΦ) | (FΦ) | (XΦ) | (Φ U Φ) | (Φ W Φ) | (Φ R Φ)

where p ranges over atomic formulas/descriptions.

⊥ - false, ⊤ - true

GΦ,FΦ,XΦ,Φ U Φ,Φ W Φ,Φ R Φ are temporal

connections.

X means �neXt moment in time�

F means �some Future moments�

G means �all future moments (Globally)�

U means �Until�

W means �Weak-until�

R means �Release�

An LTL formula is evaluated on a path, or a set of paths.

A set of paths satis�es Φ if every path in the set satis�es Φ.

Consider the path π
df

= s1 → s2 → ....
We write πi for the su�x starting at si , i.e. π

i is
si → si+1 → si+2 → ....
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Semantics

LetM = (S ,→, L) be a model as for CTL. We de�ne when a path
π = s1 → s2 → ... satis�es an LTL formula as follows.

De�nition (The de�nition of |=)

1 π |= ⊤
2 π ̸|= ⊥
3 π |= p i� p ∈ L(s1) This means that atoms are evaluated in

the �rst state along the path in consideration.

4 π |= ¬Φ i� π ̸|= Φ

5 π |= Φ1 ∧ Φ2 i� π |= Φ1 and π |= Φ2

6 π |= Φ1 ∨ Φ2 i� π |= Φ1 or π |= Φ2

7 π |= Φ1 ⇒ Φ2 i� π ̸|= Φ1 or π |= Φ2

8 π |= XΦ i� π2 |= Φ

9 π |= GΦ i� for all i ≥ 1, πi |= Φ

10 π |= FΦ i� there is some i ≥ 1 such that πi |= Φ
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De�nition

10 π |= Φ U Ψ i� there is some i ≥ 1 such that πi |= Ψ and for
all j = 1, . . . , i − 1 we have πj |= Φ

11 π |= Φ W Ψ i� either there is some i ≥ 1 such that πi |= Ψ
and for all j = 1, . . . , i − 1 we have πj |= Φ; or for all k ≥ 1
we have πk |= Φ

12 π |= Φ R Ψ i� either there is some i ≥ 1 such that πi |= Φ
and for all j = 1, . . . , i we have πj |= Ψ' or for all k ≥ 1 we
have πk |= Ψ

The meaning of Φ U Ψ is similar to that in CTL, i.e.

s0•−−s1•−−s2•−−s3•−−s4•−−s5•−−s6•−−s7•−−s8•︸ ︷︷ ︸
Φ

−−s9•
Ψ
−−s10•−−· · ·

each of the states from s3 to s9 satis�es Φ U Ψ
Weak-until is just like U, except that ϕW Ψ does not require
that Ψ is eventually satis�ed along the path in question,
which is required by by Φ U Ψ.
Release R is dual to U; that is Φ R Ψ is equivalent to
¬(¬Φ U ¬Ψ)
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Practical Patterns of LTL Speci�cations (1)

What kind of practically relevant properties can we check with
formulas of LTL?
Suppose atomic descriptions include some words as busy,
requested, ready, etc.

It is impossible to get a state where started holds but ready
does not hold:

G¬(started ∧ ¬ready)
For any state, if a request (of some resource) occurs, then it
will eventually be acknowledged:

G (requested ⇒ F acknowledged)

A certain process is enabled in�nitely often on every
computation path:

GF enabled

On all path, a certain process will eventually be permanently
deadlocked:

FG deadlock
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Practical Patterns of LTL Speci�cations (2)

If the process is enabled in�nitely often, then it runs in�nitely
often

GF enabled ⇒ GF running

An upwards traveling elevator at the second �oor does not
change its direction when it has passengers wishing to go to
the �fth �oor:

G (floor = 2 ∧ direction = up ∧ ButtonPressed5⇒
(direction = up U floor = 5))
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Practical Patterns of LTL Speci�cations (3)

Train doors shall always remain closed between platforms
unless the train is stopped in emergency.

