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Deadlock 

Concepts: system deadlock: no further progress
four necessary & sufficient conditions

  
Models: deadlock - no eligible actions

Practice:  blocked threads

Aim:  deadlock avoidance - to design 
systems where deadlock cannot occur.
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Deadlock: four necessary and sufficient conditions
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Deadlock: four necessary and sufficient conditions 

♦  Serially reusable resources: 
the processes involved share resources which they use under mutual exclusion.

♦  Incremental acquisition: 
processes hold on to resources already allocated to them while waiting to acquire 
additional resources.

♦  No pre-emption: 
once acquired by a process, resources cannot  be pre-empted (forcibly withdrawn) 
but are only released voluntarily.

♦  Wait-for cycle: 
a circular chain (or cycle) of processes exists such that each process holds a 
resource which its successor in the cycle is waiting to acquire.

Ryszard Janicki Deadlock 3/36



Wait-for cycle

2015  Concurrency: Deadlock 
4 

©Magee/Kramer 2nd Edition 

Wait-for cycle 

A 

B 

C D 

E 

Z 

holds A awaits B

holds B awaits C

holds C awaits D
holds D awaits E

holds E awaits A

holds Z awaits B
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Deadlock may arise from the parallel composition of interacting processes.
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deadlock analysis - parallel composition 

♦  in systems, deadlock may arise from the parallel composition of 
interacting processes.

RESOURCE = (get->put->RESOURCE). 
P = (printer.get->scanner.get 

 ->copy  
     ->printer.put->scanner.put 

 ->P). 
Q = (scanner.get->printer.get 

 ->copy 
     ->scanner.put->printer.put 

 ->Q). 
||SYS = (p:P||q:Q  

 ||{p,q}::printer:RESOURCE  
     ||{p,q}::scanner:RESOURCE 
     ). 

printer: 
RESOURCE 
get 
put 

SYS 

scanner: 
RESOURCE 
get 
put 

p:P 
printer 

scanner 

q:Q 
printer 

scanner 

Deadlock Trace?

Avoidance?

p : P = (p.printer .get• → p.scanner .get → p.copy →
p.printer .put → p.scanner .put → p : P)

q : Q = (q.scanner .get• → q.printer .get → q.copy →
q.scanner .put → q.printer .put → q : Q)

{p, q} :: printer : RESOURCE︸ ︷︷ ︸
pqpR

= (p.printer .get• → p.printer .put → pqpR |
q.printer .get → q.printer .put → pqpR)

{p, q} :: scanner : RESOURCE︸ ︷︷ ︸
pqsR

= (p.scanner .get → p.scanner .put → pqsR |
q.scanner .get• → q.scanner .put → pqsP)

Deadlock sequence: p.printer .get → q.scanner .get

• - denote states where processes deadlock
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A Possible Solutions

Acquire resources in the same order, i.e. printers always
before scanners.

Timeout:
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deadlock analysis - avoidance 

♦  acquire resources in the same order?

♦  timeout:

P          = (printer.get-> GETSCANNER), 
GETSCANNER = (scanner.get->copy->printer.put 
                               ->scanner.put->P 
             |timeout -> printer.put->P 
             ). 
Q          = (scanner.get-> GETPRINTER), 
GETPRINTER = (printer.get->copy->printer.put 
                               ->scanner.put->Q 
             |timeout -> scanner.put->Q 
             ). 

Deadlock?    Progress? No deadlock but the sequence:
printer .get → timeout → printer .put →
can be repeated infinite number of times!
NOBODY COPIES ANYTHING!
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Dining Philosophers
Five philosophers sit around a circular table. Each philosopher
spends his life alternately thinking and eating. To eat, a philosopher
needs two forks, but unfortunately there are only five forks on the
circulr table and each philosopher is only allowed to use the two
forks nearest to him.
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Dining Philosophers - model structure diagram
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Dining Philosophers - model structure diagram 

phil[4]:
PHIL

phil[1]:
PHIL

phil[3]:
PHIL

phil[0]:
PHIL

phil[2]:
PHIL

FORK FORK

FORK

FORK FORK

lef tright

right

right

right

lef t

lef t

right

lef t

lef t

Each FORK is a 
shared resource 
with actions get 
and put.

