
Deadlock
CS 2SD3

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton,
Ontario, Canada

Ryszard Janicki Deadlock 1/36

Deadlock

2015 Concurrency: Deadlock
2

©Magee/Kramer 2nd Edition

Deadlock

Concepts: system deadlock: no further progress
four necessary & sufficient conditions

Models: deadlock - no eligible actions

Practice: blocked threads

Aim: deadlock avoidance - to design
systems where deadlock cannot occur.

Ryszard Janicki Deadlock 2/36

Deadlock: four necessary and sufficient conditions

2015 Concurrency: Deadlock
3

©Magee/Kramer 2nd Edition

Deadlock: four necessary and sufficient conditions

♦  Serially reusable resources:
the processes involved share resources which they use under mutual exclusion.

♦  Incremental acquisition:
processes hold on to resources already allocated to them while waiting to acquire
additional resources.

♦  No pre-emption:
once acquired by a process, resources cannot be pre-empted (forcibly withdrawn)
but are only released voluntarily.

♦  Wait-for cycle:
a circular chain (or cycle) of processes exists such that each process holds a
resource which its successor in the cycle is waiting to acquire.

Ryszard Janicki Deadlock 3/36

Wait-for cycle

2015 Concurrency: Deadlock
4

©Magee/Kramer 2nd Edition

Wait-for cycle

A

B

C D

E

Z

holds A awaits B

holds B awaits C

holds C awaits D
holds D awaits E

holds E awaits A

holds Z awaits B

Ryszard Janicki Deadlock 4/36

Deadlock may arise from the parallel composition of interacting processes.

2015 Concurrency: Deadlock
6

©Magee/Kramer 2nd Edition

deadlock analysis - parallel composition

♦  in systems, deadlock may arise from the parallel composition of
interacting processes.

RESOURCE = (get->put->RESOURCE).
P = (printer.get->scanner.get

 ->copy
 ->printer.put->scanner.put

 ->P).
Q = (scanner.get->printer.get

 ->copy
 ->scanner.put->printer.put

 ->Q).
||SYS = (p:P||q:Q

 ||{p,q}::printer:RESOURCE
 ||{p,q}::scanner:RESOURCE
).

printer:
RESOURCE
get
put

SYS

scanner:
RESOURCE
get
put

p:P
printer

scanner

q:Q
printer

scanner

Deadlock Trace?

Avoidance?

p : P = (p.printer .get• → p.scanner .get → p.copy →
p.printer .put → p.scanner .put → p : P)

q : Q = (q.scanner .get• → q.printer .get → q.copy →
q.scanner .put → q.printer .put → q : Q)

{p, q} :: printer : RESOURCE︸ ︷︷ ︸
pqpR

= (p.printer .get• → p.printer .put → pqpR |
q.printer .get → q.printer .put → pqpR)

{p, q} :: scanner : RESOURCE︸ ︷︷ ︸
pqsR

= (p.scanner .get → p.scanner .put → pqsR |
q.scanner .get• → q.scanner .put → pqsP)

Deadlock sequence: p.printer .get → q.scanner .get

• - denote states where processes deadlock
Ryszard Janicki Deadlock 5/36

A Possible Solutions

Acquire resources in the same order, i.e. printers always
before scanners.

Timeout:

2015 Concurrency: Deadlock
7

©Magee/Kramer 2nd Edition

deadlock analysis - avoidance

♦  acquire resources in the same order?

♦  timeout:

P = (printer.get-> GETSCANNER),
GETSCANNER = (scanner.get->copy->printer.put
 ->scanner.put->P
 |timeout -> printer.put->P
).
Q = (scanner.get-> GETPRINTER),
GETPRINTER = (printer.get->copy->printer.put
 ->scanner.put->Q
 |timeout -> scanner.put->Q
).

Deadlock? Progress? No deadlock but the sequence:
printer .get → timeout → printer .put →
can be repeated infinite number of times!
NOBODY COPIES ANYTHING!