We cannot specify this statement in LTL, as it should start
with ∀tr : Train, pl : Platform . . . and we do not have
quanti�ers ∀ and ∃ in neither LTL nor CTL!

For train tr75, its doors shall always remain closed between
platforms pl2 and pl3 (i.e. next platform) unless the train is
stopped in emergency.

G (tr75.at.pl2 ∧ ¬tr75.at.pl3 =⇒ G (tr75.doors = `closed')
∨ tr75.doors= `closed' U tr75.at.pl3
∨ (Alarm.tr75 ∧ ¬tr75.moving))
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Impossible LTL Speci�cations

There are some things which are not possible to say in LTL,
however. One big class of such things are statements which assert
the existence of a path, such as these ones:

For any state it is possible to get a restart state (i.e., there is
a path from all states to a state satisfying restart).

The lift can remain idle on the third �oor with its doors closed
(i.e., from the state in which it is on the third �oor, there is a
path along it stays there).

LTL cannot express these because it cannot directly assert the
existence of path. CTL has operators for quantifying over paths,
and can express these properties.
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Equivalences

¬G Φ ≡ F ¬Φ ¬F Φ ≡ G ¬Φ ¬X Φ ≡ X ¬Φ
¬(Φ U Ψ) ≡ ¬Φ R ¬Ψ ¬(Φ R Ψ) ≡ ¬Φ U ¬Ψ
F (Φ ∨Ψ) ≡ F Φ ∨ F Ψ

G (Φ ∧Ψ) ≡ G Φ ∧ G Ψ

F Φ ≡ ⊤ U Φ G Φ ≡ ⊥ R Φ

Φ U Ψ ≡ Φ W Ψ ∧ F Ψ

Φ W Ψ ≡ Φ U Ψ ∨ G Φ

Φ W Ψ ≡ Ψ R (Φ ∨Ψ)

Φ R Ψ ≡ Ψ W (Φ ∧Ψ)
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Mutual Exclusion and LTL
Safety: Φ1

def
= G¬(c1 ∧ c2)

Liveness: Φ2

def
= G (t1 ⇒ F c1)

Non-blocking: Let's just consider process 1. We would like to express
the property as: for every state satisfying n1, there is a
successor satisfying t1. Unfortunately, this existence
quanti�er on paths (`there is a successor satisfying...)
cannot be expressed in LTL (it can in CTL).

No strict sequencing: We might consider this as saying: there is a
path with two distinct states satisfying c1 such that no
state in between has that property. However, we cannot
express `there exists a path', so let us consider the
complement formula instead. The complement says that
all path having a c1 period that ends cannot have a
further c1 until a c2 state occurs, i.e.

Ψ3

def
= G (c1 ⇒ c1 W (¬c1 ∧ ¬c1 W c2)). We have to

show that Ψ3 does not hold!

The analysis is very similar to that of CTL, liveness does not hold for the
�rst solution but it does for the second one.
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CTL vs LTL

It is possible to get a state where started holds but ready does
not hold:
CTL: EF (started ∧ ¬ready)
LTL: G¬(started ∧ ¬ready)
For any state, if a request (of some resource) occurs, then it
will eventually be acknowledged:
CTL: AG (requested ⇒ AF acknowledged)
LTL: G (requested ⇒ F acknowledged)

A certain process is enabled in�nitely often on every
computation path:
CTL: AG (AF enabled)
LTL: GF enabled

Whatever happens, a certain process will eventually be
permanently deadlocked:
CTL: AF (AG deadlock)
LTL: FG deadlock
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CTL∗ Logic

It allows nested modalities and boolean connectives before
applying the path quanti�ers E and A.

A[(p U r) ∨ (q U r)]: along all paths, either p is true until r ,
or q is true until r .
̸≡ A[(p ∨ q) U r ]
It can be expressed in CTL, but it is not easy.

A[X p ∨X X p]: along all paths, p is true in the next state, or
the next but one.
̸≡ AX p ∨ AXAX p
It cannot be expressed in CTL.

