
Solutions to Some Problems
CS 2SD3

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton,
Ontario, Canada

Ryszard Janicki Solutions to Some Problems 1/48

‘Hungry’ and ’Simple Minded’ but outside control, i.e. ‘Butler’

No more than 4 philosophers are sitting at the table.

FORK = (get → put → FORK)
PHIL = (think → sitdown → right.get → left.get → eat →

right.put → left.put → getup → PHIL)
BUTLER(K = 4) = COUNT [0]
COUNT [i : 1..4] = (when(i < K) sitdown → COUNT [i + 1] |

getup → COUNT [i − 1]
∥ DINERS(N = 5) = (forall [i : 1..N]

(phil [i] : PHIL ∥ {phil [i].right, phil [i ⊕ 1].left} :: FORK)
∥ {phil [i : ..N]}︸ ︷︷ ︸

{phil [1],phil [2],phil [3],phil [4],phil [5]}

:: BUTLER(K = 4))

Ryszard Janicki Solutions to Some Problems 2/48

‘Butler’ Solution

‘Butler’ solution works. No deadlock and no starvation.

FORK ’s are passive processes (monitors), hence they always
can be presented as:
FORK = (get → put → FORK)

PHILOSOPHER’s are active processes.

Ryszard Janicki Solutions to Some Problems 3/48

Coloured Petri Nets

colour PH = with ph1 | ph2 | ph3 | ph4 | ph5
colour Fork = with f 1 | f 2 | f 3 | f 4 | f 5
LEFT : PH → FORK , RIGHT : PH → FORK
var x : PH
fun LEFT x = case of ph1 ⇒ f 2 | ph2 ⇒ f 3 | ph3 ⇒ f 4 |

ph4 ⇒ f 5 | ph5 ⇒ f 1
fun RIGHT x = case of ph1 ⇒ f 1 | ph2 ⇒ f 2 | ph3 ⇒ f 3 |

ph4 ⇒ f 4 | ph5 ⇒ f 5

Ryszard Janicki Solutions to Some Problems 4/48

Provide a Coloured Petri Net solution to Dining
Philosophers with a butler. Prove that this solution is
deadlock-free.

Solution:

colour PH = with ph1 | ph2 | ph3 | ph4 | ph
colour FORK = with f1 | f2 | f3 | f4 | f5
colour TOKENS = with t
var x : PH
var i: TOKENS
fun LF x = case of ph1 ⇒ f2 | ph2 ⇒ f3 | ph3 ⇒ f4 | ph4 ⇒ f5 |
ph5 ⇒ f1
fun RF x = case of ph1 ⇒ f1 | ph2 ⇒ f2 | ph3 ⇒ f3 | ph4 ⇒ f4 |
ph5 ⇒ f5

Ryszard Janicki Solutions to Some Problems 5/48

Ryszard Janicki Solutions to Some Problems 6/48

Interpretation of places:
p1 - thinking room
p2 - philosophers without forks in the dining room
p3 - philosophers with left forks in the dining room
p4 - philosophers that are eating
p5 - philosophers that finished eating and still with right forks in the
dining room
p6 - unused forks p7 - butler or counter

Ryszard Janicki Solutions to Some Problems 7/48

Invariants

inv1 m(p1) +m(p2) +m(p3) +m(p4) +m(p5) =
ph1 + ph2 + ph3 + ph4 + ph5

inv2 |m(p7)|+ |m(p2)| = 4

inv3 LF (m(p4)) + RF (m(p4)) +m(p6) = f 1 + f 2 + f 3 + f 4 + f 4 + f 5

Ryszard Janicki Solutions to Some Problems 8/48

Proof

Now consider two cases:

1 m(p4) +m(p5) ̸= 0. Then either return left fork or
return right fork and exit dining room can be fired.

