
1

CS 2SD3. Sample solutions to the assignment 2.

Total of this assignment is 122 pts. 100% = 120 pts. Each assignment is worth 10% of total.

Most of solutions are not unique.

If you think your solution has been marked wrongly, write a short memo stating where marking in wrong

and what you think is right, and resubmit to me during class, office hours, or just slip under the door to my

office. The deadline for a complaint is 2 weeks after the assignment is marked and returned.

1.[40] Consider a group of k philosophers. Each philosopher either think or eats cookies (one

serving at a time) or drinks cola (one bottle at a time). The cookie dispenser has a

capacity of M servings, and cola dispenser has a capacity of N bottles. When a dispenser

is empty a philosopher waits until a servant refills it. If any dispenser is empty, the

servant refills it with either M servings of cookies or N bottles of cola, whichever the

case. Refilling must be done as soon as possible, so they have priority over dispensing

cookies and cola. There is no partial refilling of the dispensers. Assume that initially,

both dispensers are full.

 (a)[10] Model the behaviour of the system as FSP processes. Write a safety property that

when composed with your system will check if no cookies are dispensed when

there is no cola and vice versa. Compose this property with your system and

verify if this it holds.

There is no standard model of priorities in Petri nets, so you have the freedom to define them to

fit your solution. This is a comment for points (b), (c) and (d).

 (b)[5] Model the behaviour of the system as an Elementary Petri net (see Lecture Notes

3).

 (c)[5] Model the behaviour of the system as a Place/Transition Petri net (see Lecture

Notes 9, pages 21, 22).

 (d)[5] Model the behaviour of the system as a Coloured Petri net (see Lecture Notes 9,

pages 23-34).

 (e)[5] Discuss the differences between the FSP and various Petri Net solutions.

 (f)[10] Implement the system in Java program.

2

Solutions:

PHIL = (think -> PHIL | get_cookie -> eat_cookie -> PHIL

 | get_cola -> drink_cola -> PHIL).

const K = 3

range Phil = 1..K

|| PHILS = (forall[i: Phil] phil[i]:PHIL).

SERVANT = (fill_cookies -> SERVANT | fill_cola -> SERVANT).

const M = 3

range Cookies = 0..M

COOKIES = COOKIES[0],

COOKIES[s: Cookies] = (when (s > 0) get_cookie -> COOKIES[s-1]

 | fill_cookies -> COOKIES[M]).

const N = 2

range Cola = 0..N

COLA = COLA[0],

COLA[s: Cola] = (when (s > 0) get_cola -> COLA[s-1] | fill_cola -> COLA[M]).

property SCOLA = SCOLA[M],

SCOLA[s: Cola] = (when (s==0) fill_cola-> SCOLA[M]).

property SCOOKIE = SCOOKIE[N],

SCOOKIES[s: Cookies] = (when (s==0) fill_cookies-> SCOOKIES[N]).

||PHIL_COLA_COOKIE = (PHILS || COOKIES || COLA || SERVANT || SCOLA ||

SCOOKIES).

Comment on Petri nets solutions.

1. One obvious solution is just to mimic any FSP solution by replacing individual processes by their

LTS and then merge common transitions. However such solution is not very readable and

unnecessary complex (i.e. the resulting net is huge).

2. When modelling directly with Petri nets, the initial challenge could be how to model the fact that

SERVANT can fill COOKIES and COLA only when they are empty. In principle this is a test for

zero and standard Petri nets do not have it. Inhibitor nets have it, but they are equivalent to Turing

Machines, so many problems are undecidable, a headache for tool developers. However this can

easily be modelled by the following scheme: the servant does not look into the dispensers, he/she

counts the servings taken out of the dispensers, he/she knows the dispensers capacity, so he/she

3

can decide when any dispenser is empty by just counting. Of course this works only if initially the

dispensers are full. And this can be modelled quite easily, as you can see below.

(i) Elementary nets and 3 serving capacity of, say, COLA:

(ii) For Place/Transition nets it is even simpler and more intuitive. Let M be a number of servings in

the cola dispenser.

There is a possibility of overfilling the pot here, but this can be taken care by the rest of the

system.