E [GF p]: there is a path along which p is in�nitely often true.
̸≡ EGEF p
It cannot be expressed in CTL.
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CTL∗ Syntax

The syntax of CTL∗ involves two classes of formulas:

state formulas, which are evaluated in states:

Φ ::= ⊥ | ⊤ | p | (¬Φ) | (Φ∧Φ) | (Φ∨Φ) | (Φ⇒ Φ) | A[α] | E [α]

where p is any atomic formula and α is any path formula.

path formulas, which are evaluated along paths:

α ::= Φ | (¬α) | (α ∧ α) | (α ∨ α) | (α⇒ α) |
(α U α) | (G α) | (F α) | (X α)

where Φ is any state formula.
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LTL, CTL vs CTL∗

LTL is a subset of CTL∗.
Although the syntax of LTL does not include A, E , the
semantic viewpoint of LTL is that we consider all path.
Therefore, the LTL formula α is equivalent to the CTL∗

formula A[α].

CTL is a subset of CTL∗.
CTL is a fragment of CTL∗ in which we restrict the form of
path formulas to:

α ::= (Φ U Φ) | (G Φ) | (F Φ) | (X Φ)
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LTL, CTL vs CTL∗
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In CTL but not in LTL

Ψ1
def
= AGEF p

Wherever we got to, we can always get back to a state in which p
is true. Useful in �nding deadlock in protocols.

Proof.

Let Φ be an LTL formula such that A[Φ] is allegedly equivalent to
AGEF p.

SinceM, s |= AGEF p, we haveM, s |= A[Φ]. The paths from s
inM′ are a subset of those from s inM, so we have
M′, s |= A[Φ]. Yet, it is not the case thatM′, s |= AGEF p, a
contradiction.
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In CTL and in LTL

Ψ2
def
= AG (p ⇒ AF q) in CTL

Ψ2
def
= G (p ⇒ F q) in LTL

any p is eventually followed by a q.
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In LTL but not in CTL

Ψ3
def
= A[GF p ⇒ F q] in CTL∗

Ψ3
def
= GF p ⇒ F q in LTL

there are in�nitely may p along the path, then there is an
occurrence of q.
Application: many fairness constraints are of the form �in�nitely
often requested implies eventually acknowledged�
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In CTL∗ but neither in CTL nor in LTL

Ψ4
def
= E [GF p]

there is a path with in�nitely many p.
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Weak-until in CTL: Motivation

s |= A[p U q] ⇐⇒ along all paths from s, q is true somewhere
along the path and p is true from the present
state until the state win which q is true.

⇓
a path in which p is permanently true and q
never true does not satisfy p U q.

Sometimes our intuition about �until� suggest that we should
accept paths in which q never holds, provided p is
permanently true.

The indicator light stays on until the elevator arrives.

If elevator never arrives, the light stays on permanently and
this is OK.
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Weak-until in CTL, LTL and CTL∗

In LTL and CTL∗:

p W q ≡ (p U q) ∨ G p

In CTL:

E [p W q] ≡ E [p U q] ∨ EG p

A[p W q] ≡ A[p U q] ∨ AG p
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Linear Temporal Logic
Again
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Linear Temporal Logic (LTL): Intuitions
Consider the simple Linear Temporal Logic (LTL) where the
accessibility relation is isomorphic to the Natural Numbers.
Typical temporal operators used are:

⃝φ - φ is true in the next moment in time (Next)
2φ - φ is true in all future moments (Always)
3φ - φ is true in some future moments (Sometimes)
φUψ - φ is true until ψ is true (Until)

Other operators are: ∧,∨,¬, =⇒ , ⇐⇒ , i.e. propositional
operators with standard semantics
Examples:

2((¬passport ∨ ¬ticket) =⇒ ⃝¬board_flight)
2(requested =⇒ 3received)
2(received =⇒ ⃝processed)
2(processed =⇒ 32done)

From the above we should be able to infer that it is not the
case that the system continually re-sends a request, but never
sees it completed ( 2¬done); i.e. the statement
2requested ∧2¬done
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Temporal Semantics

A system history in LTL is an in�nite temporal sequence of
system states.

