
Labeling, Hiding, Structure Diagrams
CS 2SD3

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton,
Ontario, Canada

Ryszard Janicki Labeling, Hiding, Structure Diagrams 1/11

Process Instances and Labeling

a : P prefixes each action label in the alphabet of P with a

Two instances of a switch process:

SWITCH = on → off → SWITCH
∥ TWO SWITCH = a : SWITCH ∥ b : SWITCH

2015 Concurrency: concurrent execution
14

©Magee/Kramer 2nd Edition

process instances and labelling

a:P creates an instance of process P and prefixes each action
label in the alphabet of P with a.

SWITCH = (on->off->SWITCH).

||TWO_SWITCH = (a:SWITCH || b:SWITCH).

Two instances of a switch process:

||SWITCHES(N=3) = (forall[i:1..N] s[i]:SWITCH).
||SWITCHES(N=3) = (s[i:1..N]:SWITCH).

An array of instances of the switch process:

a:SWITCH
a.on

a.off

0 1
b:SWITCH

b.on

b.off

0 1

An array of instances of the switch process:

∥ SWITCHES(N = 3) = (forall [i : 1..N]s[i] : SWITCH)
∥ SWITCHES(N = 3) = (s[i : 1..N] : SWITCH)

Ryszard Janicki Labeling, Hiding, Structure Diagrams 2/11

Action Relabeling
Relabeling functions are applied to processes to change the names
of action labels. The general form of the relabeling function is:

/{newlabel1/oldlabel1, . . . , newlabeln/oldlabeln}.
Relabeling is used to ensure that composed processes synchronize
on particular actions.

CLIENT = call → wait → continue → CLIENT
SERVER = request → service → reply → SERVER

∥ CLIENT SERVER = (CLIENT ∥ SERVER)/{call/request, reply/wait}

⇓
CLIENT = call → reply → continue → CLIENT
SERVER = call → service → reply → SERVER

2015 Concurrency: concurrent execution
16

©Magee/Kramer 2nd Edition

action relabelling

||CLIENT_SERVER = (CLIENT || SERVER)
 /{call/request, reply/wait}.

CLIENT
call reply

continue

0 1 2
SERVER

call service

reply

0 1 2

CLIENT_SERVER call service reply

continue

0 1 2 3

Ryszard Janicki Labeling, Hiding, Structure Diagrams 3/11

Process labeling by a set of prefix labels

{a1, . . . , ax} :: P replaces every action label n in the alphabet
of P with the labels a1.n, . . . , ax .n. Thus, every transition
(n → X) in the definition of P is replaced with the transitions
({a1.n, . . . , ax .n} → X).

⇕
(a1.n → X | a2.n → X | . . . | ax .n → X)

Process prefixing is useful for modeling shared resources:

RESOURCE = acquire → release → RESOURCE
USER = acquire → use → release → USER

∥ RESOURCE SHARE = a : USER ∥ b : USER ∥ {a, b} :: RESOURCE

Ryszard Janicki Labeling, Hiding, Structure Diagrams 4/11

Process prefix labels for shared resources

RESOURCE = acquire → release → RESOURCE
USER = acquire → use → release → USER
∥ RESOURCE SHARE = a : USER ∥ b : USER ∥ {a, b} :: RESOURCE

2015 Concurrency: concurrent execution
18

©Magee/Kramer 2nd Edition

process prefix labels for shared resources

How does the model ensure
that the user that acquires
the resource is the one to
release it?

a:USER
a.acquire a.use

a.release

0 1 2
b:USER

b.acquire b.use

b.release

0 1 2

{a,b}::RESOURCE
a.acquire
b.acquire

a.release
b.release

0 1

RESOURCE_SHARE

a.acquire

b.acquire b.use

b.release

a.use

a.release

0 1 2 3 4 Can this be
achieved using
relabelling
rather than
sharing? How?

Ryszard Janicki Labeling, Hiding, Structure Diagrams 5/11

Action relabeling - prefix labels

2015 Concurrency: concurrent execution
19

©Magee/Kramer 2nd Edition

action relabelling - prefix labels

SERVERv2 = (accept.request
 ->service->accept.reply->SERVERv2).
CLIENTv2 = (call.request
 ->call.reply->continue->CLIENTv2).

||CLIENT_SERVERv2 = (CLIENTv2 || SERVERv2)
 /{call/accept}.