When hungry, each 
PHIL must first get 
his right and left 
forks before he can 
start eating.
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Hungry, Simple Minded Philosophers

i ⊕ 1 = if i < 5 then i + 1 else 1

FORK = (get → put → FORK )
PHIL = (think → right.get → left.get → eat → right.put →

left.put → PHIL)
∥ DINERS(N = 5) = forall [i : 1..N]

(phil [i ] : PHIL ∥ {phil [i ].right, phil [i ⊕ 1].left} :: FORK )
—————————————————————————————–
• More intuitively (for get ij , put

i
j , i - philosopher number, j - fork number):

FORK1 = (get11 → put11 → FORK1 | get51 → put51 → FORK1)
FORK2 = (get22 → put22 → FORK2 | get12 → put12 → FORK2)
FORK3 = (get33 → put33 → FORK3 | get23 → put23 → FORK3)
FORK4 = (get44 → put44 → FORK4 | get34 → put34 → FORK4)
FORK5 = (get55 → put55 → FORK5 | get45 → put45 → FORK5)
PHIL1 = (think1 → get11 → get12 → eat1 → put11 → put12 → PHIL1)
PHIL2 = (think2 → get22 → get23 → eat2 → put22 → put23 → PHIL2)
PHIL3 = (think3 → get33 → get34 → eat3 → put33 → put34 → PHIL3)
PHIL4 = (think4 → get44 → get45 → eat4 → put44 → put45 → PHIL4)
PHIL5 = (think5 → get55 → get51 → eat5 → put55 → put51 → PHIL5)
∥ DINERS = (FORK1 ∥ . . . ∥ FORK5 ∥ PHIL1 ∥ . . . ∥ PHIL5)
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Hungry, Simple Minded Philosophers

Obvious deadlock! Everyone picks right fork.

Trace1 =
phil .1.think → phil .1.right.get →
phil .2.think → phil .2.right.get →
phil .3.think → phil .3.right.get →
phil .4.think → phil .4.right.get →
phil .5.think → phil .5.right.get

think1 → get11 →
think2 → get12 →
think3 → get13 →
think4 → get14 →
think5 → get15
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What if not ‘Simple Minded’?

FORK = (get → put → FORK )

PHIL = THINK
THINK = (think →

(right.get → left.get → EAT | left.get → right.get → EAT ))

EAT = (eat →
(right.put → left.pt → THINK | left.put → right.put → THINK

∥ DINERS(N = 5) = forall [i : 1..N]
(phil [i ] : PHIL ∥ {phil [i ].right, phil [i ⊕ 1].left} :: FORK )

Unfortunately a freedom of choosing either right or left fork
does not solve the problem. The same trace leads to a
deadlock. However in “real” implementation, it will make it
happen less often.
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Still ‘Simple Minded’ but not so ‘Hungry’
FORK = (get → put → FORK )
PHIL = THINK
THINK = (think → right.get →

(left.get → EAT | giveup → right.put → THINK ))
EAT = (eat → right.put → left.put → THINK )
∥ DINERS(N = 5) = forall [i : 1..N]

(phil [i ] : PHIL ∥ {phil [i ].right, phil [i ⊕ 1].left} :: FORK )
———————————————————————————-

There is no deadlock now!
Trace1 → phil .i .giveup → phil .i .right.put → . . .

However we might get:
Trace1 → Trace2 → and so on,
where: Trace2= phil .1.giveup → phil .1.right.put →
phil .2.giveup → phil .2.right.put →
phil .3.giveup → phil .3.right.put →
phil .4.giveup → phil .4.right.put →
phil .5.giveup → phil .5.right.put →
No philosopher will ever eat!
Starvation!
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’Hungry’ and ‘Asymmetrically Simple Minded’, or ‘Some
Discipline Added’

Philosophers 1, 3 and 5 always perform ‘left.get → right.get’,
while 2 and 4 always perform ‘right.get → left.get’.

FORK = (get → put → FORK )
PHIL = (when(i = 1 ∨ i = 3 ∨ i = 5) think → left.get →

right.get → eat → left.put → right.put → PHIL
| when(i = 2 ∨ i = 4) think → right.get →
left.get → eat → right.put → left.put → PHIL)

∥ DINERS(N = 5) = forall [i : 1..N]
(phil [i ] : PHIL ∥ {phil [i ].right, phil [i ⊕ 1].left} :: FORK )

Works! Neither deadlock nor starvation.
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Asymmetrically Simple Minded Philosophers