Time is isomorphic to the set Nat of natural numbers, and a
history H is de�ned as a function:

H : Nat → States

The function H assigns to every time point i in Nat, the
system state at that time point H(i).

To de�ne the LTL semantics more precisely, we write
(H, i) |= φ

to express that the LTL formula φ is satis�ed by history H at
time i .
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Semantics: Atomic proposition

In LTL we have only boolean values, and boolean variables are
interpreted as atomic propositions. Each state s ∈ States has
a set of atomic propositions assigned to it. The set of all
atomic proposition is often denoted by Σ (alphabet).

We do not have any other types in LTL, we do not have
natural numbers, only boolean values.

We have to simulate numbers by boolean variables. This can
be done for �nite sets of numbers. For example if
x ∈ {1, 2, 3, 4, 5}, we can simulate by �ve boolean variables
x_is_1, x_is_2, x_is_3, x_is_4 and x_is_5.

We de�ne that an atomic proposition p is true at a time

point � i�, as follows:
(H, i) |= p i� p is assigned to the state H(i)
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Temporal Operators: `next'

(H, i) |=⃝φ i� (H, i + 1) |= φ

This operator provides a constraint on the next moment in time.

Examples:

(sad ∧ ¬rich) =⇒ ⃝sad
((x = 0) ∧ add3) =⇒ ⃝(x = 3)

In the above `x = 0', x = 3' and `add3' are boolean variables
(atomic propositions)
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Temporal Operators: `sometime'

(H, i) |= 3φ i� ∃j .j ≥ i ∧ (H, j) |= φ

(H, i) |= 3φ i� for some j ≥ i : (H, j) |= φ

While we can be sure that φ will be true either now
or in the future, we can not be sure exactly when it will be true.

Examples:

(¬resigned ∧ sad) =⇒ 3famous
sad =⇒ 3happy
send =⇒ 3receive
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Temporal Operators: `always'

(H, i) |= 2φ i� ∀j .j ≥ i ∧ (H, j) |= φ

(H, i) |= 2φ i� for all j ≥ i : (H, j) |= φ

This can represent invariant properties.

Examples:

lottery -win =⇒ 2rich
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Temporal Operators: `until'

(H, i) |= φUψ i� (∃j .j ≥ i ∧ (H, j) |= ψ)∧
(∀k .i ≤ k < j =⇒ (H, k) |= φ)

(H, i) |= φUψ i� there existsj ≥ i such that (H, j) |= ψ, and
for every k , i ≤ k < j =⇒ (H, k) |= φ

Examples:

start_lecture =⇒ talkUend_lecture
born =⇒ aliveUdead
request =⇒ replyUacknowledgment
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Equivalences in LTL

¬2φ = 3¬φ
3φ = trueUφ

3(φ ∨ ψ) ≡ 3φ ∨3ψ
2(φ ∧ ψ) ≡ 2φ ∧2ψ
¬⃝ φ ≡ ⃝¬φ
¬(φUψ) ≡ (¬ψU(¬φ ∧ ¬ψ)) ∨2¬ψ
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Temporal Logic in Computer Science

Temporal logic was originally developed in order to represent
tense in natural language.

Within Computer Science, it has achieved a signi�cant role in
the formal speci�cation and veri�cation of concurrent reactive
systems.

Much of this popularity has been achieved as a number of
useful concepts can be formally, and concisely, speci�ed using
temporal logics, e.g.

safety properties
liveness properties
fairness properties

Temporal logic allows to use very powerful model checking

tools as for example SPIN (for LTL).
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Safety Properties

Safety: �something bad will not happen�

Typical examples:
2¬(reactor_temp > 1000)
2¬((x = 0) ∧⃝⃝⃝(y = z/x))

In the above `x = 0' and `y = z/x ' are boolean variables
(atomic propositions)

and so on...

Usually: 2¬ . . . .
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Liveness Properties

Liveness: �something good will happen�

Typical examples:
3rich
3(x > 5)
2(start =⇒ 3terminate)
2(Trying =⇒ 3Critical
and so on...

Usually: 3 . . . .
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Fairness Properties

Often only really useful when scheduling processes, responding
to messages, etc.