2 m(p4) +m(p5) = 0. Then from invariant [inv3] we have :
LF (m(p3)) +m(p6) = f 1 + f 2 + f 3 + f 4 + f 4 + f 5 and from
invariant [inv1]:
m(p1) +m(p2) +m(p3) = ph1 + ph2 + ph3 + ph4 + ph5.
From the definitions of LF (x) and RF (x) we have
LF (x) ̸= RF (x) for all x = ph1, ph2, ph3, ph4, ph5. Hence if
m(p3) ̸= 0 then take right fork can be fired. Similarly if
m(p2) ̸= 0 then take left fork can be fired. If
m(p1) ̸= ph1+ ph2+ ph3+ ph4+ ph5, then either m(p3) ̸= 0
or m(p2) ̸= 0. If m(p1) = ph1 + ph2 + ph3 + ph4 + ph5 then
m(p2) = 0, and from invariant [inv2] |m(p7)| = 4, so
enter dining room can be fired.

Ryszard Janicki Solutions to Some Problems 9/48

’Hungry’ and ‘Asymmetrically Simple Minded’, or ‘Some
Discipline Added’

Philosophers 1, 3 and 5 always perform ‘left.get → right.get’,
while 2 and 4 always perform ‘right.get → left.get’.

FORK = (get → put → FORK)
PHIL = (when(i = 1 ∨ i = 3 ∨ i = 5) think → left.get →

right.get → eat → left.put → right.put → PHIL
| when(i = 2 ∨ i = 4) think → right.get →
left.get → eat → right.put → left.put → PHIL)

∥ DINERS(N = 5) = forall [i : 1..N]
(phil [i] : PHIL ∥ {phil [i].right, phil [i ⊕ 1].left} :: FORK)

Works! Neither deadlock nor starvation.

The Labelled Transition System is very big!

Ryszard Janicki Solutions to Some Problems 10/48

Asymmetrically Simple Minded Philosophers

• Notation: for get ij , put
i
j , i - philosopher number, j - fork number

FORK1 = (get11 → put11 → FORK1 | get51 → put51 → FORK1)
FORK2 = (get22 → put22 → FORK2 | get12 → put12 → FORK2)
FORK3 = (get33 → put33 → FORK3 | get23 → put23 → FORK3)
FORK4 = (get44 → put44 → FORK4 | get34 → put34 → FORK4)
FORK5 = (get55 → put55 → FORK5 | get45 → put45 → FORK5)
PHIL1 = (think1 → get12 → get11 → eat1 → put12 → put11 → PHIL1)
PHIL2 = (think2 → get22 → get23 → eat2 → put22 → put23 → PHIL2)
PHIL3 = (think3 → get34 → get33 → eat3 → put34 → put33 → PHIL3)
PHIL4 = (think4 → get44 → get45 → eat4 → put44 → put45 → PHIL4)
PHIL5 = (think5 → get51 → get55 → eat5 → put51 → put55 → PHIL5)
∥ DINERS = (FORK1 ∥ . . . ∥ FORK5 ∥ PHIL1 ∥ . . . ∥ PHIL5)

Ryszard Janicki Solutions to Some Problems 11/48

Solutions with Petri Nets

Solutions with Elementary Petri Nets.

Now we may transform each individual FSP into an appropriate
Elementary Petri Net. To simplify net solution (and make it more in ‘net
spirit’), we may model ‘think’ and ‘eat’ by places instead of transitions.
For example the nets corresponding to FORK1 and PHIL1 may look as
follows:

13

5.[5] Provide a Petri Nets solution (any kind of nets can be used) to asymmetric Dining

Philosophers discussed in Lecture Notes 9 page 13 (or Chapter 6.2.2 of the textbook).

Solution.

A solution with Elementary Petri Nets is simple but the resulting graph is rather big. We may

start with FSP solution in explicit extended form as the one for ‘Hungry, Simple Minded

Philosophers’ on page 9 of LN9.

