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CS 2SD3. Sample solutions to the assignment 1. 

Total of this assignment is 166 pts. 100% = 160 pts. Each assignment is worth 10% of total. 

Most of solutions are not unique. 

 
If you think your solution has been marked wrongly, write a short memo stating where marking in 

wrong and what you think is right, and resubmit to me during class, office hours, or just slip under 

the door to my office. The deadline for a complaint is 2 weeks after the assignment is marked and 

returned. 

 

1.[15] a.[9] For each one of the following three processes, give the Finite State Processes 

(FSP) description of the labelled transition graph. Dots indicate initial states. 

 

 b.[6] Use LTSA to transform the solutions to 1.a back into labelled transition systems. 

Compare the results and discuss differences (if any). 

 

    

  

 

   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Solutions (not unique!): 

a.  

[3] P1 = A  

  A = (a → B | a → D) 

  B = (b → C | c → D) 

  C = (d → C | a → D| b → A) 

  D = (d → A) 
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  P1 = A  

  A = (a → B | a → (d → A)) 

  B = (b → C | c → (d → A)) 

  C = (d → C | a → (d → A) | b → A) 

[3] P2 = A 

  A = (b → B | b → C) 

  B = (b → E | d → D) 

  C = (c → B) 

  D = (a→ A | b → E | d → C) 

  E = ( a → A | c → C) 

 

     

  P2 = A 

  A = (b → B | b → (c → B)) 

  B = (b → E | d → D) 

  D = (b → E | d → (c → B)) 

  E = (a → A | c → (c → B)) 

 

[3] P3 = A 

  A = (a → D | b → B) 

  B = (a → A | a → C) 

  C = (b → B | b → D| c → C) 

  D = (a → C | c → A) 

 

  P3 = A 

  A = (a → (a → C | c → A) | b → B) 

  B = (a → A | a → C) 

  C = (b → B | b → (a → C | c → A)| c → C) 

 

b.  

[2] 

    

P1 = A, 
A = (a -> B | a -> D), 
B = (b -> C | c -> D), 
C = (d -> C | a -> D| b -> A), 
D = (d -> A). 
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-------------------------------------

 
 

[2]   

 
 

 

 

 

 

 

 

 

 

 

------------------------------------------------------------------------------ 

P1 = A, 
A = (a -> B | a -> (d -> A)), 
B = (b -> C | c -> (d -> A)), 
C = (d -> C | a -> (d -> A)). 

P2 = A, 
A = (b -> B | b -> C), 
B = (b -> E | d -> D), 
C = (c -> B), 
D = (b -> E | d -> C), 
E = (a -> A | c -> C). 
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------------------ 

[2] 

 

 

  
------------------------------------------------------ 

 

 

 

 

 

 

P2=A, 
A = (b-> B |b->(c-> B)), 
B = (b-> E |d-> D), 
D = (b-> E |d->(c-> B)), 
E = (a-> A | c->(c-> B)). 

P3 = A, 
A = (a -> D | b -> B), 
B = (a -> A | a -> C), 
C = (b -> B | b -> D| c -> C), 
D = (a -> C | c -> A). 
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P3 = A, 
A = (a -> (a -> C | c -> A) | b -> B), 
B = (a -> A | a -> C), 
C = (b -> B | b -> (a -> C | c -> A)| c -> C). 
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2.[10] Consider the following simple hotel reservation system.  

 

 A customer makes a room request.  

If room is available, a confirmation is sent to the customer,  

otherwise the customer is put on a reservation list. If a room is confirmed, the customer 

may either use it, pay for the room, leave and the whole transaction is archived. However 

the customer may also cancel his/her reservation. When the customer is on waiting list, a 

room may become available, and then a confirmation is sent to a customer.  The customer 

may also give up waiting and cancel his/her request.  

 

Model this reservation system as a FSP process reservation. Note that this process always 

stops, so you have to use the process STOP. Also provide appropriate labelled transition 

system (use LTSA) 

 

Solution: 

[8] 

  

  

 

[2] 

 
 

 

 

 

 

 

HOTEL = (request -> REQUESTED), 
REQUESTED = (available -> confirmation_sent -> CONFIRMED 
           | not_available -> put_on_list -> ON_WAITING_LIST), 
CONFIRMED = (moves_in -> pays -> ARCHIVED), 
ON_WAITING_LIST = (room_available -> CONFIRMED | giving_up -> CANCELED), 
ARCHIVED = (record_transactions -> STOP), 
CANCELED = (record_transactions -> STOP). 
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3.[10] A miniature portable FM radio has three controls. An on/off switch turns the device on 

 and off. Tuning is controlled by two buttons scan and reset which operate as follows. 

