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Dynamic Systems

Concepts: dynamic creation and deletion of processes

Models:

Practice:

Resource allocation example - varying
number of users and resources.
master-slave interaction

static - fixed populations with
cyclic behavior
interaction

dynamic creation and deletion of threads
(# active threads varies during execution,
Resource allocation algorithms

Java join() method

Ryszard Janicki Dynamic Systems 2/14



Golf Club Program

@ Players at a Golf Club hire golf balls and then return them
after use.

@ Expert players tend not to lose any golf balls and only hire
one or two.

@ Novice players hire more balls, so that they have spares during
the game in case of loss.

@ However, they buy replacements for lost balls so that they
return the same number that they originally hired.
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Golf Club Model

Allocator: Allocator will accept requests for up to b balls, and
block requests for more than b balls.

const N =4 //maximum #golf balls

range B =0..N //available range

ALLOCATOR = BALL[N],

BALL[b : B] = (when (b > 0) get[i : 1..b] — BALL[b — i]
| put]j : 1..N] — BALL[b + j]).
N——

”

77 - may potentially lead to an error
Players:

@ How do we model the potentially infinite stream of
dynamically created player processes?

@ We cannot model infinite state spaces, but can model infinite
(repetitive) behaviors.
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Golf Club Model

Players: Fixed population of golfers: infinite stream of requests.

range R =1..N //request range
PLAYER = (need[b : R] — PLAYERIb)),
PLAYER[b : R] = (get[b] — put[b]— > PLAYERI[b]).

set Experts = {alice, bob, chris}
setNovices = {dave, eve}
setPlayers = { Experts, Novices}, i.e. Players = Experts U Novices

HANDICAP //constraint on need action of each player.
= ({Novices.{need[3..N]}, Experts.need[1..2]} — HANDICAP)
+{Players.need[R]}.

| GOLFCLUB =
(Players : PLAYER || Players :: ALLOCATOR || HANDICAP).
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HANDICAP Players:PLAYER] ALLOCATOR

|| GOLFCLUB =
(Players : PLAYER || Players :: ALLOCATOR || HANDICAP).
Safety: Do players return the right number of balls?
@ Yes, for this case it can even be proved in some formal way!
Liveness: Are players eventually allocated balls?
@ Yes, we can check:
progress NOVICE = { NOVICES .get[R]}
progress EXPERT = {EXPERTS .get[R]}
However, are these properties correctly defined?
Recall: progress P = {a1, az,...,an} defines a progress
property P which asserts that in any state of a target system,
there is always a continuation trace which contains at least
one element of {a1,az,...,a,}. Don't we.need 'for all’? -
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Adverse Scheduling, i.e. looking for potential problems of

an implementation

progress NOVICE = {NOVICES .get[R]}
progress EXPERT = {EXPERTS .get[R]}
|| ProgressCheck = GOLFCLUB >> {Players.put[R]}.

Progress violation: NOVICE
Trace to terminal set of states: alice.need.2 — bob.need.2 —
chris.need.2 — chris.get.2 — dave.need.4 — eve.need.4
@ There are now only 3 =5 — 2 balls so to give 4 balls to dave
or eve, chris need to execute put[]. But put's have low
priority! NOVICE players dave and eve suffer starvation.
Actions in terminal set: {alice, bob, chris}.{get, put}[2]
@ In fact, some EXPERTSs also may suffer starvation, but there
is no violation of progress EXPERT?
@ Why? Because of ‘at least one’ in the definition of progress!
o Weird !
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Fair (but Inefficient) Allocation

@ Allocation in arrival order, using tickets:

const TM =5 // maximum ticket

range T =1..TM // ticket values

TICKET = NEXTI1],

NEXT|t : T| = (ticket[t] +- NEXT[t mod (TM + 1)]).
@ Players and Allocator:

PLAYER = (need[b : R] — PLAYER][b]),

PLAYER[b: R] =

(ticket[t : T| — get[b][t] — put[b] — PLAYER][b]).

ALLOCATOR = BALL[N][1],

BALL[b: B][t: T] =

(when (b > 0) get[i : 1..b][t] — BALL[b—i][t mod (TM + 1)]

| putlj : 1..N] — BALL[b + j][t]).
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@ Ticketing increases the size of the model for analysis.

@ We compensate by modifying the HANDICAP constraint:
HANDICAP = (Novices.need[4], Experts.need[1] —
HANDICAP) + Players.need[R].

@ Experts use 1 ball, Novices use 4 balls.

| GOLFCLUB = (Players : PLAYER
|| Players :: (ALLOCATOR || TICKET)||HANDICAP).
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const TM =5 // maximum ticket

range T =1..TM // ticket values

TICKET = NEXT[1],

NEXT(t : T] = (ticket[t] + NEXT[t mod (TM + 1)]).

PLAYER = (need[b : R]| — PLAYER][b]),
PLAYER[b: R] =
(ticket[t : T] — get[b][t] — put[b] — PLAYER]b]).

ALLOCATOR = BALL[N][1],

BALL[b: B[t : T] =

(when (b > 0) get[i : 1..b][t] — BALL[b — i][t mod (TM + 1)]
| putlj : 1..N] — BALL[b + j][¢]).

HANDICAP = (Novices.need[4], Experts.need[1] —
HANDICAP) + Players.need[R].

|| GOLFCLUB = (Players : PLAYER

|| Players :: (ALLOCATOR || TICKET)||HANDICAP).
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Allocation in Arrival Order, Using Tickets: Analysis

Safety (balls returned) is satisfied.

Liveness, i.e.

progress NOVICE = { Novices.get[R][T]}, and

progress EXPERT = { Experts.get[R][T]},

is satisfied.

It is still weird as it does not guarantee ‘real liveness'.
Adverse Scheduling, i.e.

|| ProgressCheck = GOLFCLUB >> {Players.put[R]}

is also OK.

Allocation in arrival order is not efficient. A better solution,
called bounded allocation is discussed in the textbook.

However it is too complex to be presented in class. It requires
using some tools to be understood!
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Master-Slave System

@ A Master process/thread/module/etc creates a Slave

process/thread/module/etc to perform some task (eg. 1/0)
and continues.

@ Later, the Master synchronizes with the Slave to collect the
result.

@ Often the Slave dies after giving the result to the Master.
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Master-Slave Model

SLAVE = (start — rotate — join — SLAVE).
MASTER = (slave.start — rotate — slave.join — rotate — MASTER).
| MASTER_SLAVE = (MASTER || slave : SLAVE).

@ join is modeled by a synchronized action.

@ slave.rotate and rotate are interleaved ie. concurrent.

@ Probably master.rotate instead of rotate would be a better name.
rotate

slave.start slave.rotate rotate slave.join

slave.rotate

rotate

@ Why only one slave?

@ The model is vastly oversimplified!
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@ FSP model does not work for dynamic system.

@ The authors of the textbook did their best to apply FSP for
modelling dynamic systems, but the results are weak and they
seem to support my assertion.

@ A solution: Extend FSP by adding some constructions from
pi-calculus. FSP is a mixture of CSP (C. A. R. Hoare
1978-82) and CCS (R. Milner 1976-84), pi-calculus is also by
R. Milner ~ 1990-94.

@ Neither standard Petri nets nor standard Model Checking
techniques work well with dynamic systems.
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