Assuming that for philosopher #i the right fork is fork #i and the left fork is fork #(i⊕1) we

have:

Now we may transform each individual FSP into an appropriate Elementary Petri Net. To

simplify net solution (and make it more in ‘net spirit’), we may model ‘think’ and ‘eat’ by places

instead of transitions. For example the nets corresponding to FORK1 and PHIL1 may look as

follows:

Now we just need to compose the nets for FORK1, … , FORK5, PHIL1, …, PHIL5, by gluing

together the same actions. The solution fits one page but barely ☺

Now we just need to compose the nets for FORK1, . . . ,FORK5,
PHIL1, . . . ,PHIL5, by gluing together the same actions. The solution fits
one page but barely.

Ryszard Janicki Solutions to Some Problems 12/48

Solution with Coloured Petri nets

colour PH = with ph1 | ph2 | ph3 | ph4 | ph5
colour Fork = with f1 | f2 | f3 | f4 | f5
FirstF : PH → FORK, SecondF : PH → FORK
FirstFR : PH → FORK, SecondFR : PH → FORK
var x: PH
‘for philosophers 1, 3 and 5, left fork is first, for philosophers 2 and
4, right fork is first’
fun FirstF x = case of ph1 ⇒ f2 | ph2 ⇒ f2 | ph3 ⇒ f4 | ph4 ⇒
f5 | ph5 ⇒ f5
fun SecondF x = case of ph1 ⇒ f1 | ph2 ⇒ f3 | ph3 ⇒ f3 | ph4 ⇒
f3 | ph5 ⇒ f1
fun FirstFR x = case of ph1 ⇒ f2 | ph2 ⇒ f2 | ph3 ⇒ f4 | ph4 ⇒
f5 | ph5 ⇒ f5
fun SecondFR x = case of ph1 ⇒ f1 | ph2 ⇒ f3 | ph3 ⇒ f3 | ph4
⇒ f3 | ph5 ⇒ f1

Ryszard Janicki Solutions to Some Problems 13/48

14

Solutions with Place/Transition Nets are the same as with Elementary Nets, still big.

With Coloured Petri Nets we may get a very simple and elegant solution in the style of the

solution from page 23 of LN9.

colour PH = with ph1 | ph2 | ph3 | ph4 | ph5

colour Fork = with f1 | f2 | f3 | f4 | f5

FirstF : PH → FORK, SecondF : PH → FORK

FirstFR : PH → FORK, SecondFR : PH → FORK

var x: PH

‘for philosophers 1, 3 and 5, left fork is first, for philosophers 2 and 4, right fork is first’

fun FirstF x = case of ph1 ⇒ f2 | ph2 ⇒ f2 | ph3 ⇒ f4 | ph4 ⇒ f5 | ph5 ⇒ f5
fun SecondF x = case of ph1 ⇒ f1 | ph2 ⇒ f3 | ph3 ⇒ f3 | ph4 ⇒ f3 | ph5 ⇒ f1
fun FirstFR x = case of ph1 ⇒ f2 | ph2 ⇒ f2 | ph3 ⇒ f4 | ph4 ⇒ f5 | ph5 ⇒ f5
fun SecondFR x = case of ph1 ⇒ f1 | ph2 ⇒ f3 | ph3 ⇒ f3 | ph4 ⇒ f3 | ph5 ⇒ f1

Ryszard Janicki Solutions to Some Problems 14/48

Model Checking and Temporal Logic

The model checker outputs the answer “yes” if M satisfies Φ
and “no” otherwise; in the latter case, most model checkers
also produce a trace of system behaviour which causes this
failure.

There are many temporal logics, we concentrate on CTL
(Computation Tree Logic) and LTL (Linear Time Logic).

Time could be continuous or discrete, we concentrate on
discrete time.

M is not a description of an actual physical system. Models
are abstractions that omit lots of real features of a physical
systems. We have similar situation in calculus, mechanics,
etc., where we have straight lines, perfect circles, no friction,
etc.

