
Shared Objects and Mutual Exclusion
CS 2SD3

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton,
Ontario, Canada

Ryszard Janicki Shared Objects and Mutual Exclusion 1/16

Shared Objects & Mutual Exclusion

2015 Concurrency: shared objects & mutual exclusion
2

©Magee/Kramer 2nd Edition

Shared Objects & Mutual Exclusion

Concepts: process interference.
 mutual exclusion and locks.

Models: model checking for interference
modelling mutual exclusion

Practice: thread interference in shared Java objects
mutual exclusion in Java
(synchronized objects/methods).

Ryszard Janicki Shared Objects and Mutual Exclusion 2/16

Ornamental garden problem:

People enter an ornamental garden through either of two
turnstiles. Management wish to know how many are in the
garden at any time.

2015 Concurrency: shared objects & mutual exclusion
7

©Magee/Kramer 2nd Edition

4.1 Interference

Garden

West
Turnstile

East
Turnstile

people

People enter an ornamental garden through either of two
turnstiles. Management wish to know how many are in the garden
at any time.

The concurrent program consists of two concurrent threads and a
shared counter object.

Ornamental garden problem:

Suppose that movement of people is modeled by two
concurrent processes and a ‘shared’ counter.

Ryszard Janicki Shared Objects and Mutual Exclusion 3/16

First Solution to The Garden Problem

Simplification: Nobody leaves the garden

Technique: Busy Waiting

We have to implement counting!

Structure Diagram of Ornamental Garden:

2015 Concurrency: shared objects & mutual exclusion
14

©Magee/Kramer 2nd Edition

ornamental garden Model

Process VAR models read and write access to the shared counter
value.

Increment is modeled inside TURNSTILE since Java method
activations are not atomic i.e. thread objects east and west may
interleave their read and write actions.

value:VAR
display

write

GARDEN

west:
TURNSTILE

value
end
go

arrive

east:
TURNSTILE

value
end
go

arrive

go
end

read

Ryszard Janicki Shared Objects and Mutual Exclusion 4/16

2015 Concurrency: shared objects & mutual exclusion
15

©Magee/Kramer 2nd Edition

ornamental garden model

const N = 4
range T = 0..N
set VarAlpha = { value.{read[T],write[T]} }

VAR = VAR[0],
VAR[u:T] = (read[u] ->VAR[u]
 |write[v:T]->VAR[v]).

TURNSTILE = (go -> RUN),
RUN = (arrive-> INCREMENT
 |end -> TURNSTILE),
INCREMENT = (value.read[x:T]
 -> value.write[x+1]->RUN
)+VarAlpha.

||GARDEN = (east:TURNSTILE || west:TURNSTILE
 || { east,west,display}::value:VAR)
 /{ go /{ east,west} .go,
 end/{ east,west} .end} .

The alphabet of shared
process VAR is declared
explicitly as a set
constant, VarAlpha.

The TURNSTILE
alphabet is extended
with VarAlpha to
ensure no unintended
free (autonomous)
actions in VAR such as
value.write[0].

All actions in the
shared VAR must be
controlled (shared) by
a TURNSTILE.

go/{east,west}.go means east.go and west.go are the same as
action go.

go/{east,west}.end means east.end and west.end are the same
action as end .

but east.arrive and west.arrive are distinct!
Ryszard Janicki Shared Objects and Mutual Exclusion 5/16

{east,west, display} :: value : VAR implies:

value : VAR = value : VAR[0]
value : VAR[u : T] = (value.read [u] → value : VAR[u] |

value.write[v : T] → value : VAR[c]) =
(east.value.read [u] → value : VAR[u] |
west.value.read [u] → value : VAR[u] |
display .value.read [u] → value : VAR[u] |
east.value.write[v : T] → value : VAR[v] |
west.value.write[v : T] → value : VAR[v] |
display .value.write[v : T] → value : VAR[v])

Ryszard Janicki Shared Objects and Mutual Exclusion 6/16

Consider a trace:

go → east.arrive → east.value.read [0] → west.arrive →
west.value.read [0] → east.value.write[1] → west.value.write[1] →
end → display .value.read [1]

We have two people in the garden but the counter displays
number 1!

west.value.read [0] was executed before east.value.write[1], so
VAR did not update storage!

The trace below is OK.

go → east.arrive → east.value.read [0] → east.value.write[1] →
west.arrive → west.value.read [1] → west.value.write[2] → end →
display .value.read [2]

Ryszard Janicki Shared Objects and Mutual Exclusion 7/16

How can we find such errors?

Exhoustive checking, a kind of model checking, software
support needed

TEST: a process which summs the arrivals and checks
against the display value

2015 Concurrency: shared objects & mutual exclusion
17

©Magee/Kramer 2nd Edition

checking for errors - exhaustive analysis

TEST = TEST[0],
TEST[v:T] =
 (when (v<N){east.arrive,west.arrive}->TEST[v+1]
 |end->CHECK[v]
),
CHECK[v:T] =
 (display.value.read[u:T] ->
 (when (u==v) right -> TEST[v]
 |when (u!=v) wrong -> ERROR
)
)+{display.VarAlpha}.

Exhaustive checking - compose the model with a TEST process which
sums the arrivals and checks against the display value:

Like STOP, ERROR
is a predefined FSP
local process (state),
numbered -1 in the
equivalent LTS.

∥ TESTGARDEN = (GARDEN ∥ TEST)

LTSA will produce the red trace form page 7 followed by
‘wrong’

Ryszard Janicki Shared Objects and Mutual Exclusion 8/16

Interference and Mutual Exclusion

Destructive update, caused by the arbitrary interleaving of
read and write type actions, is termed INTERFERENCE.

Interference bugs are extremely difficult to locate.