• Notation: for get ij , put
i
j , i - philosopher number, j - fork number

FORK1 = (get11 → put11 → FORK1 | get51 → put51 → FORK1)
FORK2 = (get22 → put22 → FORK2 | get12 → put12 → FORK2)
FORK3 = (get33 → put33 → FORK3 | get23 → put23 → FORK3)
FORK4 = (get44 → put44 → FORK4 | get34 → put34 → FORK4)
FORK5 = (get55 → put55 → FORK5 | get45 → put45 → FORK5)
PHIL1 = (think1 → get12 → get11 → eat1 → put12 → put11 → PHIL1)
PHIL2 = (think2 → get22 → get23 → eat2 → put22 → put23 → PHIL2)
PHIL3 = (think3 → get34 → get33 → eat3 → put34 → put33 → PHIL3)
PHIL4 = (think4 → get44 → get45 → eat4 → put44 → put45 → PHIL4)
PHIL5 = (think5 → get51 → get55 → eat5 → put51 → put55 → PHIL5)
∥ DINERS = (FORK1 ∥ . . . ∥ FORK5 ∥ PHIL1 ∥ . . . ∥ PHIL5)
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‘Hungry’ and ’Simple Minded’ but outside control, i.e. ‘Butler’

No more than 4 philosophers are sitting at the table.

FORK = (get → put → FORK )
PHIL = (think → sitdown → right.get → left.get → eat →

right.put → left.put → getup → PHIL)
BUTLER(K = 4) = COUNT [0]
COUNT [i : 1..4] = (when(i < K ) sitdown → COUNT [i + 1] |

getup → COUNT [i − 1]
∥ DINERS(N = 5) = (forall [i : 1..N]

(phil [i ] : PHIL ∥ {phil [i ].right, phil [i ⊕ 1].left} :: FORK )
∥ {phil [i : ..N]}︸ ︷︷ ︸

{phil [1],phil [2],phil [3],phil [4],phil [5]}

:: BUTLER(K = 4))
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‘Butler’ Solution

‘Butler’ solution works. No deadlock and no starvation.

FORK ’s are passive processes (monitors), hence they always
can be presented as:
FORK = (get → put → FORK )

PHILOSOPHER’s are active processes.
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A Solution with Simultaneity

No philosopher is allowed to grab one fork only, he must take
both left and right at the same time if they are available.

Modeling simultaneity is not natural in FSP approach, it is
possible but looks artificial.

Modeling simultaneity is natural when Petri nets are used.

Ryszard Janicki Deadlock 17/36



Individual Philosophers and Free Forks as Petri Nets

Philosopher No. 1:

tt1 - Philosopher No.1 thinks
e1 - Philosopher No.1 eats
t12 - Philosopher No.1 takes up forks 1 and 2
p12 - Philosopher No.1 puts down forks 1 and 2

Free Fork No. 4:

ff4 - Fork No. 4 is on the table
e3 - Philosopher No. 3 eats using Fork No. 4
t34 - Fork No. 4 is taken by Philosopher No.3
p34 - Fork No. 4 is put down Philosopher No.3
e4 - Philosopher No. 4 eats using Fork No. 4
t45 - Fork No. 4 is taken by Philosopher No. 4
p45 - Fork No. 4 is put down Philosopher No. 4
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Dining Philosophers Composed
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A Solution with Simultaneity for FSP

FORK = (take.right → put.right → FORK |
take.left → put.left → FORK )

PHIL = (think → takeboth → eat → putboth → PHIL)

∥ DINERS(N = 5) = forall [i : 1..N]
(phil [i ] : PHIL||{phil [i ].right, phil [i ⊕ 1].left} :: FORK ))
/{takeboth.1/take.right.1, takeboth.1/take.left.2,
takeboth.2/take.right.2, takeboth.2/take.left.3,
takeboth.3/take.right.3, takeboth.3/take.left.4,
takeboth.4/take.right.4, takeboth.4/take.left.5,
takeboth.5/take.right.5, takeboth.5/take.left.1,
putboth.1/put.right.1, putboth.1/put.left.2,
putboth.2/put.right.2, putboth.1/put.left.3,
putboth.3/put.right.3, putboth.3/put.left.4,
putboth.4/put.right.4, putboth.4/put.left.5,
putboth.5/put.right.5, putboth.5/put.left.1}
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Different Dining Philosophers and Some Limits of Process Algebras

All forks in one bowl. Forks are not distinguishable and
philosophers pick them randomly.
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Place/Transitions Nets (P/T-Nets)
Firing rules:

Place/Transitions Nets (P/T-Nets)

Firing rules:

Different kind of simultaneity:
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Different kind of simultaneity:
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P/T-Nets Solution to 2nd Dining Philosophers Problem

It does not work for the original Dining Philosophers Problem.

