Dynamic Systems

CS 25D3

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton,
Ontario, Canada

Ryszard Janicki Dynamic Systems 1/14

Dynamic Systems

Concepts: dynamic creation and deletion of processes

Models:

Practice:

Resource allocation example - varying
number of users and resources.
master-slave interaction

static - fixed populations with
cyclic behavior
interaction

dynamic creation and deletion of threads
(# active threads varies during execution,
Resource allocation algorithms

Java join() method

Ryszard Janicki Dynamic Systems 2/14

Golf Club Program

@ Players at a Golf Club hire golf balls and then return them
after use.

@ Expert players tend not to lose any golf balls and only hire
one or two.

@ Novice players hire more balls, so that they have spares during
the game in case of loss.

@ However, they buy replacements for lost balls so that they
return the same number that they originally hired.

Ryszard Janicki Dynamic Systems 3/14

Golf Club Model

Allocator: Allocator will accept requests for up to b balls, and
block requests for more than b balls.

const N =4 //maximum #golf balls

range B =0..N //available range

ALLOCATOR = BALL[N],

BALL[b : B] = (when (b > 0) get[i : 1..b] — BALL[b — i]
| put]j : 1..N] — BALL[b + j]).
N——

”

77 - may potentially lead to an error
Players:

@ How do we model the potentially infinite stream of
dynamically created player processes?

@ We cannot model infinite state spaces, but can model infinite
(repetitive) behaviors.

Ryszard Janicki Dynamic Systems 4/14

Golf Club Model

Players: Fixed population of golfers: infinite stream of requests.

range R =1..N //request range
PLAYER = (need[b : R] — PLAYERIb)),
PLAYER[b : R] = (get[b] — put[b]— > PLAYERI[b]).

set Experts = {alice, bob, chris}
setNovices = {dave, eve}
setPlayers = { Experts, Novices}, i.e. Players = Experts U Novices

HANDICAP //constraint on need action of each player.
= ({Novices.{need[3..N]}, Experts.need[1..2]} — HANDICAP)
+{Players.need[R]}.

| GOLFCLUB =
(Players : PLAYER || Players :: ALLOCATOR || HANDICAP).

Ryszard Janicki Dynamic Systems 5/14

HANDICAP Players:PLAYER] ALLOCATOR

|| GOLFCLUB =
(Players : PLAYER || Players :: ALLOCATOR || HANDICAP).
Safety: Do players return the right number of balls?
@ Yes, for this case it can even be proved in some formal way!
Liveness: Are players eventually allocated balls?
@ Yes, we can check:
progress NOVICE = { NOVICES .get[R]}
progress EXPERT = {EXPERTS .get[R]}
However, are these properties correctly defined?
Recall: progress P = {a1, az,...,an} defines a progress
property P which asserts that in any state of a target system,
there is always a continuation trace which contains at least
one element of {a1,az,...,a,}. Don't we.need 'for all’? -

Ryszard Janicki Dynamic Systems 6/14

Adverse Scheduling, i.e. looking for potential problems of

an implementation

progress NOVICE = {NOVICES .get[R]}
progress EXPERT = {EXPERTS .get[R]}
|| ProgressCheck = GOLFCLUB >> {Players.put[R]}.

Progress violation: NOVICE
Trace to terminal set of states: alice.need.2 — bob.need.2 —
chris.need.2 — chris.get.2 — dave.need.4 — eve.need.4
@ There are now only 3 =5 — 2 balls so to give 4 balls to dave
or eve, chris need to execute put[]. But put's have low
priority! NOVICE players dave and eve suffer starvation.
Actions in terminal set: {alice, bob, chris}.{get, put}[2]
@ In fact, some EXPERTSs also may suffer starvation, but there
is no violation of progress EXPERT?
@ Why? Because of ‘at least one’ in the definition of progress!
o Weird !