(iii) For Coloured Petri nets it is as (ii), only some syntactic difference.

4

(a) A sample solution for 2 philosophers, 3 cola dispenser capacity and 2 cookies dispenser capacity.

Philosophers are the red part of the net, servant is green.

 di
j means philosopher i drinks cola j, ei

j means philosopher i eats cookie j,

Note that servings numbers are just names, for example serving3 can be eaten by savage2 as the

first step, also simultaneous eating, say serving1 by savage2 and serving3 by savage1 is allowed.

5

(c) A sample solution with Place/Transition nets for 3 philosophers, M cola dispenser capacity and N

cookies dispenser capacity.

di means philosopher i drinks a cola, ei means philosopher i eats a cookie, thi means philosopher i is

thinking.

This solution is better as it makes servings not distinguishable, which I believe is the intention of the

problem.

6

If for some reasons making a distinction between philosophers is not important, for instance only the

behaviour of dispensers is what we are looking for, the following Place/Transition nets models k

philosophers and M cola dispenser capacity and N cookies dispenser capacity (simultaneous execution of

e with itself is allowed here, and the same for d!)

7

(d) Coloured Petri nets.

 colour PHILOSOPHERS = with ph1 | ph2 | ... | phk

 colour SERVANT = with serv

 colour COLAS = Integers

 colour COOKIES = Integers

 var x: PHILOSOPHERS

 var t: SERVANT

 var y,z :COLAS

 var u,v :COOKIES

 fun FILL_COLA z =M

 fun NO_COLA z=M

 fun FILL_COOKIE z =M

 fun NO_COOKIE z=M

(e) Any reasonable comments are acceptable. Elementary nets are the closest to FSP. Petri nets allow

formal proofs, that is fairly difficult with FSP, where mainly checking can only be provided.

(f) Java solution is not provided.

8

2.[17] A museum allows visitors to enter through the east entrance and leave through its west

exit. Arrivals and departures are signalled to the museum controlled by the turnstiles at

the entrance and exit. At opening time, the museum director signals the controller that the

museum is open and then the controller permits both arrivals and departures. At closing

time, the director signals that the museum is closed, at which point only departures are

permitted by the controller.

For Process Algebra models (as FSP), the museum system consists of processes EAST,

WEST, CONTROL and DIRECTOR.

 (a)[7] Draw the structure diagram for the museum and provide an FSP description for

each of the processes and the overall composition.

 (b)[5] Model the above scenario with Petri nets (any kind, your choice)

 (c)[5] Provide Java classes that implement each one of the above FSP processes.

Solutions: (a)

9

10
(b) There are many solutions. Probably the simplest one is that what follows (disregard 2 in a circle

in the right top corner). Some important points.

 (i) We assume that m≠n, where n is the museum capacity and m is the number of potential

visitors. Assume that the entrance is open if the museum is not full and the East door

status is ‘open’.

 (ii) Both doors can be (and actually are in this solution) opened simultaneously, but closing

must be in the order East → West.

 (iii) Exit cannot be closed if there is a visitor in the museum.

(c) Java solutions are not provided.

11

3.[10] Specify a safety property for the car park problem of Lecture Notes 7 or Chapter 5 of the

textbook, which asserts that the car park does not overflow.

 Also, specify a progress property which asserts that cars eventually enter the car park.

 If car departure is lower priority than car arrival, does starvation occur?

Solution

CARPARKCONTROL(N=4) = SPACES[N],

SPACES[i:0..N] = (when(i>0) arrive->SPACES[i-1]

 |when(i<N) depart->SPACES[i+1]

).

ARRIVALS = (arrive->ARRIVALS).

DEPARTURES = (depart->DEPARTURES).

||CARPARK = (ARRIVALS||CARPARKCONTROL(4)||DEPARTURES).

property OVERFLOW(N=4) = OVERFLOW[0],

OVERFLOW[i:0..N] = (arrive -> OVERFLOW[i+1]

 |depart -> OVERFLOW[i-1]

).

||CHECK_CARPARK = (OVERFLOW(4) || CARPARK).

/* try safety check with OVERFLOW(3) */

progress ENTER = {arrive}

||LIVE_CARPARK = CARPARK >>{depart}.