Ryszard Janicki Solutions to Some Problems 15/48

Typical Models of Time

Linear Time: used for Linear Temporal Logic (LTL)

Branching time: used for CTL, CTL∗ logics, etc.

Ryszard Janicki Solutions to Some Problems 16/48

Model

Definition

A model M = (S ,→, L) for CTL is a set of states S endowed
witha transition relation → (a binary relation on S), such that
every s ∈ S has some s ′ ∈ S with s → s ′ and a labeling function
L : S → 2Atoms .

Example

L(s0) = {p, q}, L(s1) = {q, r}, L(s2) = {r}

Ryszard Janicki Solutions to Some Problems 17/48

No deadlock

Definition

“No deadlock” iff for every s ∈ S there is at least one s ′ ∈ S
such that s → s ′.

Example

A system with a deadlock A system without a deadlock, sd is

a “deadlock” state

Ryszard Janicki Solutions to Some Problems 18/48

Examples of CTL Formulas

An upwards traveling elevator at the second floor does not
change its direction when it has passengers wishing to go to
the fifth floor:

AG (floor = 2 ∧ direction = up ∧ ButtonPressed5 ⇒
A[direction = up U floor = 5])

The elevator can remain idle on the third floor with its doors
closed:

AG ((floor = 3 ∧ idle ∧ door = closed) ⇒
EG (floor = 3 ∧ idle ∧ door = closed))

‘floor = 2’, ′direction = up’, ButtonPressed5’,
’door = closed ’, etc. are names of atomic formulas.

Ryszard Janicki Solutions to Some Problems 19/48

Semantics: Illustrations

EFΦ EGΦ AGΦ AFΦ

s0•−−s1•−−s2•−−s3•−−s4•−−s5•−−s6•−−s7•−−s8•︸ ︷︷ ︸
Φ

−−s9•
Ψ
−−s10•−−· · ·

each of the states from s3 to s9 satisfies Φ U Ψ

If the given set of states is finite, then we may compute the
set of all states satisfying Φ.

If M is obvious, we will write s |= Φ.

Ryszard Janicki Solutions to Some Problems 20/48

Typical Models of Time

Linear Time: used for Linear Temporal Logic (LTL)

Branching time: used for CTL, CTL∗ logics, etc.

Ryszard Janicki Solutions to Some Problems 21/48

LTL Syntax

Φ ::= ⊥ | ⊤ | p | (¬Φ) | (Φ ∧ Φ) | (Φ ∨ Φ) | (Φ ⇒ Φ) |
(GΦ) | (FΦ) | (XΦ) | (Φ U Φ) | (Φ W Φ) | (Φ R Φ)

where p ranges over atomic formulas/descriptions.

⊥ - false, ⊤ - true
GΦ,FΦ,XΦ,Φ U Φ,Φ W Φ,Φ R Φ are temporal
connections.
X means “neXt moment in time”
F means “some Future moments”
G means “all future moments (Globally)”
U means “Until”
W means “Weak-until”
R means “Release”
An LTL formula is evaluated on a path, or a set of paths.
A set of paths satisfies Φ if every path in the set satisfies Φ.

Consider the path π
df
= s1 → s2 →

We write πi for the suffix starting at si , i.e. π
i is

si → si+1 → si+2 →

Ryszard Janicki Solutions to Some Problems 22/48

Practical Patterns of LTL Specifications (1)

What kind of practically relevant properties can we check with
formulas of LTL?
Suppose atomic descriptions include some words as busy,
requested, ready, etc.

It is impossible to get a state where started holds but ready
does not hold:

G¬(started ∧ ¬ready)
For any state, if a request (of some resource) occurs, then it
will eventually be acknowledged:

G (requested ⇒ F acknowledged)

A certain process is enabled infinitely often on every
computation path:

GF enabled

On all path, a certain process will eventually be permanently
deadlocked:

FG deadlock

Ryszard Janicki Solutions to Some Problems 23/48

Impossible LTL Specifications

There are some things which are not possible to say in LTL,
however. One big class of such things are statements which assert
the existence of a path, such as these ones:

For any state it is possible to get a restart state (i.e., there is
a path from all states to a state satisfying restart).