Ryszard Janicki Deadlock 6/36

Dining Philosophers
Five philosophers sit around a circular table. Each philosopher
spends his life alternately thinking and eating. To eat, a philosopher
needs two forks, but unfortunately there are only five forks on the
circulr table and each philosopher is only allowed to use the two
forks nearest to him.

Ryszard Janicki Deadlock 7/36

Dining Philosophers - model structure diagram

2015 Concurrency: Deadlock
9

©Magee/Kramer 2nd Edition

Dining Philosophers - model structure diagram

phil[4]:
PHIL

phil[1]:
PHIL

phil[3]:
PHIL

phil[0]:
PHIL

phil[2]:
PHIL

FORK FORK

FORK

FORK FORK

lef tright

right

right

right

lef t

lef t

right

lef t

lef t

Each FORK is a
shared resource
with actions get
and put.

When hungry, each
PHIL must first get
his right and left
forks before he can
start eating.

Ryszard Janicki Deadlock 8/36

Hungry, Simple Minded Philosophers

i ⊕ 1 = if i < 5 then i + 1 else 1

FORK = (get → put → FORK)
PHIL = (think → right.get → left.get → eat → right.put →

left.put → PHIL)
∥ DINERS(N = 5) = forall [i : 1..N]

(phil [i] : PHIL ∥ {phil [i].right, phil [i ⊕ 1].left} :: FORK)
—————————————————————————————–
• More intuitively (for get ij , put

i
j , i - philosopher number, j - fork number):

FORK1 = (get11 → put11 → FORK1 | get51 → put51 → FORK1)
FORK2 = (get22 → put22 → FORK2 | get12 → put12 → FORK2)
FORK3 = (get33 → put33 → FORK3 | get23 → put23 → FORK3)
FORK4 = (get44 → put44 → FORK4 | get34 → put34 → FORK4)
FORK5 = (get55 → put55 → FORK5 | get45 → put45 → FORK5)
PHIL1 = (think1 → get11 → get12 → eat1 → put11 → put12 → PHIL1)
PHIL2 = (think2 → get22 → get23 → eat2 → put22 → put23 → PHIL2)
PHIL3 = (think3 → get33 → get34 → eat3 → put33 → put34 → PHIL3)
PHIL4 = (think4 → get44 → get45 → eat4 → put44 → put45 → PHIL4)
PHIL5 = (think5 → get55 → get51 → eat5 → put55 → put51 → PHIL5)
∥ DINERS = (FORK1 ∥ . . . ∥ FORK5 ∥ PHIL1 ∥ . . . ∥ PHIL5)

Ryszard Janicki Deadlock 9/36

Hungry, Simple Minded Philosophers

Obvious deadlock! Everyone picks right fork.

Trace1 =
phil .1.think → phil .1.right.get →
phil .2.think → phil .2.right.get →
phil .3.think → phil .3.right.get →
phil .4.think → phil .4.right.get →
phil .5.think → phil .5.right.get

think1 → get11 →
think2 → get12 →
think3 → get13 →
think4 → get14 →
think5 → get15

Ryszard Janicki Deadlock 10/36

What if not ‘Simple Minded’?

FORK = (get → put → FORK)

PHIL = THINK
THINK = (think →

(right.get → left.get → EAT | left.get → right.get → EAT))

EAT = (eat →
(right.put → left.pt → THINK | left.put → right.put → THINK

∥ DINERS(N = 5) = forall [i : 1..N]
(phil [i] : PHIL ∥ {phil [i].right, phil [i ⊕ 1].left} :: FORK)

Unfortunately a freedom of choosing either right or left fork
does not solve the problem. The same trace leads to a
deadlock. However in “real” implementation, it will make it
happen less often.

