
Semaphores, Monitors and Buffers
CS 2SD3

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton,
Ontario, Canada

Ryszard Janicki Semaphores, Monitors and Buffers & Semaphores 1/12

Bounded Buffer

2015 Concurrency: monitors & condition synchronization
27

©Magee/Kramer 2nd Edition

5.3 Bounded Buffer

A bounded buffer consists of a fixed number of slots. Items are put
into the buffer by a producer process and removed by a consumer
process. It can be used to smooth out transfer rates between the
producer and consumer.

(see car park example)

A bounded buffer consists of a fixed number of slots. Items
are put into the buffer by a producer process and removed by
a consumer process. It can be used to smooth out transfer
rates between the producer and consumer.

2015 Concurrency: monitors & condition synchronization
28

©Magee/Kramer 2nd Edition

bounded buffer - a data-independent model

PRODUCER BUFFER CONSUMER put get

BOUNDEDBUFFER

LTS:

The behaviour of BOUNDEDBUFFER is independent of the
actual data values, and so can be modelled in a data-independent
manner.

put put

get

put

get

put

get

put

get get

0 1 2 3 4 5

Ryszard Janicki Semaphores, Monitors and Buffers & Semaphores 2/12

2015 Concurrency: monitors & condition synchronization
29

©Magee/Kramer 2nd Edition

bounded buffer - a data-independent model

BUFFER(N=5) = COUNT[0],
COUNT[i:0..N]

 = (when (i<N) put->COUNT[i+1]
 |when (i>0) get->COUNT[i-1]
).

PRODUCER = (put->PRODUCER).
CONSUMER = (get->CONSUMER).

||BOUNDEDBUFFER = (PRODUCER||BUFFER(5)||
CONSUMER).

————————————————————————————COUNT expands to:

COUNT [0] = (put → COUNT [1])
COUNT [1] = (put → COUNT [2] | get → COUNT [0])
COUNT [2] = (put → COUNT [3] | get → COUNT [1])
COUNT [3] = (put → COUNT [4] | get → COUNT [2])
COUNT [4] = (put → COUNT [5] | get → COUNT [3])
COUNT [5] = (get → COUNT [4])

———————————————————————————–

2015 Concurrency: monitors & condition synchronization
29

©Magee/Kramer 2nd Edition

bounded buffer - a data-independent model

BUFFER(N=5) = COUNT[0],
COUNT[i:0..N]

 = (when (i<N) put->COUNT[i+1]
 |when (i>0) get->COUNT[i-1]
).

PRODUCER = (put->PRODUCER).
CONSUMER = (get->CONSUMER).

||BOUNDEDBUFFER = (PRODUCER||BUFFER(5)||
CONSUMER).

2015 Concurrency: monitors & condition synchronization
28

©Magee/Kramer 2nd Edition

bounded buffer - a data-independent model

PRODUCER BUFFER CONSUMER put get

BOUNDEDBUFFER

LTS:

The behaviour of BOUNDEDBUFFER is independent of the
actual data values, and so can be modelled in a data-independent
manner.

put put

get

put

get

put

get

put

get get

0 1 2 3 4 5
Ryszard Janicki Semaphores, Monitors and Buffers & Semaphores 3/12

Nested Monitors and Semaphores
Suppose that, in place of using the count variable and condition
synchronization directly, we instead use two semaphores full and
empty to reflect the state of the buffer.

2015 Concurrency: monitors & condition synchronization
34

©Magee/Kramer 2nd Edition

nested monitors - bounded buffer model

const Max = 5
range Int = 0..Max

SEMAPHORE ...as before...

BUFFER = (put -> empty.down ->full.up ->BUFFER
 |get -> full.down ->empty.up ->BUFFER
).

PRODUCER = (put -> PRODUCER).
CONSUMER = (get -> CONSUMER).

||BOUNDEDBUFFER = (PRODUCER|| BUFFER || CONSUMER
 ||empty:SEMAPHORE(5)
 ||full:SEMAPHORE(0)

)@{put,get}. Does this behave
as desired?

It deadlocks after the trace get!!!

Why? CONSUMER tries to get a character, but the buffer is empty.
It blocks and releases the lock on the semaphore full. PRODUCER
tries to put a character into the buffer, but also blocks.

It is called nested monitor problem.

Ryszard Janicki Semaphores, Monitors and Buffers & Semaphores 4/12

Sequences put → empty .down and get → full .up in BUFFER
are wrong!
empty .down MUST precede put and full .up MUST precede
get, but this cannot be done in BUFFER!

Correct Buffer Model:

2015 Concurrency: monitors & condition synchronization
38

©Magee/Kramer 2nd Edition

nested monitors - revised bounded buffer model

The semaphore actions have been moved to the producer and
consumer. This is exactly as in the implementation where the
semaphore actions are outside the monitor .

Does this behave as desired?

Minimized LTS?

BUFFER = (put -> BUFFER
 |get -> BUFFER
).

PRODUCER =(empty.down->put->full.up->PRODUCER).
CONSUMER =(full.down->get->empty.up->CONSUMER).

The semaphore actions have been moved to the producer and
consumer.

LTS is isomorphic to the previous solution with COUNT !

Ryszard Janicki Semaphores, Monitors and Buffers & Semaphores 5/12

Monitor Invariants

An invariant for a monitor is an assertion concerning the
variables it encapsulates. It must always hold.