The lift can remain idle on the third floor with its doors closed
(i.e., from the state in which it is on the third floor, there is a
path along it stays there).

LTL cannot express these because it cannot directly assert the
existence of path. CTL has operators for quantifying over paths,
and can express these properties.

Ryszard Janicki Solutions to Some Problems 24/48

CTL vs LTL

It is possible to get a state where started holds but ready does
not hold:
CTL: EF (started ∧ ¬ready)
LTL: G¬(started ∧ ¬ready)
For any state, if a request (of some resource) occurs, then it
will eventually be acknowledged:
CTL: AG (requested ⇒ AF acknowledged)
LTL: G (requested ⇒ F acknowledged)

A certain process is enabled infinitely often on every
computation path:
CTL: AG (AF enabled)
LTL: GF enabled

Whatever happens, a certain process will eventually be
permanently deadlocked:
CTL: AF (AG deadlock)
LTL: FG deadlock

Ryszard Janicki Solutions to Some Problems 25/48

CTL∗ Logic

It allows nested modalities and boolean connectives before
applying the path quantifiers E and A.

A[(p U r) ∨ (q U r)]: along all paths, either p is true until r ,
or q is true until r .
̸≡ A[(p ∨ q) U r]
It can be expressed in CTL, but it is not easy.

A[X p ∨X X p]: along all paths, p is true in the next state, or
the next but one.
̸≡ AX p ∨ AXAX p
It cannot be expressed in CTL.

E [GF p]: there is a path along which p is infinitely often true.
̸≡ EGEF p
It cannot be expressed in CTL.

Ryszard Janicki Solutions to Some Problems 26/48

CTL∗ Syntax

The syntax of CTL∗ involves two classes of formulas:

state formulas, which are evaluated in states:

Φ ::= ⊥ | ⊤ | p | (¬Φ) | (Φ∧Φ) | (Φ∨Φ) | (Φ ⇒ Φ) | A[α] | E [α]

where p is any atomic formula and α is any path formula.

path formulas, which are evaluated along paths:

α ::= Φ | (¬α) | (α ∧ α) | (α ∨ α) | (α ⇒ α) |
(α U α) | (G α) | (F α) | (X α)

where Φ is any state formula.

Ryszard Janicki Solutions to Some Problems 27/48

LTL, CTL vs CTL∗

LTL is a subset of CTL∗.
Although the syntax of LTL does not include A, E , the
semantic viewpoint of LTL is that we consider all path.
Therefore, the LTL formula α is equivalent to the CTL∗

formula A[α].

CTL is a subset of CTL∗.
CTL is a fragment of CTL∗ in which we restrict the form of
path formulas to:

α ::= (Φ U Φ) | (G Φ) | (F Φ) | (X Φ)

Ryszard Janicki Solutions to Some Problems 28/48

LTL, CTL vs CTL∗

Ryszard Janicki Solutions to Some Problems 29/48

Problem: Express in LTL and CTL: ‘Whenever p is followed by q
(after some finite amount of steps), then the system enters an
‘interval’ in which no r occurs until t’.

Solution:

The process of translating informal requirements into formal
specifications is subject to various pitfalls.

One of them is simply ambiguity.

For example it is unclear whether “after some finite steps”
means “at least one, but finitely many”, or whether zero steps
are allowed as well.

It may also be debatable what “then” exactly means in “...
then the system enters...”.

We chose to solve this problem for the case when zero steps
are not admissible, mostly since “followed b” suggest a real
state transition to tale place.