An alternative formulation of the client server system is described
below using qualified or prefixed labels:

Ryszard Janicki Labeling, Hiding, Structure Diagrams 6/11

Action Hiding
When applied to a process P, the hiding operator \{a1 . . . ax}
removes the action names a1 . . . ax from the alphabet of P and
makes these concealed actions “silent”. These silent actions are
labeled τ . Silent actions in different processes are not shared.
Sometimes it is more convenient to specify the set of labels to be
exposed:

When applied to a process P, the interface operator
@{a1 . . . ax} hides all actions in the alphabet of P not labeled
in the set {a1 . . . ax}.

USER = (acquire → use → release → USER) \ {use}
⇕

USER = (acquire → use → release → USER)@{acquire, release}

2015 Concurrency: concurrent execution
21

©Magee/Kramer 2nd Edition

action hiding

USER = (acquire->use->release->USER)
 \{use}.

USER = (acquire->use->release->USER)

 @{acquire,release}.

The following definitions are equivalent:

acquire tau

release

0 1 2

Minimization removes hidden
tau actions to produce an LTS
with equivalent observable
behaviour.

acquire

release

0 1
2015 Concurrency: concurrent execution

21
©Magee/Kramer 2nd Edition

action hiding

USER = (acquire->use->release->USER)
 \{use}.

USER = (acquire->use->release->USER)

 @{acquire,release}.

The following definitions are equivalent:

acquire tau

release

0 1 2

Minimization removes hidden
tau actions to produce an LTS
with equivalent observable
behaviour.

acquire

release

0 1

The above ⇐⇒ follows form the standard procedure of removing
ε-moves (λ/τ -moves) in automata theory. This is NOT
minimization as the textbook claims!

⇐⇒

Ryszard Janicki Labeling, Hiding, Structure Diagrams 7/11

Structure Diagrams - Systems as Interacting Processes

2015 Concurrency: concurrent execution
22

©Magee/Kramer 2nd Edition

structure diagrams – systems as interacting processes

P a
b

Process P with
alphabet {a,b}.

P a b Q m
Parallel Composition
(P||Q) / {m/a,m/b,c/d}

P Q a

c d c
x x x

S
y x

Composite process
||S = (P||Q) @ {x,y}

Ryszard Janicki Labeling, Hiding, Structure Diagrams 8/11

Structure Diagrams

We use structure diagrams to capture the structure of a
model expressed by the static combinators: parallel
composition, relabeling and hiding.

rangeT = 0..3

BUFF = (in[i : T] → out[i] → BUFF)

∥ TWOBUFF = ((a : BUFF ∥ b : BUFF)/{a.out/b.in})@{in, out}

2015 Concurrency: concurrent execution
23

©Magee/Kramer 2nd Edition

structure diagrams

We use structure diagrams to capture the structure of a model
expressed by the static combinators: parallel composition,
relabeling and hiding.

range T = 0..3
BUFF = (in[i:T]->out[i]->BUFF).

||TWOBUF = ?

a:BUFF b:BUFF a.out

TWOBUFF

out in
in out in out

Ryszard Janicki Labeling, Hiding, Structure Diagrams 9/11

Structure Diagrams

2015 Concurrency: concurrent execution
24

©Magee/Kramer 2nd Edition

structure diagrams

Structure diagram for CLIENT_SERVER

Structure diagram for CLIENT_SERVERv2

CLIENTv2 call accept SERVERv2 call

service continue

CLIENT call request SERVER call

reply wait reply service continue

Ryszard Janicki Labeling, Hiding, Structure Diagrams 10/11

Structure Diagrams - Resource Sharing

2015 Concurrency: concurrent execution
25

©Magee/Kramer 2nd Edition

structure diagrams - resource sharing

a:USER
printer

b:USER
printer

printer:
RESOURCE

acquire
release

PRINTER_SHARE

RESOURCE = (acquire->release->RESOURCE).
USER = (printer.acquire->use
 ->printer.release->USER)\{use}.

||PRINTER_SHARE
 = (a:USER||b:USER||{a,b}::printer:RESOURCE).

{a, b} :: printer : RESOURCE =
(a.printer .acquire → a.printer .release → RESOURCE
| b.printer .acquire → b.printer .release → RESOURCE)

Ryszard Janicki Labeling, Hiding, Structure Diagrams 11/11