Starvation won’t occur when car departure has lower priority than car arrival.

12

4.[15] For ‘The Dining Philosophers Problem’, simultaneous picking up of both forks is an

abstraction of a general rule that ‘the act of picking up both forks is atomic’. In other

words, an order ‘pick right’, ‘pick left’ is arbitrary but once the process of picking starts,

it cannot be interrupted. In practice quite often conceptual simultaneity is implemented

as atomicity.

Provide a solution with FSP for Dining Philosophers with ‘atomic act of (sequential)

picking up both forks’.

Solution. A possible idea is to use a concept of ‘reservation’ (‘ask first do later’), and use the

classical net solution from page 18 of LN9 and FSP from page 19 of LN9 as a guidance.

 This is not the only solution, but probably the simplest one.

FORK = (reserve_right -> take_right -> put_right -> FORK

 | reserve_left -> take_left -> put_left -> FORK)

PHIL = (think -> reserve_forks -> USE_FORKS)

USE_FORKS = (take_right -> take_left -> eat -> PUT_FORKS

 | take_left -> take_right -> eat -> PUT_FORKS)

PUT_FORKS = (put_left -> put_right -> PHIL

 | put_right -> put_left -> PHIL)

||DINERS(N=5) = (forall[i:1..N]

 (phil[i]:PHIL || {phil[i].right,phil[(i+1)%N].left}::FORK))

/{

 reserve_forks.1/reserve_right.1,reserve_forks.1/reserve_left.2,

 reserve_forks.2/reserve_right.2,reserve_forks.2/reserve_left.3,

 reserve_forks.3/reserve_right.3,reserve_forks.3/reserve_left.4,
 reserve_forks.4/reserve_right.4,reserve_forks.4/reserve_left.5,
 reserve_forks.5/reserve_right.5,reserve_forks.5/reserve_left.1}

13

5.[5] Provide a Petri Nets solution (any kind of nets can be used) to asymmetric Dining

Philosophers discussed in Lecture Notes 9 page 13 (or Chapter 6.2.2 of the textbook).

Solution.

A solution with Elementary Petri Nets is simple but the resulting graph is rather big. We may

start with FSP solution in explicit extended form as the one for ‘Hungry, Simple Minded

Philosophers’ on page 9 of LN9.

Assuming that for philosopher #i the right fork is fork #i and the left fork is fork #(i⊕1) we

have:

Now we may transform each individual FSP into an appropriate Elementary Petri Net. To

simplify net solution (and make it more in ‘net spirit’), we may model ‘think’ and ‘eat’ by places

instead of transitions. For example the nets corresponding to FORK1 and PHIL1 may look as

follows:

Now we just need to compose the nets for FORK1, … , FORK5, PHIL1, …, PHIL5, by gluing

14

together the same actions. The solution fits one page but barely ☺

Solutions with Place/Transition Nets are the same as with Elementary Nets, still big.

With Coloured Petri Nets we may get a very simple and elegant solution in the style of the

solution from page 23 of LN9.

colour PH = with ph1 | ph2 | ph3 | ph4 | ph5

colour Fork = with f1 | f2 | f3 | f4 | f5

FirstF : PH → FORK, SecondF : PH → FORK

FirstFR : PH → FORK, SecondFR : PH → FORK

var x: PH

‘for philosophers 1, 3 and 5, left fork is first, for philosophers 2 and 4, right fork is first’

fun FirstF x = case of ph1 ⇒ f2 | ph2 ⇒ f2 | ph3 ⇒ f4 | ph4 ⇒ f5 | ph5 ⇒ f5
fun SecondF x = case of ph1 ⇒ f1 | ph2 ⇒ f3 | ph3 ⇒ f3 | ph4 ⇒ f3 | ph5 ⇒ f1
fun FirstFR x = case of ph1 ⇒ f2 | ph2 ⇒ f2 | ph3 ⇒ f4 | ph4 ⇒ f5 | ph5 ⇒ f5
fun SecondFR x = case of ph1 ⇒ f1 | ph2 ⇒ f3 | ph3 ⇒ f3 | ph4 ⇒ f3 | ph5 ⇒ f1

15

6.[5] A lift has a maximum capacity of ten people. In the model of the lift control system,

passengers entering a lift are signalled by an enter action and passengers leaving the lift

are signalled by an exit action. Specify a safety property in FSP which when composed

with the lift will check that the system never allows the lift that it controls to have more

than ten occupants.