Ryszard Janicki Solutions to Some Problems 30/48

Problem: Express in LTL and CTL: ‘Whenever p is followed by q
(after some finite amount of steps), then the system enters an
‘interval’ in which no r occurs until t’.

Solution (continued):
The LTL formula is the following

G (p =⇒ XG (¬q ∨ ¬rUt)),

while an equivalent CTL formula is:

AG (p =⇒ AXAG (¬q ∨ A¬rUt])).

It says: At any state, if p is true, then at any state which one can
reach with at least one state transition from here, either q is false,
or r is false until t becomes true (for all continuations of the
computation path).
This is evidently the property we intended to model.
Various other “equivalent” solutions can be given.

Ryszard Janicki Solutions to Some Problems 31/48

Problem: Express in LTL and CTL: ‘Between the events q and r ,
p is never true’

Solution:

Ambiguities: Is the case when r or q never happens allowed?

We assume that it is not.

What exactly “between” means?

We assume “between” is “closed interval” so p is false in the
state that holds q and in the state that holds r .

LTL: G (Fq ∧ Fr ∧ (¬q ∨ (¬pUr))

CTL: AG (AFq ∧ AFr) ∧ AG (q =⇒ A(¬pUr))

Ryszard Janicki Solutions to Some Problems 32/48

Problem: Consider the CTL formula
AG (p =⇒ AF (s ∧ AX (AF t))).

Explain what exactly it expresses in terms of the order of
occurrences of events p, s and t.

Solution:

For every history, if p occurs then p may occur simultaneously
with s (as “future includes present”) or s occurs after p, and
t always occurs after p.

If p does not occur in a history, then any order between s and
t is allowed.

Ryszard Janicki Solutions to Some Problems 33/48

Problem: Which of the following pairs of CTL formulas are
equivalent? Prove either case.

(a) EF Φ and EG Φ

(b) EF Φ ∨ EF Ψ and EF (Φ ∨Ψ)

(c) AF Φ ∨ AF Ψ and AF (Φ ∨Ψ)

For non-equivalence, we need to show a counterexample.

Ryszard Janicki Solutions to Some Problems 34/48

Problem (a): EF Φ ̸≡ EG Φ.

Consider the below model:

We have s0 |= EF r since L(s1) = {r}, but
s0 ̸|= EG r since r /∈ L(s0) ∧ r /∈ L(s1).

Ryszard Janicki Solutions to Some Problems 35/48

Problem (b): We have s |= EF Φ ∨ EF Ψ iff s |= EF (Φ ∨Ψ).

Proof:
(⇒) First assume that s |= EF Φ ∨ EF Ψ.
Then, without loss of generality, we may assume that s |= EF Φ
(the other case is shown in the same manner).
This means that there is a future state sn, reachable from s, such
that sn |= Φ. But then sn |= Φ ∨Ψ follows.
But this means that there is a state reachable form s which
satisfies Φ ∨Ψ.
Thus s |= EF (Φ ∨Ψ).

(⇐) Assume s |= EF (Φ ∨Ψ).
Then there exists a state sm, reachable from s, such that
sm |= Φ ∨ Psi .
Without loss of generality, we may assume that sm |= Φ.
But then we can conclude that s |= EFΦ, as sm is reachable from
s.
Therefore, we also have s |= EF Φ ∨ EF Ψ.

Ryszard Janicki Solutions to Some Problems 36/48

Problem (c): While we have that s |= (AF Φ ∨ AF Ψ implies
s |= AF (Φ ∨Ψ) the converse is not true.

Proof:
Consider the model:

Clearly i |= AF (p ∨ q) since L(s) ∩ {p, q} ≠ ∅ and
L(t) ∩ {p, q} ≠ ∅.
But i ̸|= AF p, see the path i → t → t → t → . . ., and
i ̸|= AF q, see the path i → s → s → s →

Ryszard Janicki Solutions to Some Problems 37/48

Problem: Use the definition of |= to explain why s |= AG AF Φ
means “Φ is true infinitely often along every paths starting at s ”.