Ryszard Janicki Deadlock 11/36

Still ‘Simple Minded’ but not so ‘Hungry’
FORK = (get → put → FORK)
PHIL = THINK
THINK = (think → right.get →

(left.get → EAT | giveup → right.put → THINK))
EAT = (eat → right.put → left.put → THINK)
∥ DINERS(N = 5) = forall [i : 1..N]

(phil [i] : PHIL ∥ {phil [i].right, phil [i ⊕ 1].left} :: FORK)
———————————————————————————-

There is no deadlock now!
Trace1 → phil .i .giveup → phil .i .right.put → . . .

However we might get:
Trace1 → Trace2 → and so on,
where: Trace2= phil .1.giveup → phil .1.right.put →
phil .2.giveup → phil .2.right.put →
phil .3.giveup → phil .3.right.put →
phil .4.giveup → phil .4.right.put →
phil .5.giveup → phil .5.right.put →
No philosopher will ever eat!
Starvation!

Ryszard Janicki Deadlock 12/36

’Hungry’ and ‘Asymmetrically Simple Minded’, or ‘Some
Discipline Added’

Philosophers 1, 3 and 5 always perform ‘left.get → right.get’,
while 2 and 4 always perform ‘right.get → left.get’.

FORK = (get → put → FORK)
PHIL = (when(i = 1 ∨ i = 3 ∨ i = 5) think → left.get →

right.get → eat → left.put → right.put → PHIL
| when(i = 2 ∨ i = 4) think → right.get →
left.get → eat → right.put → left.put → PHIL)

∥ DINERS(N = 5) = forall [i : 1..N]
(phil [i] : PHIL ∥ {phil [i].right, phil [i ⊕ 1].left} :: FORK)

Works! Neither deadlock nor starvation.

Ryszard Janicki Deadlock 13/36

Asymmetrically Simple Minded Philosophers

• Notation: for get ij , put
i
j , i - philosopher number, j - fork number

FORK1 = (get11 → put11 → FORK1 | get51 → put51 → FORK1)
FORK2 = (get22 → put22 → FORK2 | get12 → put12 → FORK2)
FORK3 = (get33 → put33 → FORK3 | get23 → put23 → FORK3)
FORK4 = (get44 → put44 → FORK4 | get34 → put34 → FORK4)
FORK5 = (get55 → put55 → FORK5 | get45 → put45 → FORK5)
PHIL1 = (think1 → get12 → get11 → eat1 → put12 → put11 → PHIL1)
PHIL2 = (think2 → get22 → get23 → eat2 → put22 → put23 → PHIL2)
PHIL3 = (think3 → get34 → get33 → eat3 → put34 → put33 → PHIL3)
PHIL4 = (think4 → get44 → get45 → eat4 → put44 → put45 → PHIL4)
PHIL5 = (think5 → get51 → get55 → eat5 → put51 → put55 → PHIL5)
∥ DINERS = (FORK1 ∥ . . . ∥ FORK5 ∥ PHIL1 ∥ . . . ∥ PHIL5)

Ryszard Janicki Deadlock 14/36

‘Hungry’ and ’Simple Minded’ but outside control, i.e. ‘Butler’

No more than 4 philosophers are sitting at the table.

FORK = (get → put → FORK)
PHIL = (think → sitdown → right.get → left.get → eat →

right.put → left.put → getup → PHIL)
BUTLER(K = 4) = COUNT [0]
COUNT [i : 1..4] = (when(i < K) sitdown → COUNT [i + 1] |

getup → COUNT [i − 1]
∥ DINERS(N = 5) = (forall [i : 1..N]

(phil [i] : PHIL ∥ {phil [i].right, phil [i ⊕ 1].left} :: FORK)
∥ {phil [i : ..N]}︸ ︷︷ ︸

{phil [1],phil [2],phil [3],phil [4],phil [5]}

:: BUTLER(K = 4))

Ryszard Janicki Deadlock 15/36

‘Butler’ Solution

‘Butler’ solution works. No deadlock and no starvation.

FORK ’s are passive processes (monitors), hence they always
can be presented as:
FORK = (get → put → FORK)

PHILOSOPHER’s are active processes.

