
Monitors, Condition Synchronization and
Semaphores

CS 2SD3

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton,
Ontario, Canada

Ryszard Janicki Monitors, Condition Synchronization & Semaphores 1/14

Abstract Monitors and Condition Synchronization

2015 Concurrency: monitors & condition synchronization
2

©Magee/Kramer 2nd Edition

monitors & condition synchronization

Concepts: monitors:
encapsulated data + access procedures
mutual exclusion + condition synchronization

 nested monitors

Models: guarded actions

Practice: private data and synchronized methods (exclusion).
 wait(), notify() and notifyAll() for condition synch.
 single thread active in the monitor at a time

Ryszard Janicki Monitors, Condition Synchronization & Semaphores 2/14

Condition Synchronization: Carpark Model

2015 Concurrency: monitors & condition synchronization
3

©Magee/Kramer 2nd Edition

5.1 Condition synchronization

A controller is required for a carpark, which only permits cars to enter
when the carpark is not full and permits cars to leave when there it is
not empty. Car arrival and departure are simulated by separate threads.

Ryszard Janicki Monitors, Condition Synchronization & Semaphores 3/14

Carpark Model

2015 Concurrency: monitors & condition synchronization
4

©Magee/Kramer 2nd Edition

carpark model

♦  Events or actions of interest?

arrive and depart

♦  Identify processes.

arrivals, departures and carpark control

♦  Define each process and interactions (structure).

ARRIVALS CARPARK
CONTROL

DEPARTURES arrive depart

CARPARK

Ryszard Janicki Monitors, Condition Synchronization & Semaphores 4/14

2015 Concurrency: monitors & condition synchronization
5

©Magee/Kramer 2nd Edition

carpark model

CARPARKCONTROL(N=4) = SPACES[N],
SPACES[i:0..N] = (when(i>0) arrive->SPACES[i-1]
 |when(i<N) depart->SPACES[i+1]
).

ARRIVALS = (arrive->ARRIVALS).
DEPARTURES = (depart->DEPARTURES).

||CARPARK =
 (ARRIVALS||CARPARKCONTROL(4)||DEPARTURES).

Guarded actions are used to control arrive and depart.
LTS?

————————————————————————————
SPACES [i : 0..N] expands to:
————————————————————————————
SPACES [0] = (depart → SPACES [1]
SPACES [1] = (arrive → SPACES [0] | depart → SPACES [2])
SPACES [2] = (arrive → SPACES [1] | depart → SPACES [3])
SPACES [3] = (arrive → SPACES [2] | depart → SPACES [4])
SPACES [4] = (arrive → SPACES [3]
————————————————————————————

Blue expansion is used when LTS is produced! This is also and
abstract monitor

Guarded actions are used to control arrive and depart

Ryszard Janicki Monitors, Condition Synchronization & Semaphores 5/14

Passive vs Active Processes

A process is active if it initiates (output) actions.

A process is passive if it responds to (input) actions.
Abstract monitors (use Guarded Actions) are passive
processes.

Ryszard Janicki Monitors, Condition Synchronization & Semaphores 6/14

Semaphores

Semaphores are widely used for dealing with inter-process
synchronization in operating systems.
In fact, anywhere where there is a restriction, at some point of
processing, to having only one operating entity, like for
instance one processor.

Semaphore s is an integer variable that can take only
non-negative values.

The only semaphore operations are down(s) (wait(s),V (s))
and up(s) (signal(s),P(s)).

In the model presented in the textbook, blocked processes are
held in FIFO queue. In standard theoretical model the are
held in a set (and choice releasing is non-deterministic). In
general any protocol for releasing is allowed.

Ryszard Janicki Monitors, Condition Synchronization & Semaphores 7/14

Semaphores

2015 Concurrency: monitors & condition synchronization
17

©Magee/Kramer 2nd Edition

5.2 Semaphores

Semaphores are a low-level, primitive construct widely used for dealing
with inter-process synchronization in operating systems. Semaphore s
is an integer variable that can take only non-negative values.

down(s): if s >0 then
 decrement s

else
 block execution of the calling process

up(s): if processes blocked on s then

 awaken one of them
 else

 increment s

The only
operations
permitted on
s are up(s)
and down(s).
Blocked
processes are
held in a
FIFO queue.

———————————————————————————

Binary Semaphores

down(s): if s = 1 then s = 0
else block execution of the calling process

up(s): if process blocked on s then awaken one of them
else s = 1

Ryszard Janicki Monitors, Condition Synchronization & Semaphores 8/14

Modeling Semaphores with FSP

Since the semantics of FSP is via LTS, we can only model
semaphores that take a finite range of values.

If this range is exceeded then we regard this as an error.

This may not be true in other models!

N is the initial value.