Solution:

s |= AG AF Φ means that for every s ′ reachable from s, i.e.
s →∗ s ′, we have s ′ |= AF Φ.

s ′ |= AF Φ means that for each path starting from s ′, there
exists s ′′ reachable from s ′, i.e. s ′ →∗ s ′′ such that s ′′ |= Φ.

For a given path πs starting from s, let nextπs
Φ (s) be the state

sΦ such that sΦ |= Φ and n such that s →n sΦ is minimal, i.e.
the distance between s and nextπs

Φ (s) is minimal.

In general nextπs
Φ (s) may not exists, but is that case for each

s ′ such that s →∗ s ′, for next
πs′
Φ (s ′) always does exist.

Define s1 = nextπs
Φ (s), s2 = next

πs1
Φ (s1), s

3 = next
πs2
Φ (s2), . . .

Such a sequence always exists no matter which path πsi we
chose and this sequence is always infinite.

Ryszard Janicki Solutions to Some Problems 38/48

Problem: The meaning of temporal operators AU, EU, AG ,
EG ,AF , and EF was defined to be such that “the future includes
the present”. For example, EF p is true for a state if p is true for
that state already. Often one would like corresponding operators
such the “the future excludes the present”. For instance newAG Φ
could be defined as AX (AG Φ).
Define newEG , newAF , newAU, newEU.
Solutions:

newEG Φ : EX (AG Φ)
newAF Φ : AX (AF Φ)

As for the U connective, we basically want to maintain the
nature of the Φ1 U Φ2 pattern, but what changes is that we
ban the extreme case of having Φ2 at the first state.

Thus we have to make sure that Φ1 is true in the current
state and conjoin this with the shifted AU, respectively EU
operators.

newAU : Φ1 ∧ AX (A[Φ1 U Φ2])
newEU : Φ1 ∧ EX (E [Φ1 U Φ2])

Ryszard Janicki Solutions to Some Problems 39/48

Problem: Sometimes, in formal logic, we are forced to prove
things that intuitively look obvious.
Show that a CTL formula Φ is true on infinitely many states of a
computation path s0 → s1 → s2 → . . . iff for all n ≥ 0 there is
some m ≥ n such that sm |= Φ.

Solution:
(⇒) Let Φ is true on infinitely many states of a computation
path s0 → s1 → s2 → Suppose that the negation of our claim
is true. This means that there exists some n ≥ 0 such that for all
m > n we have s ̸|= Φ. But then Φ could only be true on finitely
many states of that path, namely at most at the states
s0, s1, s2, . . . sn−1.
(⇐) Suppose that for every n ≥ 0, there is some m > n with
sm |= Φ. Assume that Φ is only true at finitely many states of that
path. The there has to be a maximal number n0 such that no sm
with m > n0 satisfies Φ. But this is a contradiction to the
assumption “for all n ≥ 0”, so in particular n0.

Ryszard Janicki Solutions to Some Problems 40/48

Problem: Show that the following CTL∗ formulas are not
equivalent: A[X p ∨ XX p] and AX p ∨ AX AX p.

Solution.
One can show that A[X p ∨ XX p] implies AX p ∨ AX AX p
(standard proof, I will omit).
Consider the model:

s |= A[X p ∨ XX p] since every path has to turn left, i.e. X p, or
right. i.e. XX p.
s ̸|= AX p (right turn), see the path s → s2 → s3 → . . .
s ̸|= AXAX p (left turn), see the path s → s1 → s → s2 → . . .

Ryszard Janicki Solutions to Some Problems 41/48

Problem: Invent CTL formulas equivalent for the following CTL∗

formulas

(a) E [F p ∧ (q U r)]

(b) A[F p =⇒ F q]

Solutions:

(a) E [F p ∧ (q U r)] is equivalent to
E [q U (p ∧ E [q U r])] ∨ [q U (r ∧ EF p)].

