Labeling, Hiding, Structure Diagrams

CS 25D3

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton,
Ontario, Canada

Ryszard Janicki Labeling, Hiding, Structure Diagrams 1/11

Process Instances and Labeling

@ a: P prefixes each action label in the alphabet of P with a
@ Two instances of a switch process:

SWITCH = on — off — SWITCH
| TWO_SWITCH = a: SWITCH || b: SWITCH

a.on b.on
a:SWITCH@) b:SWITCH@
a.off b.off

@ An array of instances of the switch process:
|| SWITCHES(N = 3) = (forall[i : 1..N]s[i] : SWITCH)
| SWITCHES(N = 3) = (s[i : 1..N] : SWITCH)

Ryszard Janicki Labeling, Hiding, Structure Diagrams 2/11

Action Relabeling
o Relabeling functions are applied to processes to change the names

of action labels. The general form of the relabeling function is:
/{newlabel, /oldlabel, . .., newlabel,/oldlabel,}.

@ Relabeling is used to ensure that composed processes synchronize
on particular actions.

CLIENT = call — wait — continue — CLIENT
SERVER = request — service — reply — SERVER

| CLIENT _SERVER = (CLIENT || SERVER)/{call | request, reply / wait}
4

CLIENT = call — reply — continue — CLIENT
SERVER = call — service — reply — SERVER

call reply call service

CLIEENT : j SERVER t :

continue reply

CLEENT SERVER call service reply

continue

Ryszard Janicki Labeling, Hiding, Structure Diagrams 3/11

Process labeling by a set of prefix labels

e {al,...,ax} :: P replaces every action label n in the alphabet
of P with the labels al.n, ... ax.n. Thus, every transition
(n — X) in the definition of P is replaced with the transitions
({al.n,..., ax.n} — X).
)
(al.n— X |a2.n— X |... | ax.n = X)

@ Process prefixing is useful for modeling shared resources:
RESOURCE = acquire — release — RESOURCE
USER = acquire — use — release — USER

| RESOURCE _SHARE = a: USER || b : USER || {a, b} :: RESOURCE

Ryszard Janicki Labeling, Hiding, Structure Diagrams 4/11

Process prefix labels for shared resources

RESOURCE = acquire — release — RESOURCE

USER = acquire — use — release — USER
| RESOURCE _SHARE = a: USER || b : USER || {a, b} :: RESOURCE

a.acquire ause b.acquire b.use
a:USER@a b:USER i j
arelease
b.release b.acquire
How does the model ensure a.acquire

that the user that acquires {ab}zRESOURCE
the resource is the one to)
release it? aavaure
a.release

b.release

RESOURCE_SHARE Can this be

achieved using
relabelling
rather than
sharing? How?

arelease

Ryszard Janicki Labeling, Hiding, Structure Diagrams 5/11

Action relabeling - prefix labels

An alternative formulation of the client server system is described
below using qualified or prefixed labels:

SERVERvV2 = (accept.request

->service->accept.reply->SERVERvV2) .
CLIENTv2 = (call.request

->call.reply->continue->CLIENTv2) .

| ICLIENT SERVERv2 = (CLIENTv2 || SERVERv2)
/{call/accept}.

Ryszard Janicki Labeling, Hiding, Structure Diagrams 6/11

Actlon Hldlng

removes the action names al...ax from the alphabet of P and
makes these concealed actions “silent’. These silent actions are
labeled 7. Silent actions in different processes are not shared.
@ Sometimes it is more convenient to specify the set of labels to be
exposed:
When applied to a process P, the interface operator
©{al...ax} hides all actions in the alphabet of P not labeled
in the set {al...ax}.

USER = (acquire — use — release — USER) \ {use}

)
USER = (acquire — use — release — USER)©@{acquire, release}

acquire
aoqwre

release release
@ The above <= follows form the standard procedure of removing
e-moves (A/7-moves) in automata theory. This is NOT
minimization as the textbook claims!

Ryszard Janicki Labeling, Hiding, Structure Diagrams 7/11

Structure Diagrams - Systems as Interacting Processes

Foa Process P with
alphabet {a,b}.
P a0 0b Q N
. .. Parallel Composition
<o x K (P||Q) / {m/a,m/b,c/d}

Composite process
;% P H Q %L 15 = PIQ) @ {xy}

Ryszard Janicki Labeling, Hiding, Structure Diagrams 8/11

Structure Diagrams

@ We use structure diagrams to capture the structure of a
model expressed by the static combinators: parallel
composition, relabeling and hiding.
rangeT =0..3
BUFF = (in[i : T] — out[i] — BUFF)
| TWOBUFF = ((a: BUFF || b : BUFF)/{a.out/b.in})®{in, out}

TWOBUFF

: a:BUFF b:BUFF
in a.out out

(}_(:)in outO———0 in out ()_c>

Ryszard Janicki Labeling, Hiding, Structure Diagrams 9/11

Structure Diagrams

Structure diagram for CLIENT SERVER

CLIENT call O request SERVER

continue wait O O reply service

Structure diagram for CLIENT SERVERv2

CLIENTV2 call call accept SERVERV2

continue service

Ryszard Janicki Labeling, Hiding, Structure Diagrams 10/11

Structure Diagrams - Resource Sharing

PRINTER_SHARE

printer Q
printer:
RESOURCE

Oacquire

b:USER release

printer O

RESOURCE = (acquire->release->RESOURCE) .
USER = (printer.acquire->use

->printer.release->USER) \ {use}.
| |IPRINTER SHARE
= (a:USER| |b:USER| | {a,b}: :printer:RESOURCE) .
{a, b} :: printer : RESOURCE =
(a.printer.acquire — a.printer.release — RESOURCE
| b.printer.acquire — b.printer.release — RESOURCE)

Ryszard Janicki

Labeling, Hiding, Structure Diagrams