2015 Concurrency: monitors & condition synchronization
18

©Magee/Kramer 2nd Edition

modeling semaphores

const Max = 3
range Int = 0..Max

SEMAPHORE(N=0) = SEMA[N],
SEMA[v:Int] = (up->SEMA[v+1]
 |when(v>0) down->SEMA[v-1]

),
SEMA[Max+1] = ERROR.

To ensure analyzability, we only model semaphores that take a
finite range of values. If this range is exceeded then we regard this
as an ERROR. N is the initial value.

LTS?

Ryszard Janicki Monitors, Condition Synchronization & Semaphores 9/14

Modeling Semaphores with FSP

2015 Concurrency: monitors & condition synchronization
18

©Magee/Kramer 2nd Edition

modeling semaphores

const Max = 3
range Int = 0..Max

SEMAPHORE(N=0) = SEMA[N],
SEMA[v:Int] = (up->SEMA[v+1]
 |when(v>0) down->SEMA[v-1]

),
SEMA[Max+1] = ERROR.

To ensure analyzability, we only model semaphores that take a
finite range of values. If this range is exceeded then we regard this
as an ERROR. N is the initial value.

LTS?
————————————————————————————
It expands to:
SEMA[0] = (up → SEMA[1])
SEMA[1] = (up → SEMA[2] | down → SEMA[0])
SEMA[2] = (up → SEMA[3] | down → SEMA[1])
SEMA[3] = (up → SEMA[4] | down → SEMA[2])
SEMA[4] = ERROR
————————————————————————————

Using ERROR is questionable!

What not: SEMA[3] = (down → SEMA[2])!!

Ryszard Janicki Monitors, Condition Synchronization & Semaphores 10/14

Modeling Semaphores with LTS

SEMA[0] = (up → SEMA[1])
SEMA[1] = (up → SEMA[2] | down → SEMA[0])
SEMA[2] = (up → SEMA[3] | down → SEMA[1])
SEMA[3] = (up → SEMA[4] | down → SEMA[2])
SEMA[4] = ERROR

2015 Concurrency: monitors & condition synchronization
19

©Magee/Kramer 2nd Edition

modeling semaphores

Action down is only accepted when value v of the semaphore
is greater than 0.

Action up is not guarded.

Trace to a violation:
up à up à up à up

up up

down

up

down

up

down

-1 0 1 2 3

Ryszard Janicki Monitors, Condition Synchronization & Semaphores 11/14

Mutex and Binary Semaphores

2015 Concurrency: monitors & condition synchronization
20

©Magee/Kramer 2nd Edition

semaphore demo - model

LOOP = (mutex.down->critical->mutex.up->LOOP).

||SEMADEMO = (p[1..3]:LOOP
 ||{p[1..3]}::mutex:SEMAPHORE(1)).

Three processes p[1..3] use a shared semaphore mutex to
ensure mutually exclusive access (action critical) to some
resource.

For mutual exclusion, the semaphore initial value is 1. Why?

Is the ERROR state reachable for SEMADEMO?

Is a binary semaphore sufficient (i.e. Max=1) ?

LTS?

For mutual exclusion, the semaphore initial value is 1.

Binary semaphores are sufficient in this case, actually mutual
exclusion provided main motivation to Edsgar Dijkstra for
invention of semaphores in 1958 (actually he implemented
what was first used for rail tracks in 19 century).

Ryszard Janicki Monitors, Condition Synchronization & Semaphores 12/14

Mutex and Binary Semaphores: LTS

2015 Concurrency: monitors & condition synchronization
20

©Magee/Kramer 2nd Edition

semaphore demo - model

LOOP = (mutex.down->critical->mutex.up->LOOP).

||SEMADEMO = (p[1..3]:LOOP
 ||{p[1..3]}::mutex:SEMAPHORE(1)).

Three processes p[1..3] use a shared semaphore mutex to
ensure mutually exclusive access (action critical) to some
resource.

For mutual exclusion, the semaphore initial value is 1. Why?

Is the ERROR state reachable for SEMADEMO?

Is a binary semaphore sufficient (i.e. Max=1) ?

LTS?

2015 Concurrency: monitors & condition synchronization
21

©Magee/Kramer 2nd Edition

semaphore demo - model
p.1.mutex.down

p.2.mutex.down

p.3.mutex.down p.3.critical

p.3.mutex.up

p.2.critical

p.2.mutex.up

p.1.critical

p.1.mutex.up

0 1 2 3 4 5 6

Ryszard Janicki Monitors, Condition Synchronization & Semaphores 13/14

Semaphores in Java (in Textbook)

In Textbook approach (presumably for didactic reasons),
semaphores are passive objects, therefore implemented as
Java monitors.

In practice, semaphores are a low-level mechanism often used
for implementing the higher-level monitor, or other,
constructs.

Semaphores are often implemented in Assembler or even by
hardware.

Ryszard Janicki Monitors, Condition Synchronization & Semaphores 14/14