Solution.

const N = 10

property LIFTCAPACITY = LIFT[0],

LIFT[i:0..10] = (when (i<10) enter ->LIFT[i+1]

 |when(i>0) exit -> LIFT[i-1]).

7.[5] Consider the safety property:

 property P = (a -> (b -> P | a -> P) | b -> a -> P)

Provide LTS generated by the property P and a standard process SP such that

LTS(P)=LTS(SP).

Solution:

 SP = (a -> (b -> SP | a -> SP) | b -> (a -> P | b -> ERROR))

16

8.[25] Consider the formulation of Smokers’ A Problem in plain English given in Lecture Notes

10, pages 5-7. The formulation of Dining Philosophers in the same style is in Lecture

Notes 9 on page 7. A straightforward FSP model of Dining Philosophers is presented in

Lecture Notes 9 on page 9 (‘Hungry Simple Minded Philosophers’)

 (a)[10] Provide a straightforward FSP model of Smokers similar to that of ‘Hungry

Simple Minded Philosophers’. In principle add a supplier to the processes

described on page 6 and represent the system using FSP. Use both the compact

FSP notation (as upper part of page 9 of LN 9, above the horizontal line) and it

expanded version (as lower part of page 9 of LN 9, below the horizontal line).

The smoker with for example tobacco could be modelled by the process (but other

solutions are also possible):

SMOKER_T=(get_paper -> get_match->roll_cigarrette ->

smoke_cigarrette ->SMOKER_T)

 The resource ‘tobacco’ could be modelled for example by the process:

 TOBACCO = (delivered -> picked -> TOBACCO)

etc. If your solution deadlock, provide the shortest trace that leads to the deadlock,

if not, provide some arguments why not.

 (b)[5] Write (safety) property process (syntax property CORRECT_PICKUP = ...)

that verifies correct sequences of picking resources, i.e. picking up the paper by

the smoker with tobacco must be followed by picking up match by the same

smoker, picking up the tobacco by the process with the paper must be followed by

picking up match by the same smoker, and picking up tobacco by the smoker with

matches must be followed by picking the paper by the same smoker.

Then compose CORRECT_PICKUP with your solution to (a) above and use the

system provided by the textbook to verify if this safety property is violated.

 (c)[5] An elegant deadlock-free solution to the Smokers can be constructed by applying

‘ask first, do later’ paradigm. Assume that the smokers are not so hungry for

smoking and look on the table first, before making any movement. Then each

smoker starts picking ingredients only if he has the ingredient that he does not see

on the table. Otherwise, he waits patiently.

 Provide this solution using FSPs.

 (d)[5] Compose your solution from (c) with the property CORRECT_PICKUP from

(b) and use the system provided by the textbook to verify if this safety property is

17

not violated.

Solutions.

(a) A possible solution that does not semaphores explicitly. Direct translation of page 7 from

LN10 is also a feasible solution.

SMOKER_T=(get_paper -> get_match->roll_cigarrette -> smoke_cigarrette ->

SMOKER_T)
SMOKER_P=(get_tobacco -> get_match->roll_cigarrette -> smoke_cigarrette ->

SMOKER_P)
SMOKER_M=(get_tobacco -> get_paper->roll_cigarrette -> smoke_cigarrette ->

SMOKER_T)

TOBACCO = (delivered -> picked -> TOBACCO)

PAPER = (delivered -> picked -> PAPER)

MATCH = (delivered -> picked -> MATCH)

AGENT_T = (can_deliver -> deliver_paper -> deliver_match -> AGENT_T)

AGENT_P = (can_deliver -> deliver_match -> deliver_tobacco -> AGENT_P)
AGENT_M = (can_deliver -> deliver_tobacco -> deliver_paper -> AGENT_M)

RULE = (can_deliver -> smoking_completed -> RULE)