The general solution is to use MUTUAL EXCLUSION.

Ryszard Janicki Shared Objects and Mutual Exclusion 9/16

Modeling Mutual Exclusion
To add locking to our model, define a LOCK, compose it with
the shared VAR in the garden, and modify the alphabet set :

2015 Concurrency: shared objects & mutual exclusion
23

©Magee/Kramer 2nd Edition

To add locking to our model, define a LOCK, compose it with the
shared VAR in the garden, and modify the alphabet set :

4.3 Modeling mutual exclusion

LOCK = (acquire->release->LOCK).
||LOCKVAR = (LOCK || VAR).

set VarAlpha = {value.{read[T],write[T],
 acquire, release}}

TURNSTILE = (go -> RUN),
RUN = (arrive-> INCREMENT
 |end -> TURNSTILE),
INCREMENT = (value.acquire
 -> value.read[x:T]->value.write[x+1]
 -> value.release->RUN
)+VarAlpha.

Modify TURNSTILE to acquire and release the lock:Modify TURNSTILE to acquire and release the lock:

2015 Concurrency: shared objects & mutual exclusion
23

©Magee/Kramer 2nd Edition

To add locking to our model, define a LOCK, compose it with the
shared VAR in the garden, and modify the alphabet set :

4.3 Modeling mutual exclusion

LOCK = (acquire->release->LOCK).
||LOCKVAR = (LOCK || VAR).

set VarAlpha = {value.{read[T],write[T],
 acquire, release}}

TURNSTILE = (go -> RUN),
RUN = (arrive-> INCREMENT
 |end -> TURNSTILE),
INCREMENT = (value.acquire
 -> value.read[x:T]->value.write[x+1]
 -> value.release->RUN
)+VarAlpha.

Modify TURNSTILE to acquire and release the lock:

Old INCREMENT:
INCREMENT = (value.read [x : T] → value.write[x + 1] → RUN)
+VarAlpha

Ryszard Janicki Shared Objects and Mutual Exclusion 10/16

Trace:

go → east.arrive → east.value.acquire → east.value.read [0] →
east.value.write[1] → east.value.release → west.arrive →
west.value.acquire → west.value.read [1] → west.value.write[2] →
west.value.release → end → display .value.read [2].

We can test it similarly as previously using TEST process and
LTSA.

But tests cannot prove correctness, only can find errors!

Ryszard Janicki Shared Objects and Mutual Exclusion 11/16

Abstraction using action hiding

2015 Concurrency: shared objects & mutual exclusion
25

©Magee/Kramer 2nd Edition

COUNTER: Abstraction using action hiding

To model shared objects directly
in terms of their synchronized
methods, we can abstract the
details by hiding.

For SynchronizedCounter
we hide read, write,
acquire, release actions.

const N = 4
range T = 0..N

VAR = VAR[0],
VAR[u:T] = (read[u]->VAR[u]
 | write[v:T]->VAR[v]).

LOCK = (acquire->release->LOCK).

INCREMENT = (acquire->read[x:T]
 -> (when (x<N) write[x+1]
 ->release->increment->INCREMENT
)
)+{read[T],write[T]}.

||COUNTER = (INCREMENT||LOCK||VAR)@{increment}.

LTS:

2015 Concurrency: shared objects & mutual exclusion
26

©Magee/Kramer 2nd Edition

COUNTER: Abstraction using action hiding

Minimized
LTS:

We can give a more abstract, simpler description of a COUNTER
which generates the same LTS:

This therefore exhibits “equivalent” behavior i.e. has the same
observable behavior.

COUNTER = COUNTER[0]
COUNTER[v:T] = (when (v<N) increment -> COUNTER[v+1]).

increment increment increment increment

0 1 2 3 4

Another simpler COUNTER (the same LTS):

2015 Concurrency: shared objects & mutual exclusion
26

©Magee/Kramer 2nd Edition

COUNTER: Abstraction using action hiding

Minimized
LTS:

We can give a more abstract, simpler description of a COUNTER
which generates the same LTS:

This therefore exhibits “equivalent” behavior i.e. has the same
observable behavior.

COUNTER = COUNTER[0]
COUNTER[v:T] = (when (v<N) increment -> COUNTER[v+1]).

increment increment increment increment

0 1 2 3 4

∥ COUNTER ≈ COUNTER,
old and new counters are bisimilar, i.e. equivalent.

Ryszard Janicki Shared Objects and Mutual Exclusion 12/16

Another Model

Is the model discussed really necessary?

Can it be specified in a much more simpler way?

What about this:

TURNSTILES GUARD = (check →
(east.arrive → push button → TURNSTILE GUARD |
west.arrive → push button → TURNSTILE GUARD |
none → TURNSTILE GUARD)

COUNTER TO 4 = push button → +1 → push button → +1 →
push button → +1 → push button → +1 → STOP

∥ GARDEN = (TURNSTILES GUARD ∥ COUNTER TO 4)

Ryszard Janicki Shared Objects and Mutual Exclusion 13/16

Petri Nets Versions
TURNSTILES GUARD (two versions):

COUNTER TO 4:

Ryszard Janicki Shared Objects and Mutual Exclusion 14/16

Composed Net

Ryszard Janicki Shared Objects and Mutual Exclusion 15/16

Simultaneity

Suppose that the garden we have considered is a sacred
garden of some cult that worship ‘simultaneity’.
Hence it has two counters, one that counts all worshipers in
the garden, and the other that only counts those blessed
events when two people enter simultaneously from both the
east and the west entrances.

Assume that this event is somehow observable, for instance
openings og gates are synchronized, etc.

Can you model this new garden in terms of FSP?
If ‘yes’, how, as we have interleavings only in this model?

Ryszard Janicki Shared Objects and Mutual Exclusion 16/16