Ryszard Janicki Dynamic Systems 7/14

Fair (but Inefficient) Allocation

@ Allocation in arrival order, using tickets:

const TM =5 // maximum ticket

range T =1..TM // ticket values

TICKET = NEXTI1],

NEXT|t : T| = (ticket[t] +- NEXT[t mod (TM + 1)]).
@ Players and Allocator:

PLAYER = (need[b : R] — PLAYER][b]),

PLAYER[b: R] =

(ticket[t : T| — get[b][t] — put[b] — PLAYER][b]).

ALLOCATOR = BALL[N][1],

BALL[b: B][t: T] =

(when (b > 0) get[i : 1..b][t] — BALL[b—i][t mod (TM + 1)]

| putlj : 1..N] — BALL[b + j][t]).

Ryszard Janicki Dynamic Systems 8/14

@ Ticketing increases the size of the model for analysis.

@ We compensate by modifying the HANDICAP constraint:
HANDICAP = (Novices.need[4], Experts.need[1] —
HANDICAP) + Players.need[R].

@ Experts use 1 ball, Novices use 4 balls.

| GOLFCLUB = (Players : PLAYER
|| Players :: (ALLOCATOR || TICKET)||HANDICAP).

Ryszard Janicki Dynamic Systems 9/14

const TM =5 // maximum ticket

range T =1..TM // ticket values

TICKET = NEXT[1],

NEXT(t : T] = (ticket[t] + NEXT[t mod (TM + 1)]).

PLAYER = (need[b : R]| — PLAYER][b]),
PLAYER[b: R] =
(ticket[t : T] — get[b][t] — put[b] — PLAYER]b]).

ALLOCATOR = BALL[N][1],

BALL[b: B[t : T] =

(when (b > 0) get[i : 1..b][t] — BALL[b — i][t mod (TM + 1)]
| putlj : 1..N] — BALL[b + j][¢]).

HANDICAP = (Novices.need[4], Experts.need[1] —
HANDICAP) + Players.need[R].

|| GOLFCLUB = (Players : PLAYER

|| Players :: (ALLOCATOR || TICKET)||HANDICAP).

Ryszard Janicki Dynamic Systems

10/14

Allocation in Arrival Order, Using Tickets: Analysis

Safety (balls returned) is satisfied.

Liveness, i.e.

progress NOVICE = { Novices.get[R][T]}, and

progress EXPERT = { Experts.get[R][T]},

is satisfied.

It is still weird as it does not guarantee ‘real liveness'.
Adverse Scheduling, i.e.

|| ProgressCheck = GOLFCLUB >> {Players.put[R]}

is also OK.

Allocation in arrival order is not efficient. A better solution,
called bounded allocation is discussed in the textbook.

However it is too complex to be presented in class. It requires
using some tools to be understood!

Ryszard Janicki Dynamic Systems 11/14

Master-Slave System

@ A Master process/thread/module/etc creates a Slave

process/thread/module/etc to perform some task (eg. 1/0)
and continues.

@ Later, the Master synchronizes with the Slave to collect the
result.

@ Often the Slave dies after giving the result to the Master.

Ryszard Janicki Dynamic Systems 12/14

Master-Slave Model

SLAVE = (start — rotate — join — SLAVE).
MASTER = (slave.start — rotate — slave.join — rotate — MASTER).
| MASTER_SLAVE = (MASTER || slave : SLAVE).

@ join is modeled by a synchronized action.

@ slave.rotate and rotate are interleaved ie. concurrent.

@ Probably master.rotate instead of rotate would be a better name.
rotate

slave.start slave.rotate rotate slave.join

slave.rotate

rotate

@ Why only one slave?

@ The model is vastly oversimplified!

Ryszard Janicki Dynamic Systems 13/14

@ FSP model does not work for dynamic system.

@ The authors of the textbook did their best to apply FSP for
modelling dynamic systems, but the results are weak and they
seem to support my assertion.

@ A solution: Extend FSP by adding some constructions from
pi-calculus. FSP is a mixture of CSP (C. A. R. Hoare
1978-82) and CCS (R. Milner 1976-84), pi-calculus is also by
R. Milner ~ 1990-94.

@ Neither standard Petri nets nor standard Model Checking
techniques work well with dynamic systems.

Ryszard Janicki Dynamic Systems 14/14