 When the radio is turned on or reset is pressed, the radio is tuned to the top frequency of 

the FM band (108 MHz). When scan is pressed, the radio scans towards the bottom of 

the band (88 MHz). It stop scanning when it locks onto a station or it reaches the bottom 

 (end). If the radio is currently tuned to a station and scan is pressed then it start to scan 

from the frequency of that station towards the bottom. Similarly, when reset is pressed 

the receiver tunes to the top. Model the radio as a FSP process RADIO. Also provide an 

appropriate labelled transition system.  

 Hint: The alphabet of RADIO is {on, off, scan, reset, lock, end}. 

 

Solution: 

[8] 

FSP:  
  

 

[2] 
 

/* FM radio */ 

 

RADIO    = OFF, 

OFF      = (on -> TOP), 

TOP      = (scan -> SCANNING | reset -> TOP | off -> OFF), 

SCANNING = (scan -> SCANNING | reset -> TOP | off -> OFF | lock -> TUNED | end -> 

BOTTOM), 

TUNED     = (scan -> SCANNING | reset -> TOP | off -> OFF), 

BOTTOM    = (scan -> BOTTOM   | reset -> TOP | off -> OFF). 
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4.[15] Program the radio of Question 3 in Java, complete with graphic display (if you can). 

 

 Java solutions will not be posted. 

 

 

 

5.[15] A drinks dispending machine charges 15c for can of Sugerola, 20c for a can of 

SugerolaDiet and 25c for a can of SugerolaSuperDiet  . The machine accepts coins with 

denominations 5c, 10c and 25c and gives changes. Model the machine as an FSP process, 

DRINKS. 

 

Solution (not unique): 

[12] 
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[3] 

 
 

 

 

6.[15] Consider the following set of FSPs: 

DM = (in.coin [5] -> FIVE | in.coin [10] -> TEN | in.coin [25] -> TWENTY_FIVE), 
FIVE = (in.coin [5] -> TEN | in.coin [10] -> FIFTEEN | in.coin [25] -> THIRTY), 
TEN = (in.coin [5] -> FIFTEEN | in.coin [10] -> TWENTY | in.coin [25] -> THIRTY_FIVE), 
FIFTEEN = (sugerola -> STOP | in.coin [5] -> TWENTY | in.coin [10] -> TWENTY_FIVE | in.coin [25] -> FORTY), 
TWENTY = (sugeroladiet -> STOP | in.coin [5] -> TWENTY_FIVE | in.coin [10] -> THIRTY| in.coin [25] -> FORTY_FIVE), 
TWENTY_FIVE = (sugerolasuperdiet -> STOP | in.coin [5] -> THIRTY | in.coin [10] -> THIRTY_FIVE | in.coin [25] -> FIFTY), 
THIRTY = (overflow -> sugerola -> returnFIFTEEN -> STOP  
   | overflow -> sugeroladiet -> returnTEN -> STOP 
   | overflow -> sugerolasuperdiet -> returnFIVE -> STOP), 
THIRTY_FIVE = (overflow -> sugerola -> returnTWENTY -> STOP  
   | overflow -> sugeroladiet -> returnFIFTEEN -> STOP 
   | overflow -> sugerolasuperdiet -> returnTEN -> STOP), 
FORTY = (overflow -> sugerola -> returnTWENTY_FIVE -> STOP  
   | overflow -> sugeroladiet -> returnTWENTY -> STOP 
   | overflow -> sugerolasuperdiet -> returnFIFTEEN -> STOP), 
FORTY_FIVE = (overflow -> sugerola -> returnTHIRTY -> STOP  
   | overflow -> sugeroladiet -> returnTWENTY_FIVE -> STOP 
   | overflow -> sugerolasuperdiet -> returnTEN -> STOP), 
FIFTY = (overflow -> sugerola -> returnTHIRTY_FIVE -> STOP 
   | overflow -> sugeroladiet -> returnTHIRTY -> STOP 
   | overflow -> sugerolasuperdiet -> returnTWENTY_FIVE -> STOP). 
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 A = ((a → (b → A)) | (c → (a → C | c → B)) | c → C)) 
 B = (b → (a → B | c → (a → A | b → B))) 
 C = ((a → (b → (c → B))) | (a → C))        
 

 a.[12] Construct an equivalent Labelled Transition System using the rules from page 16 

of Lecture Notes 2. 

 b.[3] Use LTSA to derive appropriate LTS, and, if different than yours, analyse and 

explain differences.  