(b) A[F p =⇒ F q] is equivalent to ¬E [F p ∧ G¬q],
which we can write as ¬E [¬q U (p∧EG ¬q], which is in CTL.

Ryszard Janicki Solutions to Some Problems 42/48

Dining Philosophers
Five philosophers sit around a circular table. Each philosopher
spends his life alternately thinking and eating. To eat, a philosopher
needs two forks, but unfortunately there are only five forks on the
circulr table and each philosopher is only allowed to use the two
forks nearest to him.

Ryszard Janicki Solutions to Some Problems 43/48

Finite Automata vs Kripke Structures

For Finite Automata, transitions are actions, while states do
not have standard interpretations.

For Kripke Structures, transitions are just changes of states:

Orthogonal interpretations!
Ryszard Janicki Solutions to Some Problems 44/48

Petri Nets with All Actions in Places

Example 1
read

write

idle

write

read

idle

Add a lock to ensure mutual exclusion
22

25

Reachability graphs for Petri nets with actions in places
correspond intuitively to Kripke structures!

Ryszard Janicki Solutions to Some Problems 45/48

Kripke Structure for Dining Philosophers

Atomic Predicates(for various cases):
PhiT - philosopher i is thinking
PhiFj - philosopher i has fork j
PhiF{j,k} - philosopher i has forks j and k
PhiE - philosopher i is eating
PhiTD - philosopher i has a ticket to dining room
PhiD - philosopher i is in dining room
Fi - fork i is free
Tici - i tickets remain
tici - ticket number i not taken
. . .

Some properties of atomic predicates.
PhiF{j,k} = PhiF{k,j} for all j , k, and always j ̸= k.
For standard version PhiFj implies i = j ∨ j = i + 1 mod 5.

For standard version PhiF{j,k} implies i = j ∧ k = i + 1 mod 5.

For each state s, if PhiFj ∈ L(s) and Fk ∈ L(s) then j ̸= k.
For each state s, if PhiFj ∈ L(s) and PhkFl ∈ L(s) then
i ̸= k ∧ j ̸= l .
. . .

Ryszard Janicki Solutions to Some Problems 46/48

States(for Model Checking the states are global)
If s0 is the initial state than
L(s0) = {Ph1T ,Ph2T ,Ph3T ,Ph4T ,Ph5T ,F1,F2,F3,F4,F5}.
For ‘deadlock’ state sd ,
L(sd) = {Ph1F1,Ph2F2,Ph3F3,Ph4F4,Ph5F5}
A legal state s with 2 philosophers eating and 3 philosophers
thinking, L(s) = {Ph1E ,Ph3E ,Ph2T ,Ph4T ,Ph5T ,F5}
. . .

States are standardly defined by their labels, i.e. atomic
predicates that hold in them.

Extra atomic control predicates may be added, as turn0, turn1
for mutual exclusion solution.

States that are ‘impossible’ as s with
L(s) = {Ph1E ,Ph3E ,Ph2T ,Ph4T ,Ph5T ,F4,F5} are
allowed, and often useful!

Ryszard Janicki Solutions to Some Problems 47/48

Transitions
For example s0 → s1, when
L(s0) = {Ph1T ,Ph2T ,Ph3T ,Ph4T ,Ph5T ,F1,F2,F3,F4,F5}
and
L(s1) = {Ph1F1,Ph2T ,Ph3T ,Ph4T ,Ph5T ,F2,F3,F4,F5}

For example s0 → s1, when s0 as above and
L(s1) = {Ph1F12,Ph2T ,Ph3T ,Ph4T ,Ph5T ,F3,F4,F5}, for a
version with simultaneous pick up of two forks.

We need some simple programming language to represent
states and transitions, so we can program an appropriate
Kripke structure.

Ryszard Janicki Solutions to Some Problems 48/48