Strong Fairness: �if something is attempted/requested
in�nitely often, then it will be successful/allocated in�nitely
often�

Typical example:
23ready =⇒ 23run

Ryszard Janicki Temporal Logic and Model Checking 73 / 90



Sample Statements

An upwards traveling elevator at the second �oor does not
change its direction when it has passengers wishing to go to
the �fth �oor:

2(floor = 2 ∧ direction = up ∧ ButtonPressed5⇒
(direction = up U floor = 5))

A certain process is enabled in�nitely often on every
computation path:

23 enabled

On all path, a certain process will eventually be permanently
deadlocked:

32 deadlock
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LTL: How it works

Full modeling with temporal logic consists of two steps:
1 provide a temporal formula ϕ that describes desired properties
2 provide a temporal model of the systemM and show that ϕ

satis�es it, i.e. proveM |= ϕ

For requirements, we usually stop with providing a temporal
formula ϕ that describes desired properties

There are many software supports for Linear Temporal Logic.

The most known are:
1 SPIN that allows us to verify if a given LTL formula is satis�ed

is a given model
2 a model is a kind of �nite state automaton, called Kripke

Structure and can be de�ned using the language PROMELA

Some examples will follow
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LTL: Final Comments

LTL was designed as a tool for proving properties of huge
systems, in range of millions of states.

E�cient using of LTL requires some good software support as
for instance SPIN, while classical predicate calculus is mainly
used by human beings.

As oppose to predicate calculus that is useful for both
describing and proving properties of systems, LTL is usually
used for proving properties.
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�Finite/Experimental� Induction

How the induction method works in research?

One analysis a problem, solves several concrete cases, and
then on the basis of knowledge, intuition and plain gut
feelings, some formula is proposed.

Then the induction can be used to prove that a given formula
works in all cases.

How �nding new laws works in physics, chemistry, biology
etc.?

On the basis of some past experiments, theoretical analysis,
intuition and just plain gut feelings a new law is formulated.

A serious of focused experiments is conducted.

If all experiments con�rm (up to some experiments errors) a
proposed law, the law is considered true.
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You have most likely already heard about the problem of
'proving program properties', it was probably discussed on
'formal methods' and/or 'advanced discrete mathematics'
courses. One popular apprach is based on Hoare Logic.

In some cases such method can be fully automatized.

But for many important cases, it cannot, at least right now.

Sorting property SP for a given array A[1..n] can be de�ned
as SP : ∀i , j ∈ N. i < j =⇒ A[i ] ≤ A[j ].

Let Sort be a sorting procedure written in some appropriate
language/precise pseudo-code.

A `dream' solution is to a system/program that takes Sort
and SP as inputs, a user click a button and, after some maybe
long time, the system answers `YES' or `NO', and provides
some explanation (trace or reasoning) in the second case.

Unfortunately, to my knowledge, such a system/program does
not exists yet.
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De�ne SP(n) as SP(n) : ∀i , j ≤ n. i < j =⇒ A[i ] ≤ A[j ],
for example SP(73) : ∀i , j ≤ 73. i < j =⇒ A[i ] ≤ A[j ].

There are several systems that can deal with the input Sort
and SP(n), for any concrete n, say SP(73).

Note that for example SP(4) ≡ A[1] ≤ A[2] ≤ A[3] ≤ A[4], so
the problem is reduced to propositional logic (with presumable
long formulas).

Suppose that you run Sort with
SP(100), SP(150), SP(200), . . . ,SP(1000) and in all cases
the answer was `YES'.

Can you conclude that Sort is correct, so it will work for any
n?
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Consider model checking and the mutual exclusion problem.

The case for n = 2 was analysed in class (textbook), suppose
you have implemented the solution (for example, using
popular system SPIN) for any concrete n.

Suppose the solution was correct for n = 10, 20, . . . , 100.

Can you conclude that the solution works for any n?

In model checking we usually start with the simplest case and
then extend the model for more complex cases, until the
computational capacity of a platform is reached.

I call this approach �nite or experimental induction.
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