Ryszard Janicki Deadlock 16/36

A Solution with Simultaneity

No philosopher is allowed to grab one fork only, he must take
both left and right at the same time if they are available.

Modeling simultaneity is not natural in FSP approach, it is
possible but looks artificial.

Modeling simultaneity is natural when Petri nets are used.

Ryszard Janicki Deadlock 17/36

Individual Philosophers and Free Forks as Petri Nets

Philosopher No. 1:

tt1 - Philosopher No.1 thinks
e1 - Philosopher No.1 eats
t12 - Philosopher No.1 takes up forks 1 and 2
p12 - Philosopher No.1 puts down forks 1 and 2

Free Fork No. 4:

ff4 - Fork No. 4 is on the table
e3 - Philosopher No. 3 eats using Fork No. 4
t34 - Fork No. 4 is taken by Philosopher No.3
p34 - Fork No. 4 is put down Philosopher No.3
e4 - Philosopher No. 4 eats using Fork No. 4
t45 - Fork No. 4 is taken by Philosopher No. 4
p45 - Fork No. 4 is put down Philosopher No. 4

Ryszard Janicki Deadlock 18/36

Dining Philosophers Composed

Ryszard Janicki Deadlock 19/36

A Solution with Simultaneity for FSP

FORK = (take.right → put.right → FORK |
take.left → put.left → FORK)

PHIL = (think → takeboth → eat → putboth → PHIL)

∥ DINERS(N = 5) = forall [i : 1..N]
(phil [i] : PHIL||{phil [i].right, phil [i ⊕ 1].left} :: FORK))
/{takeboth.1/take.right.1, takeboth.1/take.left.2,
takeboth.2/take.right.2, takeboth.2/take.left.3,
takeboth.3/take.right.3, takeboth.3/take.left.4,
takeboth.4/take.right.4, takeboth.4/take.left.5,
takeboth.5/take.right.5, takeboth.5/take.left.1,
putboth.1/put.right.1, putboth.1/put.left.2,
putboth.2/put.right.2, putboth.1/put.left.3,
putboth.3/put.right.3, putboth.3/put.left.4,
putboth.4/put.right.4, putboth.4/put.left.5,
putboth.5/put.right.5, putboth.5/put.left.1}

Ryszard Janicki Deadlock 20/36

Different Dining Philosophers and Some Limits of Process Algebras

All forks in one bowl. Forks are not distinguishable and
philosophers pick them randomly.

Ryszard Janicki Deadlock 21/36

Place/Transitions Nets (P/T-Nets)
Firing rules:

Place/Transitions Nets (P/T-Nets)

Firing rules:

Different kind of simultaneity:

Ryszard Janicki Deadlock 22/36

Different kind of simultaneity:

Ryszard Janicki Deadlock 22/36

P/T-Nets Solution to 2nd Dining Philosophers Problem

It does not work for the original Dining Philosophers Problem.

Both philosophers and forks are represented by tokens.

State machines represent generic behaviours.

Impossible to model directly with FSP.

Ryszard Janicki Deadlock 23/36

Coloured Petri Nets

colour PH = with ph1 | ph2 | ph3 | ph4 | ph5
colour Fork = with f 1 | f 2 | f 3 | f 4 | f 5
LEFT : PH → FORK , RIGHT : PH → FORK
var x : PH
fun LEFT x = case of ph1 ⇒ f 2 | ph2 ⇒ f 3 | ph3 ⇒ f 4 |

ph4 ⇒ f 5 | ph5 ⇒ f 1
fun RIGHT x = case of ph1 ⇒ f 1 | ph2 ⇒ f 2 | ph3 ⇒ f 3 |

ph4 ⇒ f 4 | ph5 ⇒ f 5

Ryszard Janicki Deadlock 24/36

Firing

⇓
Firing occurrence: (take forks, x = ph1︸ ︷︷ ︸

binding

) + (take forks, x = ph3︸ ︷︷ ︸
binding

)