SMOKERS = s_t:SMOKER_T || s_p:SMOKER_P || s_m:SMOKER_M

RESOURCES = {s_m,s_p}::TOBACCO || {s_t,s_m}::PAPER || {s_t,s_p}::MATCH

AGENT_RULE = {s_m,s_p,s_t}::RULE || {s_m,s_p}::AGENT_T || {s_m,s_t}::AGENT_P

 || {s_t,s_p}::AGENT_M

CIG_SMOKERS = (SMOKERS || RESOURCES || AGENT_RULE)/

{ s_t.get_paper/s_t.picked,s_m.get_paper/s_m.picked,

s_p.get_paper/s_p.picked,

s_t.deliver_paper/s_t.delivered,s_m.deliver_paper/s_m.delivered,

s_p.deliver_paper/s_p.delivered,

 s_t.smoking_completed/s_t.smoke_cigarrette,

 s_m.smoking_completed/s_m.smoke_cigarrette,
 s_p.smoking_completed/s_p.smoke_cigarrette}

This is not the only solution. For example the processes TOBACCO, PAPER and MATCH can

also be modelled as one RESOURCE, etc.

(b) The details of safety property depend on how CIG_SMOKERS has been defined, for our

solution from the above, the simplest could look as follws:

property CORRECT_PICKUP = (s_t.get_paper -> s_t.get_match -> CORRECT_PICKUP
 | s_p.get_tobacco -> s_p.get_match ->
CORRECT_PICKUP

 | s_m.get_tobacco -> s_m.get_paper -> CORRECT_PICKUP)

18
FULL_CIG_SMOKERS = (SMOKERS || RESOURCES || AGENT_RULE || CORRECT_PICKUP)/

{ s_t.get_paper/s_t.picked,s_m.get_paper/s_m.picked,

s_p.get_paper/s_p.picked,

s_t.deliver_paper/s_t.delivered,s_m.deliver_paper/s_m.delivered,

s_p.deliver_paper/s_p.delivered,

 s_t.smoking_completed/s_t.smoke_cigarrette,

 s_m.smoking_completed/s_m.smoke_cigarrette,
 s_p.smoking_completed/s_p.smoke_cigarrette}

(c)
SMOKER_T=(no_tobacco -> get_paper -> get_match->roll_cigarrette ->

smoke_cigarrette -> SMOKER_T)

SMOKER_P=(no_paper -> get_tobacco -> get_match->roll_cigarrette ->

smoke_cigarrette -> SMOKER_P)

SMOKER_M=(no_match -> get_tobacco -> get_paper->roll_cigarrette ->

smoke_cigarrette -> SMOKER_T)

TOBACCO = (delivered -> picked -> TOBACCO)

PAPER = (delivered -> picked -> PAPER)

MATCH = (delivered -> picked -> MATCH)

AGENT_T = (can_deliver -> no_tobacco ->deliver_paper->deliver_match->

AGENT_T)

AGENT_P = (can_deliver -> no_paper -> deliver_match->deliver_tobacco-

>AGENT_P)

AGENT_M = (can_deliver -> no_match -> deliver_tobacco->deliver_paper-

>AGENT_M)

RULE = (can_deliver -> smoking_completed -> RULE)

SMOKERS = s_t:SMOKER_T || s_p:SMOKER_P || s_m:SMOKER_M

RESOURCES = {s_m,s_p}::TOBACCO || {s_t,s_m}::PAPER || {s_t,s_p}::MATCH

AGENT_RULE = {s_m,s_p,s_t}::RULE || {s_m,s_p}::AGENT_T || {s_m,s_t}::AGENT_P

 || {s_t,s_p}::AGENT_M

CIG_SMOKERS = (SMOKERS || RESOURCES || AGENT_RULE)/

{ s_t.get_paper/s_t.picked,s_m.get_paper/s_m.picked,

s_p.get_paper/s_p.picked,

s_t.deliver_paper/s_t.delivered,s_m.deliver_paper/s_m.delivered,

s_p.deliver_paper/s_p.delivered,

 s_t.smoking_completed/s_t.smoke_cigarrette,

 s_m.smoking_completed/s_m.smoke_cigarrette,
 s_p.smoking_completed/s_p.smoke_cigarrette}

(d) Simple solution is not provided.