 

Solution: 

 a. 

  

 A = (a → A1 | c → A2 | c → C) 
 A1 = (b → A) 
            A2 = (a → C | c → B) 
 B = (b → B2) 
 B1 = (a → A | b → B) 
 B2 = (a → B | c → B1) 
 C = (a →C2 | a → C) 

C1 = (c → B) 
C2 = (b → C1) 

 

  
 

 

b.  
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7.[18]  a.[8] Show that processes ||S1 and S2 generate the same Labelled Transition Systems, 

  i.e. LTS(||S1) = LTS(S2) (or equivalently, they generate the same behaviour) 

 

  P = ( a -> b -> d ->  P) 

  Q = ( c -> b -> e ->  Q ) 

  || S1 = ( P || Q ) 

 

  S2    = ( a -> S2A | c -> S2B ) 

A = (a -> A1 | c -> A2 | c -> C), 
A1 = (b -> A), 
A2 = (a -> C | c -> B), 
B = (b -> B2), 
B1 = (a -> A | b -> B), 
B2 = (a -> B | c -> B1), 
C = (a ->C2 | a -> C), 
C1 = (c -> B), 
C2 = (b -> C1). 
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  S2A = ( c -> b -> d -> S2C | c -> b -> e -> S2D ) 

  S2B = ( a -> b -> d -> S2C | a -> b -> e -> S2D ) 

  S2C = ( e -> S2 | a -> e -> S2A )  

  S2D = ( d -> S2 | c -> d -> S2B )  

 

 b.[10]  Using a method presented on page 17 of Lecture Notes 3 and pages 10-11 of 

Lecture Notes 4, transform the processes ||S1 and S2 into appropriate Petri nets. 

Are these nets identical? Explain the difference. Which one allows simultaneity? 

 

Solution: 

a. LTS(||S1) = LTS(S2) and is isomorphic to the below diagram: 

 

 
  

  

b. ||S1 corresponds to N1 and S2 corresponds to N2. 
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In N1, actions {a,c} and {d,e} can be executed simultaneously. N2 is isomorphic to 

LTS(||S1) = LTS(S2). 

 

 

 

 

 

 

 

(Solution verification by LTSA tool) 

 

 

 
P = (a -> b -> d -> P). 
Q = (c -> b -> e -> Q). 
|| S1 = (P || Q). 
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One example S1 = c -> a -> b -> e -> c -> d -> a -> b->e -> d -> S1, 

 
 

 

S2 = (a -> S2A | c -> S2B), 
S2A = (c -> b -> d -> S2C | c -> b -> e -> S2D), 
S2B = (a -> b -> d -> S2C | a -> b -> e -> S2D), 
S2C = (e -> S2 | a -> e -> S2A), 
S2D = (d -> S2 | c -> d -> S2B). 
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8.[10] Consider a Petri net below: 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 Model the net N1 as a composition of FSP processes. 

 

Solution: 

 

 Since we have: 

 

 

a possible solution is: 
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9.[10] Model the system from page 10 of Lecture Notes 3 as a composition of FSP processes. In 

this case, the entities that are represented by places in the Petri Nets model, must be 

represented by actions/transitions in FSP model. 

 

Solution: 

 

Solution: (a possible one, bonus for using labelling) 

 

 

 
  

 
 

P1 = (a -> P3 | b-> P3), 
P3 = (d-> P1). 
P2 = (b-> P4 | c-> P4), 
P4 = (d-> P2). 
||P5 = (P1 || P2). 