Both philosophers and forks are represented by tokens.

State machines represent generic behaviours.

Impossible to model directly with FSP.
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Coloured Petri Nets

colour PH = with ph1 | ph2 | ph3 | ph4 | ph5
colour Fork = with f 1 | f 2 | f 3 | f 4 | f 5
LEFT : PH → FORK , RIGHT : PH → FORK
var x : PH
fun LEFT x = case of ph1 ⇒ f 2 | ph2 ⇒ f 3 | ph3 ⇒ f 4 |

ph4 ⇒ f 5 | ph5 ⇒ f 1
fun RIGHT x = case of ph1 ⇒ f 1 | ph2 ⇒ f 2 | ph3 ⇒ f 3 |

ph4 ⇒ f 4 | ph5 ⇒ f 5
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Firing

⇓
Firing occurrence: (take forks, x = ph1︸ ︷︷ ︸

binding

) + (take forks, x = ph3︸ ︷︷ ︸
binding

)

⇓
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Multisets (or Bags)

A multiset m, over a non-empty and finite set S is a function
m : S → N = {0, 1, 2, . . .}
m(s) is the number of appearances of s in m.

notation: M is usually represented by:∑
s∈S

m(s)s

S = {a, b, c , d , e},
m(a) = 3,m(b) = 1,m(c) = 0,m(d) = 183,m(e) = 4

m = 3a+ b + 183d + 4e

s ∈ m ⇐⇒ m(s) ̸= 0

m(s) is a coefficient

the empty multiset m = ∅ ⇐⇒ m(s) for each s ∈ S .
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Some Operations on Multisets
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colour PET DRINK = with a;
colour GREEN CAT FOOD = with b;
colour BLUE DOG FOOD = with c;
colour PETS = with dog | cat | pig ; (pig eats both cat food and dog food)
var x : PETS ; (in the drawing: dog=d, cat =ct, pig = p)

• In place p1 we have 6 green cat food servings and 3 drinks (no dog food as it not
allowed here, it is allowed in place p3)
• Firing transition T1 corresponds to allow cat or pig or both to eat. The cat eats 1
serving of cat food and 1 drink while the pig eats 2 servings of food and 2 drinks.
• If both cat and pig eat and drink, 3 drinks and 3 servings of cat food disappear from
place p1, and p, ct disappear from place p2.
• Similarly for places p3, p5 and transition T2.
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colour PET DRINK = with a;
colour GREEN CAT FOOD = with b;
colour BLUE DOG FOOD = with c;
colour PETS = with dog | cat | pig ; (pig eats both cat food and dog food)
var x : PETS ; (in the drawing: dog=d, cat =ct, pig = p)

⇓
Firing occurrence:(T1, x = c) + (T1, x = p) + (T2, x = d)
Interpretation:All three pets eat.

⇓
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Some resource allocation syatem in its initial marking M0
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M1 reachable from M0 by (T2, ⟨x = p, i = 0⟩)
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M2 reachable from M0 by (T2, ⟨x = q, i = 0⟩)
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A Coloured Petri Net is a tuple: N = (P,T ,A,Σ,C ,N,E ,G , I ) where:

P is a set of places and T is a set of transitions.

T is a set of transitions.

A is a set of arcs

In CPNs sets of places, transitions and arcs are pairwise disjoint
P ∩ T = P ∩ A = T ∩ A = ∅
Σ is a set of color sets defined within CPN model. This set contains
all possible colors, operations and functions used within CPN.

C is a colour function. It maps places in P into colors in Σ.

N is a node function. It maps A into (P × T ) ∪ (T × P).

E is an arc expression function. It maps each arc a ∈ A into the
expression e. The input and output types of the arc expressions
must correspond to type of nodes the arc connected to.

G is a guard function. It maps each transition t ∈ T into guard
expression g . The output of the guard expression should evaluate to
Boolean value true or false.

I is an initialization function. It maps each place p into an
initialization expression i . The initialization expression must
evaluate to multiset of tokens with a color corresponding to the
color of the place C (p).Ryszard Janicki Deadlock 33/36



Some Concepts Needed
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‘Official’ Formal Definition of Petri Nets
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Behaviours

Sequence:
(take forks, x = ph1)(take forks, x = ph3)(putdown forks, x = ph3)
Step-sequence:
{(take forks, x = ph1)(take forks, x = ph3)}{(putdown forks, x = ph3)}
Partial order:
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