2015 Concurrency: monitors & condition synchronization
39

©Magee/Kramer 2nd Edition

5.5 Monitor invariants
An invariant for a monitor is an assertion concerning the variables
it encapsulates. This assertion must hold whenever there is no thread
executing inside the monitor i.e. on thread entry to and exit from a
monitor .

CarParkControl Invariant: 0 ≤ spaces ≤ N

Semaphore Invariant: 0 ≤ value

Buffer Invariant: 0 ≤ count ≤ size
 and 0 ≤ in < size
 and 0 ≤ out< size
 and in = (out + count) modulo size

Invariants can be helpful in reasoning about correctness of monitors
using a logical proof-based approach. Generally we prefer to use a
model-based approach amenable to mechanical checking .

Invariants are very helpful in reasoning about correctness of
monitors using a logical proof-based approach. They are less
useful for model-checking techniques (but also useful).

Ryszard Janicki Semaphores, Monitors and Buffers & Semaphores 6/12

Passive vs Active Processes:

A process is active is it initiates (output) actions.
A process is passive if it responds to (input) actions.
Monitors are passive processes.

Does nested monitors always lead to errors?

‘Ask first, do later’ principle.

The problem with a solution to the bounded buffer problem
with semaphores has several roots, and the explanation given
in the textbook is incomplete and a little bit misleading.

Ryszard Janicki Semaphores, Monitors and Buffers & Semaphores 7/12

Consider the first solution (from page 4) but the a different
buffer.

New buffer:
BUFFER = (empty .down → put → full .up → BUFFER |

full .down → get → empty .up → BUFFER)

There is no deadlock with new buffer!

Old buffer:
BUFFER = (put → empty .down → full .up → BUFFER |

get → full .down → empty .up → BUFFER)

System deadlocks after get with the old buffer!

Ryszard Janicki Semaphores, Monitors and Buffers & Semaphores 8/12

Is anything wrong with this new red buffer and the new
solution that use it?

BUFFER is no longer passive, so it is not a monitor, neither
PRODUCER nor CONSUMER can do anything without
BUFFER acting first!

This might be a valid solution in some circumstances, bot not
for a standard interpretation of Consumer-Producer problem.

Note that this new buffer implements ‘Ask first, do later’
principle!

New PRODUCER and new CONSUMER:

PRODUCER = (canIproduce → put → PRODUCER)
CONSUMER = (canIconsume → get → CONSUMER)

New composition:

∥ BOUNDED BUFFER = ((PRODUCER ∥ CONSUMER ∥ BUFFER
∥ empty : SEMAPHORE (5) ∥ full : SEMAPHORE (0))

/{empty .down/canIproduce, full .down/canIconsume})@{put, get}

Ryszard Janicki Semaphores, Monitors and Buffers & Semaphores 9/12

Full new solution
const Max = 5
range Int = 0..Max
SEMAPHORE (N = 0) = SEMA[N]
SEMA[v : Int] = (up → SEMA[v + 1] | when(v > 0)down → SEMA[v − 1])

SEMA[Max + 1] = ERROR
BUFFER = (empty .down → put → full .up → BUFFER |

full .down → get → empty .up → BUFFER)
PRODUCER = (canIproduce → put → PRODUCER)
CONSUMER = (canIconsume → get → CONSUMER)
∥ BOUNDED BUFFER = ((PRODUCER ∥ CONSUMER ∥ BUFFER

∥ empty : SEMAPHORE (5) ∥ full : SEMAPHORE (0))

/{empty .down/canIproduce, full .down/canIconsume})@{put, get}

SEMAPHORE and BUFFER are passive, i.e. monitors.

Monitors are nested here.

‘Ask first, do later’ principle is used in both BUFFER and active
processes CONSUMER and PRODUCER.

The solution works! Its LTS is the same as for correct bounded
buffers discussed previously.

Ryszard Janicki Semaphores, Monitors and Buffers & Semaphores 10/12

Nested monitors increase chances of errors, but do not cause errors
when used carefully. Similarly like “goto” increases chances of
errors, but not all programs with “goto” are wrong.

‘Ask first, do later’ principle. Is is always necessary?

Consider the solution where BUFFER and SEMAPHORE are not
nested, but we have another new PRODUCER and another new
CONSUMER.

const Max = 5
range Int = 0..Max
SEMAPHORE (N = 0) = SEMA[N]
SEMA[v : Int] = (up → SEMA[v + 1] | when(v > 0)down → SEMA[v − 1])

SEMA[Max + 1] = ERROR
BUFFER = (put → BUFFER | get → BUFFER)
PRODUCER = (put → empty .down → full .up → PRODUCER)
CONSUMER = (get → full .down → empty .up → CONSUMER)
∥ BOUNDED BUFFER = (PRODUCER ∥ CONSUMER ∥ BUFFER

∥ empty : SEMAPHORE (5) ∥ full : SEMAPHORE (0))@{put, get}.
No deadlock!

No nested monitors and NO ‘Ask first, do later’ principle!

Ryszard Janicki Semaphores, Monitors and Buffers & Semaphores 11/12

The last solution looks formally OK, but what the sequence
get → put means when the buffer is empty?

It still may be a valid solution in some peculiar circumstances,
but most likely it will be a serious error that could produce
some random values and could be difficult to detect.

The solution is not equivalent to the other ones as the trace
get is valid. LTS is show it, but the system will not deadlock.

On a ‘syntax level’, i.e. without interpreting actions, this is a
valid specification!

Ryszard Janicki Semaphores, Monitors and Buffers & Semaphores 12/12