COMP1 = (idle1-> (read1-> COMP1| write1->COMP1)). 
COMP2 = (idle2-> (read2-> COMP2| write2->COMP2)). 
MUT = (write1->MUT|write2->MUT). 
||TWPCOMP = (COMP1||COMP2||MUT). 



17 
 

10.[10] A roller-coaster control system only permits its car to depart when it is full. Passengers 

 arriving at the departure platform are registered with the roller-coaster controller by a 

 turnstile. The controller signals the car to depart when there are enough passengers on the 

 platform to fill the car to its maximum capacity of M passengers. Ignore the 

 synchronization detail of passengers embarking from the platform and car departure. The 

 roller-coaster consists of three processes: TURNSTILE, CONTROL and CAR. 

 TURNSTILE and CONTROL interact by the shared action passenger indicating an arrival 

 and CONTROL and CAR interact by the shared action depart signalling the car departure. 

 Provide FSP description for each process and the overall composition. 

 

Solution (not unique): 

 
 

 

 

 

 

11.[10] Construct reachability graph (defined on page 18 of Lecture Notes 3) for the Petri net 

from Question 8. 

 

Solution: (7 if simultaneity is not mentioned) 

const M = 3 
TURNSTILE = (passenger -> TURNSTILE). 
CONTROL          = CONTROL [0], 
CONTROL [i:0..M] = (when (i<M) passenger -> CONTROL [i+1] 
                   |when (i==M) depart   -> CONTROL [0]). 
CAR = (depart -> CAR). 
||ROLLERCOASTER = (TURNSTILE || CONTROL || CAR). 
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or, if simultaneity is allowed: 

 

    
 

12.[28]  Consider three Labelled Transition Systems (Finite State Machines, Finite 

Automata) given below: P1, P2 and P3. Tokens represent initial states. Show that: 

 a.[8] P2 ≈ P3, i.e. P3 and P3 are bisimilar, 

 b.[6] P1 ≉ P2, i.e. P1 and P2 are not bisimilar, 

 c.[6] P1 ≉ P3, i.e. P1 and P3 are not bisimilar, 

 d.[8] Traces(P1) = Traces(P2) = Traces(P3) = Pref(give a proper regular expression). 
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Solutions: 

a. p0 and s0 are bisimilar as in both cases actions a and b are allowed.  

p1 and s1 are bisimilar as they both allow only a. 

p2 and s2 allow a, b and c, so they are bisimilar. 

p3 and s3 are bisimilar as they both allow a and c. 

p4 and s4 are bisimilar as they both allow a and b. 

p5 and s5 are bisimilar as they both allow only c, and 

p5 and s6 are also bisimilar as they also allow only c. 

We have exhausted all cases, so P2 and P3 are bisimilar, i.e. P2 ≈ P3. 

 

b. After trace aa the labeled transition system P1 is either in the state q2 or the state q3, while 

P2 is in the state p2. In the state p2 the actions a, b and c are allowed, in the state q2 the 

actions a and c are allowed, while in the state q3 the actions a and b are allowed. Hence 

both pairs (q2,p2) and (q3,p2) are not bisimilar, i.e. P1 ≉ P2. 

 

c. After trace aa the labeled transition system P1 is either in the state q2 or the state q3, while 

P3 is in the state s2. In the state s2 the actions a, b and c are allowed, in the state q2 the 

actions a and c are allowed, while in the state q3 the actions a and b are allowed. Hence 

both pairs (q2,s2) and (q3,s2) are not bisimilar, i.e. P1 ≉ P3. 
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d.  

 
 

Note that some parts are both yellow and red. In fact, only arrows q0 → q3, p0 → p4,  

s0 → s4, labelled by b, are only red. 

yellow(P1) = aa(c* ∪ b*)ac yellow(P2) = aa(cc*a ∪ a ∪ bb*a)c = aa(c* ∪ b*)ac 

yellow(P3) = aa((cc*a ∪ a)c ∪ bb*ac) =  aa(c* ∪ b*)ac 

yellow = yellow(P1) = yellow(P2) = yellow(P3)  

 

yellow = aa(c* ∪ b*)ac  red = bb*ac 

cycle = from q0/ p0/s0  to  q0/ p0/s0  = (yellow ∪ red)* 

Traces = Pref((yellow ∪ red)*) = Pref( (aa(c* ∪ b*)ac) ∪ bb*ac)*) 

 

 