⇓

Ryszard Janicki Deadlock 25/36

Multisets (or Bags)

A multiset m, over a non-empty and finite set S is a function
m : S → N = {0, 1, 2, . . .}
m(s) is the number of appearances of s in m.

notation: M is usually represented by:∑
s∈S

m(s)s

S = {a, b, c , d , e},
m(a) = 3,m(b) = 1,m(c) = 0,m(d) = 183,m(e) = 4

m = 3a+ b + 183d + 4e

s ∈ m ⇐⇒ m(s) ̸= 0

m(s) is a coefficient

the empty multiset m = ∅ ⇐⇒ m(s) for each s ∈ S .

Ryszard Janicki Deadlock 26/36

Some Operations on Multisets

Ryszard Janicki Deadlock 27/36

colour PET DRINK = with a;
colour GREEN CAT FOOD = with b;
colour BLUE DOG FOOD = with c;
colour PETS = with dog | cat | pig ; (pig eats both cat food and dog food)
var x : PETS ; (in the drawing: dog=d, cat =ct, pig = p)

• In place p1 we have 6 green cat food servings and 3 drinks (no dog food as it not
allowed here, it is allowed in place p3)
• Firing transition T1 corresponds to allow cat or pig or both to eat. The cat eats 1
serving of cat food and 1 drink while the pig eats 2 servings of food and 2 drinks.
• If both cat and pig eat and drink, 3 drinks and 3 servings of cat food disappear from
place p1, and p, ct disappear from place p2.
• Similarly for places p3, p5 and transition T2.

Ryszard Janicki Deadlock 28/36

colour PET DRINK = with a;
colour GREEN CAT FOOD = with b;
colour BLUE DOG FOOD = with c;
colour PETS = with dog | cat | pig ; (pig eats both cat food and dog food)
var x : PETS ; (in the drawing: dog=d, cat =ct, pig = p)

⇓
Firing occurrence:(T1, x = c) + (T1, x = p) + (T2, x = d)
Interpretation:All three pets eat.

⇓

Ryszard Janicki Deadlock 29/36

Some resource allocation syatem in its initial marking M0

Ryszard Janicki Deadlock 30/36

M1 reachable from M0 by (T2, ⟨x = p, i = 0⟩)

Ryszard Janicki Deadlock 31/36

M2 reachable from M0 by (T2, ⟨x = q, i = 0⟩)

Ryszard Janicki Deadlock 32/36

A Coloured Petri Net is a tuple: N = (P,T ,A,Σ,C ,N,E ,G , I) where:

P is a set of places and T is a set of transitions.

T is a set of transitions.

A is a set of arcs

In CPNs sets of places, transitions and arcs are pairwise disjoint
P ∩ T = P ∩ A = T ∩ A = ∅
Σ is a set of color sets defined within CPN model. This set contains
all possible colors, operations and functions used within CPN.

C is a colour function. It maps places in P into colors in Σ.

N is a node function. It maps A into (P × T) ∪ (T × P).

E is an arc expression function. It maps each arc a ∈ A into the
expression e. The input and output types of the arc expressions
must correspond to type of nodes the arc connected to.

G is a guard function. It maps each transition t ∈ T into guard
expression g . The output of the guard expression should evaluate to
Boolean value true or false.

I is an initialization function. It maps each place p into an
initialization expression i . The initialization expression must
evaluate to multiset of tokens with a color corresponding to the
color of the place C (p).Ryszard Janicki Deadlock 33/36

Some Concepts Needed

Ryszard Janicki Deadlock 34/36

‘Official’ Formal Definition of Petri Nets

Ryszard Janicki Deadlock 35/36

Behaviours

Sequence:
(take forks, x = ph1)(take forks, x = ph3)(putdown forks, x = ph3)
Step-sequence:
{(take forks, x = ph1)(take forks, x = ph3)}{(putdown forks, x = ph3)}
Partial order:

Ryszard Janicki Deadlock 36/36

